人教版数学九年级上册:24.1.3 弧、弦、圆心角 同步练习(附答案)
- 格式:docx
- 大小:84.70 KB
- 文档页数:7
人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。
(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。
(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。
(4)圆心角:顶点在的角叫做圆心角。
(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。
(6)弦心距:到弦的距离叫做弦心距。
(7)等圆:能够的两个圆叫做等圆。
(8)等弧:在同圆或等圆中能的弧叫等弧。
考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。
(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。
(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。
=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。
考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。
(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。
考点4圆周角定理及其推论。
(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。
①直径所对的圆周角是直角.如图c=90°。
①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。
关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。
①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。
24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。
第二十四章圆24.1.3弧、弦、圆心角一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知AB是O的直径,D,C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=A.40°B.60°C.80°D.120°【答案】B2.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是()度.A.45 B.60C.90 D.120【答案】C【解析】∵圆心处构成一个周角,∴圆心角为360°,∵将圆分割成四个大小相同的扇形,∴每个扇形的圆心角是90°,故选C.【名师点睛】本题考查了扇形和圆心角的定义,解题的关键是掌握一个圆的圆心角为360°.3.已知AB与A′B′分别是O与O′的两条弦,AB=A′B′,那么∠AOB与∠A′O′B′的大小关系是A.∠AOB=∠A′O′B′ B.∠AOB>∠A′O′B′C.∠AOB<∠A′O′B′ D.不能确定【答案】D【解析】由弦相等推弦所对的圆心角相等,必须保证在同圆或等圆中.此题没有限制,所以不能确定∠AOB 和∠A′O′B′的大小关系.4.下列图形中表示的角是圆心角的是A .AB .BC .CD .D【答案】A【解析】根据圆心角的定义:顶点在圆心的角是圆心角可知,B,C,D 项图形中的顶点都不在圆心上,所以它们都不是圆心角.故选A. 5.如果两个圆心角相等,那么 A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对 【答案】D6.在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等, 它们所对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有A .4个B .3个C .2个D .1个【答案】B【解析】圆心角是顶点在圆心的角,所以①正确,为真命题;在同圆中,两个圆心角相等,它们所对的弦也相等,所以②正确,为真命题;在同圆中,两条弦相等,所对的劣弧也相等,所以③错误,为假命题;等弧所对的圆心角相等,所以④正确,为真命题. 故选B .7.如图,已知A 、B 、C 、D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有 ①AB CD =;②BD AC =;③AC =BD ;④∠BOD =∠AO C .A.1个B.2个C.3个D.4个【答案】D二、填空题:请将答案填在题中横线上.8.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是弧BC的中点,则∠ACD= ________.【答案】125°【解析】连接OD,∵AB是⊙O的直径,∠AOC=40°,∴∠BOC=140°,∠ACO=(180°-40°)÷2=70°,∵D是弧BC的中点,∴∠COD=70°,∴∠OCD=(180°-70°)÷2=55°,∴∠ACD=∠ACO+∠OCD=70°+55°=125°,故答案为125°.9.在半径为R的⊙O中,有一条弦等于半径,则弦所对的圆心角为 ________.【答案】60°【解析】如图,AB=OA=OB,所以△ABC为等边三角形,所以∠AOB=60°.故答案为60°.10.弦AB将⊙O分成度数之比为1:5的两段弧,则∠AOB= _________°.【答案】60三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如图,AB,CD,EF都是O的直径,且∠1=∠2=∠3,求证:AC=EB=DF.【解析】在O中,∵∠1=∠2=∠3,又∵AB,CD,EF都是O的直径,∴∠FOD=∠AOC=∠BOE.∴DF=AC=EB,∴AC=EB=DF.。
