数学人教版九年级上册弦、弧、圆心角练习
- 格式:doc
- 大小:122.00 KB
- 文档页数:2
九年级数学圆心角圆周角专项练习题一、单选题1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()AB.2C.D.32.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1的弦所对的弧的度数为()A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30AB BC BAC=∠=︒,AD是直径,8AD=,则AC的长为()A.4B.CD.6.下列说法正确的有()①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个二、填空题7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)三、解答题11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若AB=24,CD=8,求⊙O的半径长.13.如图,在ABC中,AC BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//DF BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF EF15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。
第二十四章圆24.1.3弧、弦、圆心角一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知AB是O的直径,D,C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=A.40°B.60°C.80°D.120°【答案】B2.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是()度.A.45 B.60C.90 D.120【答案】C【解析】∵圆心处构成一个周角,∴圆心角为360°,∵将圆分割成四个大小相同的扇形,∴每个扇形的圆心角是90°,故选C.【名师点睛】本题考查了扇形和圆心角的定义,解题的关键是掌握一个圆的圆心角为360°.3.已知AB与A′B′分别是O与O′的两条弦,AB=A′B′,那么∠AOB与∠A′O′B′的大小关系是A.∠AOB=∠A′O′B′ B.∠AOB>∠A′O′B′C.∠AOB<∠A′O′B′ D.不能确定【答案】D【解析】由弦相等推弦所对的圆心角相等,必须保证在同圆或等圆中.此题没有限制,所以不能确定∠AOB 和∠A′O′B′的大小关系.4.下列图形中表示的角是圆心角的是A .AB .BC .CD .D【答案】A【解析】根据圆心角的定义:顶点在圆心的角是圆心角可知,B,C,D 项图形中的顶点都不在圆心上,所以它们都不是圆心角.故选A. 5.如果两个圆心角相等,那么 A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对 【答案】D6.在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等, 它们所对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有A .4个B .3个C .2个D .1个【答案】B【解析】圆心角是顶点在圆心的角,所以①正确,为真命题;在同圆中,两个圆心角相等,它们所对的弦也相等,所以②正确,为真命题;在同圆中,两条弦相等,所对的劣弧也相等,所以③错误,为假命题;等弧所对的圆心角相等,所以④正确,为真命题. 故选B .7.如图,已知A 、B 、C 、D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有 ①AB CD =;②BD AC =;③AC =BD ;④∠BOD =∠AO C .A.1个B.2个C.3个D.4个【答案】D二、填空题:请将答案填在题中横线上.8.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是弧BC的中点,则∠ACD= ________.【答案】125°【解析】连接OD,∵AB是⊙O的直径,∠AOC=40°,∴∠BOC=140°,∠ACO=(180°-40°)÷2=70°,∵D是弧BC的中点,∴∠COD=70°,∴∠OCD=(180°-70°)÷2=55°,∴∠ACD=∠ACO+∠OCD=70°+55°=125°,故答案为125°.9.在半径为R的⊙O中,有一条弦等于半径,则弦所对的圆心角为 ________.【答案】60°【解析】如图,AB=OA=OB,所以△ABC为等边三角形,所以∠AOB=60°.故答案为60°.10.弦AB将⊙O分成度数之比为1:5的两段弧,则∠AOB= _________°.【答案】60三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如图,AB,CD,EF都是O的直径,且∠1=∠2=∠3,求证:AC=EB=DF.【解析】在O中,∵∠1=∠2=∠3,又∵AB,CD,EF都是O的直径,∴∠FOD=∠AOC=∠BOE.∴DF=AC=EB,∴AC=EB=DF.。
弧、弦、圆心角学习目标:认识圆心角的观点:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就能够推出其他两个量的相对应的两个值就相等,及其他们在解题中的应用.一、导学过程:(阅读教材 P82 — 83 ,达成课前预习)1、知识准备( 1)圆是轴图形,任何一条所在直线都是它的对称轴.( 2)垂径定理推论.2、预习导航。
( 1)圆心角:极点在的角叫做圆心角。
( 2)等圆:能够的圆叫做等圆,同圆或等圆的半径。
( 3)弧、弦、弦心距、圆心角的关系:定理:在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.相同,还能够获得:在同圆或等圆中,假如两条弧相等,那么它们所对的相等, ?所对的弦也,所对的弦心距也。
