圆心角、弧、弦、弦心距之间的关系—巩固练习(基础)
- 格式:pdf
- 大小:167.30 KB
- 文档页数:4
圆心角弧弦弦心距之间的关系典型例题能力素质例1.如图7.4-1,已知⊙O的直径为10cm,弦CD=EF,OA⊥CD于A,OB⊥EF于B,EF=8cm,求OA的长.分析:在解决弦、弧、弦心距的问题时,常要作出半径或弦心距,使弦的一半、弦心距、半径构成直角三角形,同时注意在同圆或等圆中圆心角、弦、弧、弦心距的关系的运用.解:连接OF,CD=EF,OA⊥CD,OB⊥EF,∴OA=OB,AC=AD,BE=BF.∴直径为10cm.故OF=5cm.∴OA=3cm.点击思维例2.如图7.4-2,M、N分别为⊙O的弦AB、CD的中点,AB=CD,求证∠AMN=∠CNM.分析:由弦AB=CD,应想到利用弦、圆心角、弦、弦心距之间的关系定理.因为M、N分别是AB、CD的中点,连接OM、ON,则有OM⊥AB,ON⊥CD,OM=ON,故易得结论.证明:连接OM、ON.∵M、N分别是AB、CD的中点,∴OM⊥AB,ON⊥CD.由AB=CD,得∴OM=ON.∴∠OMN=∠ONM.∵∠AMN=90°-∠OMN,∠CNM=90°-∠ONM,∴∠AMN=∠CNM.学科渗透例3.如图7.4-3,AB是⊙O的直径,过AB上任意一点Q作与AB 相交成45°的弦PR.如果⊙O的半径为R,求证PQ2+QR2是定值.解:连接OP、OR,作OD⊥PQ,D为垂足,设OQ长为m.①+②,整理得-PQ)-2m2.∴PQ2+QR2=2R2与m无关.说明:本例采用引入参数求定值,显然引起图形变化的“基本元素”是Q点的位置.如何描述Q点位置呢?故设OQ=m较为有利.中考巡礼例4.(1999年北京市海淀区)如图7.4-4,已知在⊙O中,CD过圆心O,且CD⊥AB,垂足为D,过点C任作一弦CF交⊙O于F,交AB于E,求证CB2=CF·CE.分析:要证CB2=CF·CE,即证明△CBE∽△CFB.已有∠BCE是公共角,还需找一组角对应相等.由已知条件不难看证明:连接FB,CD过圆心O,且CD⊥AB.∵∠BCE是公共角,∴CB2=CF·CE.。
圆心角、弧与弦心距之间的关系教案一、教学目标1. 让学生理解圆心角、弧和弦心距的概念。
2. 让学生掌握圆心角、弧和弦心距之间的关系。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 圆心角的概念:圆心角是指以圆心为顶点的角,它的两条边分别落在圆上。
2. 弧的概念:弧是指圆上两点间的部分。
3. 弦心距的概念:弦心距是指从圆心到弦的垂直线段。
4. 圆心角、弧和弦心距之间的关系:在等圆或同圆中,圆心角等于它所对的弧的一半,弦心距垂直平分弦,并且弦心距等于它所对的圆心角的一半。
三、教学重点与难点1. 教学重点:让学生掌握圆心角、弧和弦心距之间的关系。
2. 教学难点:圆心角、弧和弦心距之间的转换和应用。
四、教学方法1. 采用问题驱动法,引导学生探究圆心角、弧和弦心距之间的关系。
2. 利用几何画板或实物模型,直观展示圆心角、弧和弦心距的特点。
3. 运用小组合作学习,让学生在探究中互相交流、互相学习。
五、教学过程1. 导入:通过展示一些生活中的圆形物体,引导学生关注圆心角、弧和弦心距的概念。
2. 新课导入:介绍圆心角、弧和弦心距的定义,让学生理解它们之间的关系。
3. 实例讲解:利用几何画板或实物模型,展示圆心角、弧和弦心距的特点,引导学生发现它们之间的关系。
4. 课堂练习:设计一些练习题,让学生运用圆心角、弧和弦心距的关系解决问题。
5. 总结提升:对本节课的内容进行总结,强调圆心角、弧和弦心距之间的关系。
6. 课后作业:布置一些有关圆心角、弧和弦心距的练习题,巩固所学知识。
六、教学策略1. 采用问题驱动法,引导学生探究圆心角、弧和弦心距之间的关系。
2. 利用几何画板或实物模型,直观展示圆心角、弧和弦心距的特点。
3. 运用小组合作学习,让学生在探究中互相交流、互相学习。
4. 创设生活情境,让学生运用圆心角、弧和弦心距的关系解决实际问题。
七、教学评价1. 课堂练习:设计一些练习题,检查学生对圆心角、弧和弦心距之间关系的掌握程度。
第27章圆与正多边形第一节圆的基本性质§27.2圆心角、弧、弦、弦心距之间的关系教学目标(1)理解圆心角、弧、弦、弦心距等概念,知道圆是一个旋转对称图形,理解圆的旋转不变性.(2)经历利用圆的旋转不变性探索同圆中圆心角、弧、弦、弦心距之间关系的过程,掌握同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,能运用这一定理及其推论解决有关数学问题.教学重点引进圆心角、弧、弦、弦心距等概念,导出同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,并能进行简单的运用,解决有关数学问题.知识点梳理1.圆上任意两点之间的部分叫做圆弧,简称弧;联结圆上任意两点的线段叫做弦,过圆心的弦就是直径.以圆心为顶点的角叫做圆心角.(没有特别说明时,本章中的圆心角通常是指大于00且小于0180的角)2.圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.3.