人教版九年级数学上册第24章同步测试题含答案24.1.1 圆基础导练1.以已知点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.半径为5cm的圆满足圆O上的点到圆心的距离()A.大于5cmB.小于5cmC.不等于5cmD.等于5cm3.如图,在半径为2 cm的⊙O内有长为2 3 cm的弦AB,则∠AOB为()A.60°B.90°C.120°D.150°能力提升4.如图,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于点D,OD=5 cm,求BC 的长.5.若圆O的半径是12cm,OP=8cm,求点P到圆上各点的距离中最短距离和最长距离.参考答案1.D 2.D 3.C4.BC=10 cm 5.最短距离为:12-8=4(cm);最长距离为:12+8=20(cm)24.1.2 垂直于弦的直径基础导练1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3 B.4 C.D.2.如图,AB为圆O的弦,圆O的半径为5,OC⊥AB于点D,交圆O于点C,且CD=2,则AB能力提升3.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m4.已知⊙O的半径为5cm,AB和CD是⊙O的弦,AB//CD, AB=6cm,CD=8cm,求AB与CD 之间的距离是多少?参考答案1.C2. 83.D4.1cm 或7cm24.1.3弧、弦、圆心角基础导练1.如图,AB是⊙O的直径,BD=CD,∠BOD=60°,则∠AOC=()A.30°B.45°C.60°D.以上都不正确第1题图第2题图2.如图,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°3.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10B.C.10或D.10或能力提升4.一条弦分圆周为5:7,这条弦所对的圆心角为( )A.210°B.150°C.210°或150°D.75°或105°5.如图,D,E分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC 与CB的弧长的大小关系是______________.第5题图第6题图6.如图,OE,OF分别为⊙O的弦AB,CD的弦心距,如果OE=OF,那么______(只需写一个正确的结论).参考答案1.C2.D3.D4.B5.相等6.AB =CD 或AB =CD24.1.4圆周角基础导练1.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则⊙O 的半 径是( )A .1B .2C .3D .5第1题图 第2题图 第3题图O CBADOABC2.如图,CD⊥AB于点E,若∠B=60°,则∠A=________.3.如图,⊙O直径AB=8,∠CBD=30°,则CD=________.能力提升4.如图,ABC,重合),设△是⊙O的内接三角形,点C是优弧AB上一点(点C不与A B∠=.∠=,CβOABαα=时,求β的度数;(1)当35(2)猜想α与β之间的关系,并给予证明.5.如图,已知AB=AC,∠APC=60°.(1)求证:△ABC是等边三角形;(2)求∠APB的度数.参考答案1.A2.30°3. 44.(1)55β=;(2)90αβ︒+=.证明略. 5.(1)证明:由圆周角定理,得∠ABC =∠APC =60°. 又AB =AC ,∴△ABC 是等边三角形. (2)解:∵∠ACB =60°, ∠ACB +∠APB =180°, ∴∠APB =180°-60°=120°.24.2.1点和圆的位置关系基础导练1.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内B .圆上C .圆外D .都有可能答案2.平面上不共线的四点,可以确定圆的个数为()A.1个或3 B.3个或4个C.1个或3个或4个D.1个或2个或3个或4个3.⊙O的半径r=5 cm,圆心到直线l的距离OM=4 cm,在直线l上有一点P,且PM=3 cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内能力提升4.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,则Rt△ABC其外接圆半径为________cm.5.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.参考答案1.C2.C3.B4.6.55.解:图略.作法:连接AB,AC,分别作这两条线段的垂直平分线,两直线的交点为垃圾桶的位置.24.2.2直线和圆的位置关系基础导练1.如图,P A切⊙O于点A,PO交⊙O于点B,若P A=6,OP=8,则⊙O的半径是() A.4 B.2 7 C.5 D.10第1题图第2题图2.如图,P A,PB是⊙O的两条切线,切点是A,B.如果OP=4,OA=2,那么∠AOB=() A.90°B.100°C.110°D.120°3.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B、C不重合),若∠A=40°,则∠BDC的度数是( ).A.25°或155°B.50°或155°C.25°或130°D.50°或130°能力提升4.