在同圆或等圆中,假如两条弦相等,那么它们所对的、、相等.注:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对应的其他各组量也。
二、讲堂练习。
1.假如两个圆心角相等,那么()A .这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D.以上说法都不对2.在同圆中,圆心角∠ AOB=2∠ COD,则两条弧 AB与 CD的关系是()A.AB=2CD B.AB>2CDC.AB<2CDD.不可以确立3.一条弦长恰巧为半径长,则此弦所对的弧是半圆的 _________.4.如图,在⊙O中,AB=AC,∠AOB=60°,求证 : ∠ AOB=∠ BOC=∠ AOCAOB C三、讲堂小结在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,假如两条弧相等,那么它们所对的、、相等.四、反应检测。
1.如图,⊙ O中,假如AB=2CD,那么().A.AB=AC B . AB=AC C . AB<2AC D .AB>2ACACOB2.如图,以平行四边形 ABCD的极点 A 为圆心, AB为半径作圆,分别交BC、AD于 E、F,若∠ D=50°,求BE的度数和BF的度数.3.如图,在⊙ O中, C、D 是直径 AB上两点,且 AC=BD,MC⊥ AB,ND⊥ AB,M、N?在⊙ O上.( 1)求证:AM=(2)若C、D分别为OA、OB中点,则建立吗?BN AM=MN=NB4.如图,∠AOB=90°,C、D 是AB三平分点,AB分别交OC、OD于点E、F,求证: AE=BF=CD.C5. 如图, AB 和 DE是⊙ O的直径,弦 AC∥DE,若弦 BE=3,E 求弦 CE长度。
圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。
24.1.3 弧、弦、圆心角课后作业:方案(A)一、教材题目:P89-P90 T3、T4、T13,∠C=75°.求∠A的度数.1.如图,⊙O中,AB AC与的长度,并证明你的结论.2.如图,AD=BC,比较AB CD3.如图,A,B是⊙O上的两点,∠AOB=120°,C是的中点.求证:四边形OACB 是菱形.二、补充题目:部分题目来源于《典中点》4.如图所示,点A,B,C,D均在⊙O上,且∠AOB=∠COD,连接AC,BD,有下列结论:①AB =CD ;②∠AOC =∠BOD ;③AC ︵=BC ︵;④△AOC ≌△BOD .其中正确的结论是________(写序号即可).5. 如图,AB 是⊙O 的直径,AB =10,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,若点P 是直径AB 上的一动点,则PD +PC 的最小值为________.6.如图所示,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD .7.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,分别交AD ,BC 于点E , F ,延长BA 交⊙A 于点G . (1)求证:GE ︵=EF ︵;(2)若BF ︵的度数为50°,求∠C 的度数.8.(1)如图,在⊙O 中,∠AOB =90°,且C ,D 是AB ︵的三等分点,AB 分别交 OC ,OD 于点E ,F .求证:AE =BF =CD .[第16(1)题](2)在(1)题中,如果∠AOB =120°,其他条件不变,如图所示,那么(1)中 的结论还成立吗?若成立,请证明;若不成立,说明理由.[第16(2)题]答案一、教材1.解:AB ︵=AC ︵⇒AB =AC ⇒⎭⎪⎬⎪⎫∠B =∠C ∠C =75°⇒∠A =180°-2×75°=30°.点拨:等弧所对的弦相等,所对的圆周角也相等.2.解:AB ︵=CD ︵.证明:AD =BC ⇒AD ︵=BC ︵⇒AD ︵+AC ︵=BC ︵+AC ︵⇒CD ︵=AB ︵.点拨:在⊙O 中,由AD =BC ,得AD ︵=BC ︵,进而可知AB ︵=CD ︵. 3.证明:连接OC .⎭⎪⎬⎪⎫∠AOB =120°C 为AB ︵的中点⇒⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧∠AOC =60°∠BOC =60°OA =OC =OB ⇒ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫OA =OC =AC OB =OC =BC ⇒AO =OB =BC =AC ⇒四边形OACB 是菱形. 点拨:四条边都相等的四边形是菱形.二、典中点4. ①②④ 点拨:由∠AOB =∠COD 可得 ∠AOC =∠BOD ,而OA =OC =OB =OD ,故可得①②④均正确,与弧AC 一定相等的是弧BD ,故③错误. 5.10 点拨:作点C 关于AB 的对称点C ′,连接OC ,OD ,OC ′,BC ′,∵ BC =CD =DA ,∴∠AOD =∠COD =∠BOC =60°.∵C 与C ′关于AB 对称,∴BC ′=BC .∴∠BOC ′=60°.∴D ,O ,C ′在同一条直线上.∴ DC ′=AB =10,即PD +PC 的最小值为10,此时P 与O 重合. 6.(1)解:△AOC 是等边三角形.理由如下:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°. 又∵OA =OC ,∴△AOC 是等边三角形. (2)证明:∵∠BOD =180°-∠AOC -∠COD ,∴∠BOD =180°-60°-60°=60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠D =60°,∴∠D =∠COD ,∴OC ∥BD .解题策略:本题利用了转化思想,通过利用在同圆中等弧所对的圆心角相等, 求得角的度数,然后通过∠BOD 实现了角之间的转化,从而使问题得以解 决.7.(1)证明:连接AF ,则AB =AF ,∴∠ABF =∠AFB .∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAF =∠AFB ,∠GAE =∠ABF ,∴∠GAE =∠EAF ,∴GE ︵= EF ︵.(2)解:∵BF ︵的度数为50°,∴∠BAF =50°.∴∠ABF =∠AFB =65°.又 ∵AB ∥CD ,∴∠ABF +∠C =180°,∴∠C =180°-∠ABF =115°.解题策略:在同圆中,圆心角、弧、弦之间的关系是证弧相等、角相等、线 段相等的依据,一般在分析时,哪一组量与所证问题最贴近,就应构造这一 组量,再证明相等. 8.(1)证明:连接AC , BD .∵C ,D 是AB ︵的三等分点, ∴AC ︵=CD ︵=BD ︵, ∴AC =CD =BD .∵∠AOB =90°,∴∠AOC =∠COD =∠BOD =30°. ∵OA =OB ,∴∠OAB =∠OBA =45°. ∴∠AEC =∠AOC +∠OAB =75°. ∵OA =OC ,∠AOC =30°,∴∠ACE =12×(180°-30°)=75°=∠AEC .∴AE =AC .同理可得BF =BD . ∴AE =BF =CD . (2)解:成立.证明略.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.1.3弧、弦、圆心角一、单选题1.下列图形中的角是圆心角的是()A.B.C.D.2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3.如图,在O中,2=,则弦AC与AB的关系是()AC ABA.AB=AC B.AC=2AB C.AC<2AB D.AC>2AB Ð=Ð,下列结论不一定成立的是()4.已知,如图,AOB CODA .AB CD=B .AB CD =C .AOB COD ≌D .,AOB COD△△都是等边三角形5.如图,在O 中,已知AB=CD ,则AC 与BD 的关系是()A .AC BD =B .AC BD <C .AC BD >D .不确定6.如图,,AB CD 是O 的直径,AE BD =,若32AOE °Ð=,则COE Ð的度数是()A .32°B .60°C .68°D .64°7.下列说法:①相等的弦所对的圆心角相等;②等圆中相等的圆心角所对的弧相等;③同圆中等弧所对的圆心角相等.其中正确的是()A .①②B .①③C .②③D .③8.如图,CD 为O 的直径,CD EF ^,垂点为G ,40EOD Ð= ,则(DCF Ð=)A .80°B .50°C .40°D .20°9.如图,AB 是圆O 的直径,BC ,CD ,DA 是圆O 的弦,且BC =CD =DA ,则∠BCD 等于()A .100°B .110°C .120°D .135°二、填空题10.如图,在O 中,点C 是AB 的中点,50A Ð=°,则BOC Ð等于________.11.若一条弦把圆周分成2:3的两段弧,则劣弧所对圆心角的度数是________.12.如图,在⊙O 中,弧AB =弧CD ,∠AOB 与∠COD 的关系是_____.13.已知在⊙O 中,AB=BC,且:3:4AB AMC =,则∠AOC=________.14.如图,ABD =BDC ,若AB=3,则CD=____.15.如图,已知AB,CD 是⊙O 的直径,CE 是弦,且AB ∥CE ,∠C=35°,则弧BE 的度数________.16.如图,在⊙O 中,弦AB 、CD 相交于点P ,若AB=CD ,∠APO=65°,则∠APC=________度.三、解答题17.如图,AB 是O 的直径,,35BC CD DE COD ==Ð=°.求AOE Ð的度数.18.如图,,AB CD 是O 的两条弦.(1)如果AB CD =,那么__________,___________.(2)如果AB CD =,那么__________,___________.(3)如果AOB COD Ð=Ð,那么__________,___________.(4)如果,,AB CD OE AB OF CD =^^,垂足分别为,,E F OE 与OF 相等吗?为什么?19.已知:如图,在⊙O 中,弦AB 与半径OE 、OF 交于点C 、D ,AC =BD ,求证:(1)OC =OD :(2)A E B F =.BC AD 20.如图,以平行四边形ABCD的顶点A为圆心,AB长为半径作A,分别交,于,E F两点,交BA的延长线于点G.(1)求证:»»=;EF FG(2)连接AE,若140Ð的度数.Ð=,求DEAG°6/6参考答案1.B2.C3.C4.D5.A6.D7.C8.D9.C10.40°11.144°12.∠AOB =∠COD13.144°14.315.35°16.5017.75°18.(1)AB CD =,∠AOB =∠COD ;(2)AB =CD ;∠AOB =∠COD ;(3)AB =CD ,AB CD =;(4)OE 与OF 相等20.70°。
圆心角、弧、弦的关系一.选择题(共20小题)1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A.51.5°B.60°C.72°D.76°2.在半径为1cm的⊙O中,弦长为cm的弦所对的圆心角度数为()A.60゜B.90゜C.120゜D.45゜3.已知AB,CD是⊙O的两条弦且都不是直径,如果AB=CD,那么下列结论中不一定成立的是()A.∠AOB=∠COD B.C.∠ABC=∠ADB D.O到两条弦的距离相等4.下列命题中正确的是()A.长度相等的弧是等弧B.相等的弦所对的弧相等C.垂直于弦的直径必平分弦D.平分弦的直径必垂直于弦5.如图,已知在⊙O中,AB=CD=EF=HG,BC=DE=FG=AH,则∠AHG的度数是()A.120°B.125°C.130° D.135°6.下列说法:①直径不是弦;②相等的弦所对的弧相等;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④在同圆或等圆中,较长的弧所对的弦也较长.其中正确的个数有()A.1个 B.2个 C.3个 D.4个7.如图:AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,交AB于H,下列结论中不正确的是()A.