圆心到弦的距离叫做弦心距.4.在平面上,一个圆绕着它的圆心旋转任何一个角度(大于00且小于0360),都能与原来图形重合.所以,圆是以圆心为旋转对称中心的旋转对称图形,旋转角可为大于00且小于0360的任何一个角.5.能够重合的两条弧称为等弧.半径长相等的两个圆一定能够重合,我们把半径长相等的两个圆称为等圆.(等圆可看作同一个圆移动到不同的位置时的图形)6.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.7.推论在同圆或等圆中,如果两个圆心角、两条劣弧或优弧、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.8.圆被等分成360份,得到的每一份弧叫做01的弧.圆心角的度数和它们对的弧的度数相等.经典题型解析(一)圆的基本概念例1.车轮要做成圆形,实际上就是根据圆的特征( )A.同弧所对的圆心角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形随堂练习:下列说法中,正确的是( )A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径例2.下列说法中,错误的是( )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随堂练习:下列语句中,正确的有( )A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴例3.如图,在O中,如果AB CD、是直径,那么图中相等的弧有哪些?为什么?随堂练习:如图,已知在O中,AB CD、.⊥,垂足分别是点E F、分别是弦,OE AB⊥,OF CD请添加一个条件,使得OE OF=.(二)定理与推论例4.已知:如图,O的弦AB与CD相交于点P,OM AB、,⊥,ON DC⊥,垂足分别是点M N 且AD BC=.求证:OM ON=.随堂练习:如图,AB CECD AB.、是O的直径,CD是圆O的弦,//求证:EB AC BD==.例5.已知:如图,AB CD、.、是O的直径,弦//AE CD,联结CE BC求证:BC CE=.随堂练习:已知:如图,AD BC=分别表示弦AB和CD的弦心、是O的弦,AD BC=,OM ON距.求证:OM ON=.例6.已知:如图,AB CD=.、是O的弦,且AB CD求证:ACB DBC∆≅∆.随堂练习:已知:如图,AB是O的直径,AC和AD是分别位于AB两侧的两条相等的弦.求证:AB平分CAD∠.例7.如图,O是ABC∆的形状,并说明∠=∠,探索ABC∠,AOB BOC∆的外接圆,AO平分BAC理由. 等边三角形例8.已知:如图,AB是O的直径,M N⊥.⊥,DN AB、的中点,CM AB、分别是AO BO求证:AC BD=.例9.已知:如图,在O中,弦AB的长是半径OA的3倍,C为AB的中点,AB OC、相交于P.求证:四边形OACB为菱形.例10.已知:如图,AD的度数是090,B C、将AD三等分,弦AD与半径OB OC、.、相交于E F 求证:AE BC FD==.巩固提升一、填空题1.下列说法正确的是_________(填序号)①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.2.圆是中心对称图形,它的对称中心有_________个.3.如图,AB CD =,OE AB ⊥,OF CD ⊥,025OEF ∠=,则EOF ∠=__________.(第3题) (第4题) (第5题)4.如图,在ABC ∆中,070A ∠=,圆O 截ABC ∆的三边所得的弦长都相等,则BOC ∠=_________.5.如图,半圆O 中,直径2AB =,作弦//DC AB ,设AD x =,四边形ABCD 的周长为y ,则y 与x 的函数关系式为_________,自变量x 的取值范围是_________.6.已知等边ABC ∆的三个顶点在半径为r 的圆上,则ABC ∆的周长为_________.7.已知点(1,0)(4,0)A B 、,P 是经过A B 、两点的一个动圆,当P 与y 轴相交,且在y 轴上两交点的距离为3时,则圆心P 的坐标是_________.二、选择题8.下列命题中正确的是( )A .三点确定一个圆B .在同圆中,同弧所对的圆周角相等C .平分弦的直线垂直于弦D .相等的圆心角所对的弧相等9.下列命题,①直径是弦,但弦不一定是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个圆是等圆;④一条弦把圆分成的两条弧中,至少有一条是优弧。