如图,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,∠EOF=110°,则∠A=______,∠B=______,∠C=______.5.如图所示,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E =46°,∠DCF=32°,求∠A的度数.参考答案1.B2.D3.A4.50°60°70°5.解:∵EB,EC是⊙O的两条切线,∴EB=EC.∴∠ECB=∠EBC.又∠E=46°,而∠E+∠EBC+∠ECB=180°,∠ECB=67°.又∠DCF+∠ECB+∠DCB=180°,∴∠BCD=180°-67°-32°=81°.又∠A+∠BCD=180°,∴∠A=180°-81°=99°.24.3正多边形和圆基础导练1.一正多边形外角为90°,则它的边心距与半径之比为() A.1∶2 B.1∶2C.1∶ 3 D.1∶32.如图,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A.60°B.45°C.30°D.22.5°3.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比()A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化能力提升4.从一个半径为10 cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________ cm.5.如图,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?参考答案1.B 2.C 3.D 4.10 25.解:三个小三角形是等边三角形且边长为13a,正六边形的边长为13a,正六边形的面积为36a2,原正三角形的面积为34a2,它们的面积比为2∶3.24.4弧长和扇形面积基础导练1.在半径为12的⊙O中,150°的圆心角所对的弧长等于()A.24π cm B.12π cm C.10π cm D.5π cm2.已知一个扇形的半径为60 cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.12.5 cm B.25 cm C.50 cm D.75 cm3.若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是( )rA.l=2r B.l=3r C.l=r D.l=3能力提升4.如图,在两个同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分面积是____________.5.一个圆锥的高为3 3 cm,侧面展开图为半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.参考答案1.C2.B3.A4.2π5.解:设圆锥的母线为l,底面半径为r,则(1)2πr=12×2πl,∴l=2r,l∶r=2∶1.(2)∵l2-r2=h2,∴3r2=(33)2.∴r=3 cm,l=6 cm.S全=πrl+πr2=27π(cm2).。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.1.3弧、弦、圆心角一、单选题1.下列图形中的角是圆心角的是()A.B.C.D.2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3.如图,在O中,2=,则弦AC与AB的关系是()AC ABA.AB=AC B.AC=2AB C.AC<2AB D.AC>2AB Ð=Ð,下列结论不一定成立的是()4.已知,如图,AOB CODA .AB CD=B .AB CD =C .AOB COD ≌D .,AOB COD△△都是等边三角形5.如图,在O 中,已知AB=CD ,则AC 与BD 的关系是()A .AC BD =B .AC BD <C .AC BD >D .不确定6.如图,,AB CD 是O 的直径,AE BD =,若32AOE °Ð=,则COE Ð的度数是()A .32°B .60°C .68°D .64°7.下列说法:①相等的弦所对的圆心角相等;②等圆中相等的圆心角所对的弧相等;③同圆中等弧所对的圆心角相等.其中正确的是()A .①②B .①③C .②③D .③8.如图,CD 为O 的直径,CD EF ^,垂点为G ,40EOD Ð= ,则(DCF Ð=)A .80°B .50°C .40°D .20°9.如图,AB 是圆O 的直径,BC ,CD ,DA 是圆O 的弦,且BC =CD =DA ,则∠BCD 等于()A .100°B .110°C .120°D .135°二、填空题10.如图,在O 中,点C 是AB 的中点,50A Ð=°,则BOC Ð等于________.11.若一条弦把圆周分成2:3的两段弧,则劣弧所对圆心角的度数是________.12.如图,在⊙O 中,弧AB =弧CD ,∠AOB 与∠COD 的关系是_____.13.已知在⊙O 中,AB=BC,且:3:4AB AMC =,则∠AOC=________.14.如图,ABD =BDC ,若AB=3,则CD=____.15.如图,已知AB,CD 是⊙O 的直径,CE 是弦,且AB ∥CE ,∠C=35°,则弧BE 的度数________.16.如图,在⊙O 中,弦AB 、CD 相交于点P ,若AB=CD ,∠APO=65°,则∠APC=________度.三、解答题17.如图,AB 是O 的直径,,35BC CD DE COD ==Ð=°.求AOE Ð的度数.18.如图,,AB CD 是O 的两条弦.(1)如果AB CD =,那么__________,___________.