=B.=C.=D.EF=GH8.在☉O中=2,则弦AB与弦CD的大小关系是()A.AB>2CD B.AB=2CD C.AB<2CD D.AB=CD9.在同圆或等圆中,下列说法错误的是()A.相等弦所对的弧相等B.相等弦所对的圆心角相等C.相等圆心角所对的弧相等D.相等圆心角所对的弦相等10.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④长度相等的两条弧是等弧.A.3个 B.2个 C.1个 D.以上都不对11.如图所示,∠AOB=2∠COD,则下列结论成立的是()A.>2B.=2C.<2D.不能确定与2的大小关系12.⊙O中,M为的中点,则下列结论正确的是()A.∠AOB>2∠AOMB.∠AOB=2∠AOMC.∠AOB<2∠AOMD.∠AOB与2∠AOM的大小不能确定13.半径为9cm的圆中有一段长度为6πcm的圆弧,则这段圆弧所对的圆心角的度数为()A.60°B.120°C.240° D.60°或120°14.如图,弧BE是⊙D的圆周,点C在弧BE上运动(不与B重合),则∠C 的取值范围是()A.0°≤∠C≤45°B.0°<∠C≤45°C.45°<∠C<90°D.45°≤∠C<90°15.如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°16.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60 B.80 C.100 D.12017.下列命题正确的是()A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆 D.平分弦的直径垂直于弦18.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.4cm B.3cm C.5cm D.4cm19.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°20.如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A.=B.>C.<D.无法确定二.填空题(共20小题)21.一条弦把圆分成2:1的两部分,则劣弧所对的圆心角的度数为.22.圆的一条弦分圆为4:5两部分,其中优弧的度数为°.23.一条弦把圆分成3:7两部分,则这条弦所对的圆心角的度数为.24.在同圆中,如果=2,那么弦AB、CD的关系为AB2CD.25.如图,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于度.26.如图,AB是⊙O的直径,弧BC、弧CD与弧DE相等,∠COD=40°,则∠AOE=.27.如图,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是.28.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是.29.⊙O的半径是2cm,弦AB=2cm,则∠AOB=.30.已知△ABC内接于⊙O,AE平分∠BAC交BC于E,的度数为100°,的度数为140°,则∠AEC的度数为.31.如图,在扇形AOB中,∠AOB=60°,AO=6,点D为的中点,C为半径OA 上一动点(点A除外),沿CD对折后点A恰好落在扇形AOB的边线OB或OA上,AC的长可以是.32.下列四种说法:①等弧所对的圆心角相等;②两个圆心角相等,它们所对的弧也相等;③两条弦相等,它们所对的圆心角相等;④在等圆中,圆心角相等,它们所对的弦也相等,其中正确的有(填所有正确答案的序号)33.若一个圆的半径是6cm,则90度的圆心角所对的弦的长度为.34.如图,已知在△ABC中,∠ACB=90°,∠B=35°,点C为圆心、CA为半径的圆交AB于D点,则弧AD为度.35.如图,PB交⊙O于点A,B,PD交⊙O于点C,D,已知弧DQ=42°,弧BQ=38°,则∠P+∠Q的度数为.36.如图,等腰△ABC的顶角∠A=40°,以AB为直径的半圆与BC、AC分别交于D、E两点,则∠EBC=,的度数为.37.如图,AB是⊙O的直径,弦CD与AB交于点E,的度数是72°,∠BCD=68°,则∠AED的度数为.38.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P 为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.39.如图所示,在⊙O中,=,∠B=70°,则的度数=.40.在半径为3的圆中,长度等于3的弦所对的圆心角是度.三.解答题(共10小题)41.如图,在☉O中,AB是直径,C、D是圆上两点,使得AD=BC.求证:AC=BD.42.如图,AB是⊙O的直径,点C、D在圆上,且=.(1)求证:AC∥OD.(2)若∠AOD=110°,求的度数.43.已知⊙O的半径为12cm,弦AB将圆分成的两段弧所对的圆心角度数之比为1:5,求∠AOB的角度及弦AB的长.44.如图,AB是⊙O的直径,CD的是⊙O中非直径的任意一条弦,试比较AB 与CD的大小,并说明理由.45.如图,AD、BE、CF是⊙O的直径,且∠AOF=∠BOC=∠DOE.求证:AB=CD=EF.46.如图,已知P是⊙O外任意一点,过点P作直线PAB,PCD,分别交⊙O于点A,B,C,D.求证:∠P=(的度数﹣的度数).47.如图,AB是⊙O的直径,AC,CD,DE,EF,FB都是⊙O的弦,且AC=CD=DE=EF=FB,求∠AOC与∠COF的度数.48.如图,在梯形ABCD中,AD∥BC,∠BAD=135°,以A为圆心,AB为半径作⊙A交AD,BC于E,F两点,并交BA延长线于G.求弧BF的度数.49.已知:如图,AE,DB是⊙O的直径,F是⊙O上一点,∠AOB=60°,且F是的中点.求证:AB=BF.50.如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,=,求:∠BCD的度数.圆心角、弧、弦的关系参考答案与试题解析一.