27.2 圆心角、弧、弦、弦心距之间的关系(3)上海市奉贤区泰日学校张忠华一、教学内容分析:本课是圆心角、弧、弦、弦心距之间的关系的第3课时,主要内容是对圆心角、弧、弦、弦心距之间关系的灵活运用.二、教学目标1.灵活运用圆心角、弧、弦、弦心距之间的关系解决相关的几何证明与计算.2.通过例题的学习,进一步发展逻辑推理能力.三、教学重点与难点圆心角、弧、弦、弦心距之间的关系的灵活运用.四、教学用具准备课件、多媒体投影仪五、教学流程六、教学过程设计(一) 温故知新回顾定理与推论:同圆或等圆中,如果两个圆心角,两条劣弧(或优弧),两条弦,两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.(二)应用举例例4 如图(1)已知:点F为圆O内一点,过点F作圆O的两条图(1)图(2)F 图(3)F 弦AB 、CD ,且∠AFO =∠DFO求证:(1)AB =CD (2)变式1:将例4中条件结论互换,命题是否为真?即已知点F 为圆O 内一点,过点F 作⊙O 的两条弦AB 、CD ,AB =CD 求证:∠AFO=∠DFO (学生探索发现)变式2:若点F 为⊙O 上一点,过F 作⊙O 的弦FA 、FD 如图(2) 若∠AFO =∠DFO,求证:AF =DF (学生探索发现)变式3:如图(3)若点F 为⊙O 外一点,过F 作两条射线分别交⊙O 于点A 、B 、C 、D ,若∠AFO =∠DFO ,求证:AB =CD (学生探索发现)AC=BD例5 已知,如图(4):⊙O是△ABC的外接圆,AE平分△ABC 的外角∠DAC,O M⊥AB,ON⊥AC,垂足分别是点M、N,且OM =ON求证:(1)A E∥BC (2)AO⊥AE图(4)(三)反馈练习1、课本P11页,练习27.2(3)2、将例5条件、结论互换,变式1:把条件OM=ON与结论AE∥BC互换,命题是否为真?说明理由.3、变式2:把条件OM=ON与结论AO⊥AE互换,命题是否为真?说明理由.图(5)图(5)(四)归纳小结1.谈谈本堂课的收获2.谈谈本堂课的疑惑(五)布置作业必做题:练习册27.2(3)选做题:如图(6):已知半圆O中,直径AB=2,作弦DC∥AB,设AD=x,四边形ABCD的周长为y,求:y与x的函数关系式,及自变量x的取值范围B图(6)设计说明本节课主要内容是圆心角、弧、弦、弦心距之间关系的应用,对课本例题做了适当的变式,以问题为主线,探中有究,究中有探,通过例4的变式训练,引导学生灵活创新地运用定理、推论解决问题,根据学生已有的知识基础,设计出具有一定探索价值的问题链,进而让学生去发现、去创造,从而充分调动学生的思维,有效地提高课堂的效率,使整个课堂焕发出思维的活力.。
奋飞教育---您值得信赖的一对一个性化辅导学校咨询:3651785627.2 圆心角、弧、弦、弦心距之间的关系【学习目标】1.通过观察实验,使学生了解圆心角的概念.2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.【主要概念】【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.【定理拓展】1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分○别相等2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分○别相等综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【解析】根据弧、弦、圆心角的关系知:等弦所对的弧不一定相等,圆心角相等,所对的弦相等缺少等圆或同圆的条件,所以也不对;弦相等所对的圆心角相等 1奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856缺少等圆或同圆的条件,弦所对的弧也不一定是同弧,所以不正确;等弧所对的弦相等是成立的.【答案】B【例2】如图2,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为( )图2A.3∶2B.∶2C.∶2D.5∶4【解析】作OE⊥CD于E,则CE=DE=1,AE=BE=2,OE=1.在Rt△ODE中,OD=2+12=2.在Rt△OEB中,OB=BE2+OE2=4+1=.∴OB∶OD=∶2.【答案】C【例3】半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE∶OF等于( )A.2∶1B.3∶2C.2∶3D.0【解析】∵AB为直径,∴OE=0.∴OE∶OF=0.【答案】D【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】1×360°=90°,∴弦所对的圆心角为90°. 4【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD⊥AB,OD=DB=AD.设OD=x,则AD=DB=x.在Rt△ODB中,∵OD=DB,OD⊥AB,奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=OD2+DB2+x2+x2=2 x.∴AB∶BC=1∶2=2∶2. ∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.图6(1)求证:AC=DB;(2)如果AB=6 cm,CD=4 cm,求圆环的面积.【分析】求圆环的面积不用求出OA、OC,应用等量代换的方法.事实上,OA、OC的长也求不出来.