(2)如果AB CD =,那么__________,___________.(3)如果AOB COD Ð=Ð,那么__________,___________.(4)如果,,AB CD OE AB OF CD =^^,垂足分别为,,E F OE 与OF 相等吗?为什么?19.已知:如图,在⊙O 中,弦AB 与半径OE 、OF 交于点C 、D ,AC =BD ,求证:(1)OC =OD :(2)A E B F =.BC AD 20.如图,以平行四边形ABCD的顶点A为圆心,AB长为半径作A,分别交,于,E F两点,交BA的延长线于点G.(1)求证:»»=;EF FG(2)连接AE,若140Ð的度数.Ð=,求DEAG°6/6参考答案1.B2.C3.C4.D5.A6.D7.C8.D9.C10.40°11.144°12.∠AOB =∠COD13.144°14.315.35°16.5017.75°18.(1)AB CD =,∠AOB =∠COD ;(2)AB =CD ;∠AOB =∠COD ;(3)AB =CD ,AB CD =;(4)OE 与OF 相等20.70°。
24.1 圆的有关性质一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.39.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP =12.故选:B.3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆【分析】根据直径、弧、弦的定义进行判断即可.【解答】解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【分析】利用半圆的弧长公式,即可分别求得两个路径的长,然后进行比较即可.【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定【分析】以及等弧所对的弦相等,以及三角形中两边之和大于第三边,即可判断.【解答】解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE 与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,∵CD=DE,∴CE<CD+DE,即CE<2CD=AB,∴CE<AB,∴<.故选:A.8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.3【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD=,由垂径定理得,AB=2AD=4,故选:A.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD =∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于60 度.【分析】先利用PA=PB,∠P=60°得出△PAB是等边三角形,再求出△COA,△DOB也是等边三角形,得出∠COA=∠DOB=60°,可求∠COD.【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【分析】方法一、延长CP交⊙O于K,连接DK,求出当DK为直径时符合,再求出PM即可;方法二、求出C,M,O,P,四点共圆,连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.【解答】解:方法一、延长CP交⊙O于K,连接DK,则PM=DK,当DK过O时,DK最大值为8,PM=DK=4,方法二、连接CO,MO,∵∠CPO=∠CMO=90°,∴C,M,O,P,四点共圆,且CO为直径(E为圆心),连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4,故答案为:4.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26 寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt △OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=36°.【分析】连接BD,根据AB为直径,得出∠ADB=90°,∠ABD=∠ACD=54°,继而可求得∠BAD.【解答】解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到=,把两弧都加上弧AC 得到=,于是得到DC=AB.【解答】证明:∵AD=BC,∴=,∴+=+,即=,∴DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.【分析】利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.【解答】证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵,∴△AOD≌△BOC(SAS).∴AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.。