选择题(共20小题)1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A.51.5°B.60°C.72°D.76°【分析】要求α的度数,只需求出∠AOB的度数,根据已知条件,易证∠AOB=∠BOC=∠COD=∠DOE,所以可以求出α的度数.【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°﹣52°)÷4=77°,∴α=(180°﹣77°)÷2=51.5°.故选A.【点评】本题考查了与圆有关的性质,在圆中,半径处处相等,由半径和弦组成的三角形是等腰三角形,证明题目时要注意应用.2.在半径为1cm的⊙O中,弦长为cm的弦所对的圆心角度数为()A.60゜B.90゜C.120゜D.45゜【分析】根据题意画出图形,再根据勾股定理可证明△AOB为直角三角形,进而得到圆心角度数为90°.【解答】解:由题意得:AO=BO=1cm,AB=cm,∵12+12=()2,∴∠AOB=90°,故选:B.【点评】此题主要考查了勾股定理逆定理,以及圆心角、弧、弦的关系,关键是掌握勾股定理.3.已知AB,CD是⊙O的两条弦且都不是直径,如果AB=CD,那么下列结论中不一定成立的是()A.∠AOB=∠COD B.C.∠ABC=∠ADB D.O到两条弦的距离相等【分析】根据圆的圆心角、弧、弦间的关系进行分析、判断并作出选择.【解答】解:A、∵AB=CD,∴=,∴∠AOB=∠COD(等弧所对的圆心角相等);故本选项正确;B、∵AB=CD,∴=(在同圆中,等弦所对的弧相等);故本选项正确;C、当≠时,∠ACB≠∠ADB,∴∠ACB=∠ADB这一结论不一定成立;故本选项错误;D、∵AO=CO,BO=DO,AB=CD,∴△AOB≌△COD,∴OE=OF(全等三角形的对应高相等);故本选项正确;故选C.【点评】本题考查了圆心角、弧、弦间的关系.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.4.下列命题中正确的是()A.长度相等的弧是等弧B.相等的弦所对的弧相等C.垂直于弦的直径必平分弦D.平分弦的直径必垂直于弦【分析】根据在同圆或等圆中,长度相等的弧是等弧,相等的弦所对应的弧相等判断A,B.根据垂径定理及其推论判断C,D.【解答】解:长度相等的弧其弧度不一定相等,所以不等称等弧,A错;在同圆中,一条弦对劣弧和优弧,所以相等的弦所对的弧不一定相等,B错.由垂径定理得C对;任意两直径互相平分但不一定垂直,所以D错.故选C.【点评】理解等弧的定义.熟练掌握垂径定理及其推论.5.如图,已知在⊙O中,AB=CD=EF=HG,BC=DE=FG=AH,则∠AHG的度数是()A.120°B.125°C.130° D.135°【分析】连结OA、OG、AD、GD,如图,根据圆心角、弧、弦的关系得到===,===,则+=+=+=+,所以∠AOG=90°,然后根据圆周角定理计算出∠ADG=45°,再利用圆内接四边形的性质求∠AHG.【解答】解:连结OA、OG、AD、GD,如图,∵AB=CD=EF=HG,BC=DE=FG=AH,∴===,===,∴+=+=+=+,即+为圆周的,∴∠AOG=360°×=90°,∴∠ADG=∠AOG=45°,∴∠AHG=180°﹣∠ADG=180°﹣45°=135°.故选D.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了圆周角定理.6.下列说法:①直径不是弦;②相等的弦所对的弧相等;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④在同圆或等圆中,较长的弧所对的弦也较长.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据直径的定义判断①;根据圆心角、弧、弦的关系判断②;根据圆的对称性判断③;根据圆心角、弧、弦的关系判断④.【解答】解:①直径是弦,并且是圆中最长的弦,故说法错误;②在同圆或等圆中,相等的弦所对的弧相等,故说法错误;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴,故说法正确;④在同圆或等圆中,较长的弧所对的弦也较长,故说法错误.故选A.【点评】本题考查的是圆的有关定义及性质,圆心角、弧、弦的关系,解题时一定要注意是在同圆或等圆中此类定理才成立,不要滥用.7.如图:AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,交AB于H,下列结论中不正确的是()A.=B.=C.=D.EF=GH【分析】由AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD 的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,根据垂径定理与弦与弧的关系,即可求得答案,注意排除法在解选择题中的应用.【解答】解:连接EG,AE,∵AB的中垂线CD分别交于C,∴=,故A正确;∵AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,∴=,故B正确;∴四边形EFHG是矩形,∴EF=GH,故D正确.∵AE>AF=DF,∴AE>EC,∴>,故C错误.故选C.【点评】此题考查了弦与弧的关系以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.8.在☉O中=2,则弦AB与弦CD的大小关系是()A.AB>2CD B.AB=2CD C.AB<2CD D.AB=CD【分析】根据两弧的关系,作出的中点E,则AE=BE=CD,根据三角形两边之和大于第三边就可以得到结论.【解答】解:AB<2CD.取的中点E,连接EA、EB,则==,所以EA=EB=CD,在△ABE中,AE+BE>AB,即2CD>AB,则AB<2CD,∴CD<AB<2CD,故选C.【点评】本题主要考查了:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立.9.在同圆或等圆中,下列说法错误的是()A.相等弦所对的弧相等B.相等弦所对的圆心角相等C.相等圆心角所对的弧相等D.