(1)证明:作OE⊥AB于E,∴EA=EB,EC=ED.∴EA-EC=EB-ED,即AC=BD.(2)解:连结OA、OC.∵AB=6 cm,CD=4 cm,∴AE=11AB=3 cm.CE=CD=2 cm. 22∴S环=π·OA2-π·OC2=π(OA2-OC2)=π[(AE2+OE2)-(CE2+OE2)]=π(AE2-CE2)=π(32-22)=5π( cm2).【例7】如图7所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA、OB.∵OA=OB,∴∠A=∠B.又∵AC=BD,∴△AOC≌△BOD.∴OC=OD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856证法二:如图(2),过点O作OE⊥AB于E,∴AE=BE.∵AC=BD,∴CE=DE.∴OC=OD. (1) (2)【例8】如图8,⊙O的直径AB和弦CD相交于点E,已知AE=6 cm,EB=2 cm,∠CEA=30°,求CD的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF,构造直角三角形,问题就容易解决.【解】过O作OF⊥CD于F,连结CO.∵AE=6 cm,EB=2 cm,∴AB=8 cm.∴OA=在Rt△OEF中,∵∠CEA=30°,∴OF=1OE=1(cm). 21AB=4(cm),OE=AE-AO=2(cm). 2 在Rt△CFO中,OF=1 cm,OC=OA=4(cm),∴CF=OC2 OF2=(cm). 又∵OF⊥CD,∴DF=CF.∴CD=2CF=2( cm).【例9】如图9,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,我们知道EC和DF相等.若直线EF平移到与直径AB相交于P(P不与A、B重合),在其他条件不变的情况下,结论是否依然成立?为什么?当EF∥AB时,情况又怎样?奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856图9【分析】考查垂径定理及三角形、梯形相关知识.可适当添加辅助线.【解】当EF交AB于P时,过O作OM⊥CD于M,则CM=DM.通过三角形,梯形知识或构造矩形可证明AM=MF,∴EC=DF.当EF∥AB时,同理作OM⊥CD于M,可证四边形AEFB为矩形.所以EF=AB.且EM=MF,又由垂径定理有CM=MD,∴EC=DF.【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧AC=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∵OC=OD,∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等. 【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856【例13】为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的方案由圆和三角形组成(圆和三角形个数不限),并且使整个图案成对称图形,请你画出你的设计方案图(至少两种).【解析】设计的基本思路是等分圆心角,或等分圆周,取得轴(或中心)对称的对应点,适当画圆或连线,设计出一些适合要求的图案.【答案】根据题意画出如下方案供选用,如图,本题答案不唯一,只要符合条件即可.【例14】如图14,已知在⊙O中,AD是⊙O的直径,BC是弦,AD⊥BC,E为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程,只写出6条以上的结论)图14【解析】因AD⊥BC,且AD为直径,所以可以利用垂径定理得到一些结论,同时可证得AD垂直平分BC,据此又能得到许多结论.本题是2000年新疆建设兵团的模拟题,是一个开放性试题,开放到可以不写步骤,但它比书写证明一个结论步骤的题考查面更广,因为写出六个结论考生需要证明六个题.本题是一个考查考生发散思维能力和创新意识的好题.【答案】(1)BE=CE;(2)弧BD=弧CD;(3)弧AB=弧AC(4)AB=AC;(5)BD=DC;(6)∠ABC=∠ACB;(7)∠DBC=∠DCB;(8)∠ABD=∠ACD;(9)AD是BC的中垂线;奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856(10)△ABD≌△ACD;(11)O为△ABC的外心等等.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OCA和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC,∴CP=AB-PA-BC=1,AC=5.∴OA2-52=52-1.∴OA=7,即⊙O的半径为7 cm.【例16】⊙O的直径为50 cm,弦AB∥CD,且AB=40 cm,CD=48 cm,求弦AB和CD之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB和CD在圆心同侧时,如图(1),作OG⊥AB于G,交CD于E,连结OB、OD.