24.1.3 弧、弦、圆心角课后作业:方案(A )一、教材题目:P89-P90 T3、T4、T131.如图,⊙O 中, ,∠C =75°.求∠A 的度数.2.如图,AD =BC ,比较的长度,并证明你的结论.3.如图,A,B 是⊙O 上的两点,∠AOB=120°,C 是的中点.求证:四边形OACB 是菱形.二、补充题目:部分题目来源于《典中点》4.如图所示,点A ,B ,C ,D 均在⊙O 上,且∠AOB =∠COD ,连接AC ,BD , 有下列结论:①AB =CD ;②∠AOC =∠BOD ;③AC ︵=BC ︵;④△AOC ≌△BOD .其中正确的结论是________(写序号即可).5. 如图,AB 是⊙O 的直径,AB =10,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,若点P 是直径AB 上的一动点,则PD +PC 的最小值为________.6.如图所示,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°.(1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD .7.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,分别交AD ,BC 于点E , F ,延长BA 交⊙A 于点G . (1)求证:GE ︵=EF ︵;(2)若BF ︵的度数为50°,求∠C 的度数.8.(1)如图,在⊙O 中,∠AOB =90°,且C ,D 是AB ︵的三等分点,AB 分别交 OC ,OD 于点E ,F .求证:AE =BF =CD .[第16(1)题](2)在(1)题中,如果∠AOB =120°,其他条件不变,如图所示,那么(1)中 的结论还成立吗?若成立,请证明;若不成立,说明理由.[第16(2)题]答案一、 教材1.解:AB ︵=AC ︵⇒AB =AC ⇒⎭⎬⎫∠B =∠C ∠C =75°⇒∠A =180°-2×75°=30°. 点拨:等弧所对的弦相等,所对的圆周角也相等.2.解:AB ︵=CD ︵.证明:AD =BC ⇒AD ︵=BC ︵⇒AD ︵+AC ︵=BC ︵+AC ︵⇒CD ︵=AB ︵.点拨:在⊙O 中,由AD =BC ,得AD ︵=BC ︵,进而可知AB ︵=CD ︵. 3.证明:连接OC .⎭⎪⎬⎪⎫∠AOB =120°C 为AB ︵的中点⇒⎭⎬⎫⎩⎨⎧∠AOC =60°∠BOC =60°OA =OC =OB ⇒ ⎩⎨⎧⎭⎬⎫OA =OC =AC OB =OC =BC ⇒AO =OB =BC =AC ⇒四边形OACB 是菱形. 点拨:四条边都相等的四边形是菱形.二、 典中点4. ①②④ 点拨:由∠AOB =∠COD 可得 ∠AOC =∠BOD ,而OA =OC =OB =OD ,故可得①②④均正确,与弧AC 一定相等的是弧BD ,故③错误. 5.10 点拨:作点C 关于AB 的对称点C ′,连接OC ,OD ,OC ′,BC ′,∵ BC =CD =DA ,∴∠AOD =∠COD =∠BOC =60°.∵C 与C ′关于AB 对称,∴BC ′=BC .∴∠BOC ′=60°.∴D ,O ,C ′在同一条直线上.∴ DC ′=AB =10,即PD +PC 的最小值为10,此时P 与O 重合. 6.(1)解:△AOC 是等边三角形.理由如下: ∵AC ︵=CD ︵,∴∠AOC =∠COD =60°. 又∵OA =OC ,∴△AOC 是等边三角形. (2)证明:∵∠BOD =180°-∠AOC -∠COD ,∴∠BOD =180°-60°-60°=60°,又∵OB =OD ,∴△OBD 为等边三角形, ∴∠D =60°,∴∠D =∠COD ,∴OC ∥BD .解题策略:本题利用了转化思想,通过利用在同圆中等弧所对的圆心角相等, 求得角的度数,然后通过∠BOD 实现了角之间的转化,从而使问题得以解 决.7.(1)证明:连接AF ,则AB =AF ,∴∠ABF =∠AFB .∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAF =∠AFB ,∠GAE =∠ABF ,∴∠GAE =∠EAF ,∴GE ︵= EF ︵.(2)解:∵BF ︵的度数为50°,∴∠BAF =50°.∴∠ABF =∠AFB =65°.又 ∵AB ∥CD ,∴∠ABF +∠C =180°,∴∠C =180°-∠ABF =115°.解题策略:在同圆中,圆心角、弧、弦之间的关系是证弧相等、角相等、线 段相等的依据,一般在分析时,哪一组量与所证问题最贴近,就应构造这一 组量,再证明相等. 8.(1)证明:连接AC ,BD .∵C ,D 是AB ︵的三等分点, ∴AC ︵=CD ︵=BD ︵, ∴AC =CD =BD .∵∠AOB =90°,∴∠AOC =∠COD =∠BOD =30°. ∵OA =OB ,∴∠OAB =∠OBA =45°. ∴∠AEC =∠AOC +∠OAB =75°. ∵OA =OC ,∠AOC =30°,∴∠ACE =12×(180°-30°)=75°=∠AEC .∴AE =AC .同理可得BF =BD . ∴AE =BF =CD . (2)解:成立.证明略.。
24.1.3 弧、弦、圆心角
1.如图,图中的圆心角(小于平角的)有( )
A .1个
B .2个
C .3个
D .4个
2.已知⊙O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB = . 3.如图,A ,B ,C ,D 是⊙O 上的四点,且AD =BC ,则AB 与CD 的大小关系为( )
A .AB>CD
B .AB =CD
C .AB<C
D D .不能确定
4.如图,在⊙O 中,点C 是AB ︵
的中点,∠A =50°,则∠BOC =( )
A .40°
B .45°
C .50°
D .60°
5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵
,∠COD =34°,则∠AEO 的度数是( )
A .51°
B .56°
C .68°
D .78°
6.如图,在⊙O 中,AB ︵=AC ︵
,∠A =30°,则∠B =( )
A .150°
B .75°
C .60°
D .15°
7.如图,AB 是⊙O 的直径,C ,D 为半圆的三等分点,CE ⊥AB 于点E ,则∠ACE 的度数为 .