相等圆心角所对的弦相等【分析】利用在同圆和等圆中,相等的弦所对的圆心角相等,相等的圆心角所对的弧相等,所对的弦也相等,判断出B、C、D三选项都正确;而同圆或等圆中,同一条弦对应两条弧,其中一条是优弧,一条是劣弧,所以可判断出A选项错误.【解答】解:A、相等弦所对的弧不一定相等,故本选项错误;B、相等弦所对的圆心角相等,故本选项正确;C、相等圆心角所对的弧相等,故本选项正确;D、相等圆心角所对的弦相等,故本选项正确.故选A.【点评】此题考查了圆心角、弧、弦的关系定理的推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.注意:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本推论中的“弧”是指同为优弧或劣弧.10.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④长度相等的两条弧是等弧.A.3个 B.2个 C.1个 D.以上都不对【分析】根据圆心角、弧、弦的关系对①进行判断;根据垂径定理对②进行判断;根据圆的对称性对③进行判断;根据等弧的定义对④进行判断.【解答】解:在同圆或等圆中,相等的圆心角所对的弧相等,所以①的说法错误;平分弦(非直径)的直径垂直于弦,所以②的说法错误;圆是轴对称图形,任何一条直径所在直线都是它的对称轴,所以③的说法正确;能完全重合的两条弧是等弧,所以④的说法错误.故选A.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.11.如图所示,∠AOB=2∠COD,则下列结论成立的是()A.>2B.=2C.<2D.不能确定与2的大小关系【分析】根据圆心角与弦的关系可直接求解.【解答】解:∵∠AOB=2∠COD,∴=2.故选B.【点评】本题考查的是圆心角、弧、弦的关系,即在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.12.⊙O中,M为的中点,则下列结论正确的是()A.∠AOB>2∠AOMB.∠AOB=2∠AOMC.∠AOB<2∠AOMD.∠AOB与2∠AOM的大小不能确定【分析】根据题意先画出图形,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得出正确的结论.【解答】解:根据题意如图:∵在⊙O中,M为的中点,∴=,∴∠AOM=∠MOB,∴∠AOB=2∠AOM;故选B.【点评】此题考查了圆心角、弧、弦之间的关系,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是本题的关键.13.半径为9cm的圆中有一段长度为6πcm的圆弧,则这段圆弧所对的圆心角的度数为()A.60°B.120°C.240° D.60°或120°【分析】根据弧长的计算公式:l=(弧长为l,圆心角度数为n,圆的半径为R),代入即可求出圆心角的度数.【解答】解:由题意得,6π=,解得:n=120.故选B.【点评】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.14.如图,弧BE是⊙D的圆周,点C在弧BE上运动(不与B重合),则∠C 的取值范围是()A.0°≤∠C≤45°B.0°<∠C≤45°C.45°<∠C<90°D.45°≤∠C<90°【分析】由于是⊙D的圆周,则可计算出∠BDE=90°,再根据等腰三角形的性质由DB=DC,则∠B=∠BCD,于是根据三角形内角和定理得到∠BCD=90°﹣∠BDC,然后根据0≤∠BDC≤90°求∠BCD的取值范围.【解答】解:∵是⊙D的圆周,∴∠BDE=×360°=90°,∵DB=DC,∴∠B=∠C,∴∠C=(180°﹣∠BDC)=90°﹣∠BDC,∵0≤∠BDC≤90°,∴45°≤∠C≤90°,故选D.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.15.如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得∠C=90°,继而求得∠ABC的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠ABC=35°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.16.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60 B.80 C.100 D.120【分析】根据圆内接四边形的对角互补和四边形的内角和为360度进行分析求解.【解答】解:∵内接四边形的对角互补,∴∠A:∠B:∠C:∠D=3:4:6:5设∠A的度数为3x,则∠B,∠C,∠D的度数分别为4x,6x,5x∴3x+4x+6x+5x=360°∴x=20°∴∠D=100°故选C.【点评】本题考查圆内接四边形的对角互补和四边形的内角和为360°的理解及运用.17.下列命题正确的是()A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆 D.平分弦的直径垂直于弦【分析】等弧只有在同圆或等圆中才能出现,因此,等弧所对的弦相等是正确的.【解答】解:在同圆或等圆中,相等的圆周角所对的弧相等,故A错误;等弧只有在同圆或等圆中才能出现,因此,等弧所对的弦相等是正确的,故B 正确;不在同一条直线上的三个点确定一个圆,故C错误;平分弦(不是直径)的直径垂直于弦,故D错误.故选B.【点评】题目考查了圆心角、弧、弦、基本定义等知识,通过知识的考查,学生可以将定义或相关定理理解得更加准确,是不错的题目.18.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.4cm B.3cm C.5cm D.4cm【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD,∴=,∴∠DOB=∠OAC=2∠BAD,在△AOF和△ODE中,,∴△AOF≌△ODE,∴OE=AF=AC=3,在Rt△DOE中,DE==4,在Rt△ADE中,AD==4,故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.19.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°【分析】先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数即可.【解答】解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠P=44°﹣16°=28°.故选B.【点评】此题考查的是圆心角、弧、弦的关系及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.20.如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A.=B.>C.<D.无法确定【分析】根据平行线的性质得∠DAC=∠ACB,根据圆周角定理得=.【解答】证明:连接AC,∵AD∥BC,∴∠DAC=∠ACB,∴=.故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二.填空题(共20小题)21.一条弦把圆分成2:1的两部分,则劣弧所对的圆心角的度数为120°.【分析】根据圆一周上弧的度数为360°,设出弦AB分圆的两部分长,列出方程,求出x值,再由圆心角的度数等于它所对的弧的度数得到x的值即为要求的劣弧所对圆心角的度数.【解答】解:设弦AB分圆的两部分别为x,2x,∴x+2x=360°,解得:x=120°,则劣弧所对圆心角为120°.故答案为:120°【点评】此题考查了圆心角、弧、弦的关系,设出适当的未知数,列出方程是解本题的关键.22.圆的一条弦分圆为4:5两部分,其中优弧的度数为200°.【分析】根据在同圆或等圆中,一条弧所对圆心角的度数与这条弧的度数相等解答.【解答】解:∵圆的一条弦分圆为4:5两部分,∴优弧所对圆心角的度数=×360°=200°,∴优弧的度数为200°.故答案为:200°.【点评】本题考查的是圆心角、弧、弦的关系,即一条弧所对圆心角的度数与这条弧的度数相等.23.一条弦把圆分成3:7两部分,则这条弦所对的圆心角的度数为108°.【分析】先根据弦把圆分成3:7的两部分求出所对圆心角的度数即可求解.【解答】解:∵弦AB把⊙O分成3:7的两部分,∴所对圆心角的度数=360°×=108°.故答案为:108°.【点评】本题考查的是圆心角、弧、弦的关系及圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.24.在同圆中,如果=2,那么弦AB、CD的关系为AB<2CD.【分析】根据题意画出图形,利用弧、弦的关系得出==,AE=BE=CD,再由三角形的三边关系即可求解.【解答】解:如图所示,=2,==,∵==,∴AE=BE=CD,在△ABE中,AE+BE>AB,∴AB<2CD.故答案为:<.【点评】本题考查的是圆心角、弧、弦的关系及三角形的三边关系,能根据题意画出图形是解答此题的关键.25.如图,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于40度.【分析】由于点C是弧AB的中点,根据等弧对等角可知:∠BOC是∠BOA的一半;在等腰△AOB中,根据三角形内角和定理即可求出∠BOA的度数,由此得解.【解答】解:△OAB中,OA=OB,∴∠BOA=180°﹣2∠A=80°;∵点C是弧AB的中点,即=,∴∠BOC=∠BOA=40°.故答案为:40.【点评】此题主要考查了圆心角、弧的关系:在同圆或等圆中,等弧所对的圆心角相等.26.如图,AB是⊙O的直径,弧BC、弧CD与弧DE相等,∠COD=40°,则∠AOE= 60°.【分析】由在同圆中等弧对的圆心角相等得,∠BOC=∠COD=∠EOD=40°从而根据平角的定义求得∠AOE的度数.【解答】解:∵,∠COD=40°,∴∠BOC=∠COD=∠EOD=40°,∴∠AOE=180°﹣∠BOE=60°.故答案为60°.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.27.如图,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是51°.【分析】要求α的度数,只需求出∠AOB的度数,根据已知条件,易证∠AOB=∠BOC=∠COD=∠DOE,所以可以求出α的度数.【解答】解:连接OD,∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=48°,∴∠AOB==78°,∴α==51°.故答案为:51°.【点评】本题考查了与圆有关的性质,在圆中,半径处处相等,由半径和弦组成的三角形是等腰三角形,证明题目时要注意应用.28.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是52°.【分析】要求α的度数,只需求出∠AOB的度数,根据已知条件,易证∠AOB=∠BOC=∠COD=∠DOE,所以可以求出α的度数.【解答】解:连接OC、OD,∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=56°,∴∠AOB==76°,∴α==52°.故答案为:52°.【点评】本题考查了与圆有关的性质,在圆中,半径处处相等,由半径和弦组成的三角形是等腰三角形,证明题目时要注意应用.29.⊙O的半径是2cm,弦AB=2cm,则∠AOB=90°.【分析】作OC⊥AB于C,利用垂径定理得到直角三角形,解此直角三角形求得圆的半径即可.【解答】解:作OC⊥AB于C,如图所示,则AC=AB=cm,∴OC==,∴AC=OC,∴∠AOC=45°,∴∠AOB=2∠AOC=90°;故答案为:90°.【点评】本题考查的是垂径定理及解直角三角形的知识,解题的关键是利用垂径定理构造直角三角形.30.已知△ABC内接于⊙O,AE平分∠BAC交BC于E,的度数为100°,的度数为140°,则∠AEC的度数为100°.【分析】根据圆心角、弧、弦的关系得出∠B=70°,∠C=50°,然后根据三角形内角和定理得出∠BAC=60°,进而求得∠BAE=30°,根据三角形外角的性质即可求得∠AEC的度数.