8.如图,AB ,DE 是⊙O 的直径,点C 是⊙O 上的一点,且AD ︵=CE ︵
,求证:BE =CE.
9.如图,在⊙O 中,AB ︵=2CD ︵
,试判断AB 与2CD 的大小关系,并说明理由.
10.如图,在⊙O 中,已知弦AB =DE ,OC ⊥AB ,OF ⊥DE ,垂足分别为C ,F ,则下列说法中正确的个数为( )
①∠DOE =∠AOB ;②AB ︵=DE ︵
;③OF =OC ;④AC =EF. A .1个 B .2个 C .3个 D .4个
11.如图,点A ,B ,C 是⊙O 上的三点,且四边形ABCO 是平行四边形,OF ⊥AB 交⊙O 于点F ,则∠BAF 等于( )
A .12.5°
B .15°
C .20°
D .22.5°
12.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.下列结论:①AM ︵=MN ︵=BN ︵
;②ME =NF ;③AE =BF ;④ME =2AE.其中正确结论的序号是 .
13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于点G ,求证:GE ︵=EF ︵
.
14.如图,AB 是⊙O 的直径,AC ︵=CD ︵
,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.
15.如图,∠AOB =90°,C ,D 是AB ︵
的三等分点,连接AB 分别交OC ,OD 于点E ,F ,求证:AE =BF =CD.
参考答案:
1.B 2. 60°. 3.B 4.A 5.A 6.B 7. 30°.
8.证明:∵∠BOE =∠AOD , ∴BE ︵=AD ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.
9.解:∵在同圆或等圆中,同弧或等弧所对的弦相等,∴当AB ︵=2CD ︵
时,AB =2CD. 以上解答是否正确?若不正确,请改正. 解:不正确.AB <2CD.
理由:取AB ︵
的中点E ,连接AE ,BE , ∵AB ︵=2CD ︵,∴AE ︵=BE ︵=CD ︵
,∴AE =BE =CD. ∵AE +BE >AB ,∴AB <2CD. 10.D 11.B 12.①②③.
13.证明:连接AF.
∵四边形ABCD 为平行四边形, ∴AD ∥BC. ∴∠GAE =∠B , ∠EAF =∠AFB.
又∵AB ,AF 为⊙A 的半径,AB =AF , ∴∠B =∠AFB. ∴∠GAE =∠EAF. ∴GE ︵=EF ︵.
14.解:(1)△AOC 是等边三角形. ∵AC ︵=CD ︵,
∴∠AOC =∠COD =60°. 又∵OA =OC ,
∴△AOC 是等边三角形. (2)证明:∵AC ︵=CD ︵
,∴OC ⊥AD. ∵∠AOC =∠COD =60°,
∴∠BOD =180°-(∠AOC +∠COD )=60°. ∵OD =OB ,
∴△ODB 为等边三角形. ∴∠ODB =60°. ∴∠ODB =∠COD =60°. ∴OC ∥BD.
15.证明:连接AC ,BD. ∵AC ︵=CD ︵=DB ︵
,∠AOB =90°,
∴∠AOC =∠COD =∠DOB =13∠AOB =1
3×90°=30°,AC =CD =BD.
∵OA =OB ,
∴∠OAB =∠ABO =45°. ∴∠AEC =∠AOC +∠OAB =75°. ∵在△AOC 中,OA =OC ,
∴∠ACO =180°-∠AOC 2=180°-30°
2=75°.
∴∠AEC =∠ACO. ∴AE =AC. 同理BF =BD. ∴AE =BF =CD.。