【解答】解;∵的度数为100°,的度数为140°,∴∠B=70°,∠C=50°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=30°,∴∠AEC=∠B+∠BAE=100°.故答案为100°.【点评】本题考查了圆心角、弧、弦的关系,三角形内角和定理以及三角形外角的性质,根据圆心角、弧、弦的关系求得∠B,∠C的度数是解题的关键.31.如图,在扇形AOB中,∠AOB=60°,AO=6,点D为的中点,C为半径OA 上一动点(点A除外),沿CD对折后点A恰好落在扇形AOB的边线OB或OA上,AC的长可以是6﹣3或6或9﹣3.【分析】根据点A′落在半径OA上.可以画出相应的图形,可知点A与点A′关于点CD对称,从而可以得到DA′=DA,由点C为弧AB的中点,∠AOB=60°,OD=OA=6,可以求得OC的长,从而可以求得AC的长;根据点A′落在半径OB上,画出相应的图形,由C为半径OB上一动点(点A除外),设点A关于直线CD的对称点为A′,可知DB=DA′=DA,由点D为弧AB的中点,∠AOB=60°,OD=OA=6,可以求得DF和AF的长,从而可以求得BA′的长,进而得到A′C的长;根据题意A′C的长与AC的长相等,可以求得AC的长.【解答】解:①当点E落在半径OA上时,连接OD,如图1所示,∵∠ACD=90°,∠AOB=60°,点D为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OD=6,∴OC=OD•cos30°=6×=3,∴AC=OA﹣OC=6﹣3;②如图2,沿CD对折后点A恰好落在边线OB上,且A′和B重合时,则C和O重合,此时,AC=OA=6;③沿CD对折后点A恰好落在边线OB上,且A′和B不重合时,如图3;连接OD、BD、AD,作DF⊥OA于F,∵∠AFD=90°,∠AOB=60°,点D为弧AB的中点,∴∠AOD=∠BOD=30°,∠OAD=∠OBD,∵OA=OD=6,∴DF=OD•sin30°=6×=3,∠OAD=75°,∴OF=OD•cos30°=6×=3,∴AF=OA﹣OD=6﹣3,∵DA′=DA=DB,∠OAD=∠OBD=75°,∴BA′=2AF=12﹣6,∠DA′B=∠OBD=75°,∴OA′=OB﹣BA′=6﹣(12﹣6)=6﹣6,∵∠CA′D=∠CAD=75°,∴∠BA′C=150°,∴∠OA′C=30°,∴∠A′CO=90°,∴CA′=OA′•sin60°=(6﹣6)×=9﹣3,∴AC=CA′=9﹣3.故答案为:6﹣3或6或9﹣3.【点评】本题考查圆的综合题、特殊角的三角函数值,解题的关键是明确题意,画出相应的图形,找出所求问题需要的条件,利用数形结合的思想解答问题.32.下列四种说法:①等弧所对的圆心角相等;②两个圆心角相等,它们所对的弧也相等;③两条弦相等,它们所对的圆心角相等;④在等圆中,圆心角相等,它们所对的弦也相等,其中正确的有①④(填所有正确答案的序号)【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,即可判定④正确;②③少了条件在同圆或等圆中,故错误;而等弧,即是在同圆或等圆中的条件下判定的,所以①正确.【解答】解:①等弧所对的圆心角相等,故正确;②两个圆心角相等,它们所对的弧也相等,故错误;③两条弦相等,它们所对的圆心角相等,故错误;④在等圆中,圆心角相等,它们所对的弦也相等,故正确;故答案为①④.【点评】此题考查了圆心角、弧、弦的关系.此题比较简单,注意掌握定理的条件(在同圆或等圆中)是解此题的关键.33.若一个圆的半径是6cm,则90度的圆心角所对的弦的长度为6cm.【分析】根据题意得到等腰直角三角形,根据勾股定理计算即可.【解答】解:∵圆心角为90°,∴所得三角形是等腰直角三角形,又半径为6cm,∴弧所对的弦长6cm.故答案为:6cm.【点评】本题考查的是圆心角、弧、弦的关系定理、等腰直角三角形的性质,掌握等腰直角三角形的性质、灵活运用勾股定理是解题的关键.34.如图,已知在△ABC中,∠ACB=90°,∠B=35°,点C为圆心、CA为半径的圆交AB于D点,则弧AD为70度.。
弧、弦、圆心角的关系同步练习
一、填空题:
1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的
度数是________.
D
C
B
A
O
(1) (2) (3)
2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中
有_________对全等三角形;________对相似比不等于1的相似三角形.
3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.
4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度
.
B
A
A
(4) (5) (6)
5.如图5,AB是⊙O的直径,BC BD
,∠A=25°,则∠BOD的度数为________.
6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.
二、选择题:
7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )
A.50°
B.100°
C.130°
D.200°
D D
C
B
A
(7) (8) (9) (10)
8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,
相等的角有( )
A.2对
B.3对
C.4对
D.5对
9.如图9,D是AC的中点,则图中与∠ABD相等的角的个数是( )
A.4个
B.3个
C.2个
D.1个
10.如图10,∠AOB=100°,则∠A+∠B等于( )
A.100°
B.80°
C.50°
D.40°
三、解答题:
11.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.
B
A
12、如图,已知五边形ABCDE的各顶点都在⊙O上,对角线AD是⊙O的直径,AB=BC=CD=2,E 是弧AD的中点,求△ADE的面积是多少?
13、如图,已知AB为⊙O的直径,四边形BCDO为平行四边形,⊙O交BC于E,连接DE、AD。
求证:AD=ED。