∵AB∥CD,OG⊥AB,∴OE⊥CD.∴EG即为AB、CD之间的距离.∵OE⊥CD,OG⊥AB,∴BG=11AB=×40=20(cm), 22奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856DE=11CD=×48=24(cm). 22在Rt△DEO中,OE=OD2-DE2=252-242=7(cm).在Rt△BGO中,OG=OB2-BG2=252-202=15(cm).∴EG=OG-OE=15-7=8(cm).(2)(2)当AB、CD在圆心两侧时,如图(2),同理可以求出OG=15 cm,OE=7 cm,∴GE=OG+OE=15+7=22(cm).综上所述,弦AB和CD间的距离为22 cm或7 cm.【1】已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?【2】如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
弧弦圆心角之间的关系
圆心角、弧、弦之间的关系如下:
1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
2、在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
连接圆上任意两点的线段叫做弦(chord),在同一个圆内最长的弦是直径。
顶点在圆心上的角叫做圆心角。
圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。
相关计算公式:(R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长)
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R 为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。
圆心角、弧、弦、弦心距之间的关系练习题班级___________姓名__________1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。
2、如图:在⊙O 中,∠AOB 的度数为1200,则的长是圆周的 。
3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的31,则弦AB 的长为 cm ,AB 的弦心距为 cm 。
4、如图,在⊙O 中,AB ∥CD ,的度数为450,则∠COD 的度数为 。
5、如图,在∠ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则∠BOC= ( )。
A .140° B .135° C .130° D .125°(第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有_________个(1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧; (4)经过圆心的每一条直线都是圆的对称轴。
7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。
8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB ,求证:BA9.如图,在△ABC 中,∠C=90°,∠B=28°,以C 为圆心,CA 为半径的圆交AB 于点D ,交BC 于点E 。
求AD 、DE 的度数。
10.已知:如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,CE ⊥AB 于E ,DF ⊥AB 于F ,且AE=BF ,AC 与BD 相等吗?为什么?11.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,弧CE 的度数为40°。
求∠AOC 的度数。
B。
圆心角、弧、弦、弦心距之间的关系--知识讲解(提高)责编:常春芳【学习目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,四组量:两个圆心角、两条弦、两条弧,两条弦的弦心距之间的关系及其它们在解题中的应用.3.理解反证法的意义,并能用反证法推理证明简单几何题.【要点梳理】要点一、圆心角、弧、弦、弦心距之间的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.3.推论:在同圆或等圆中,如果两个圆心角以及这两个角所对的弧、所对的弦、所对弦的弦心距中,有一组量相等,那么其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.4. 圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).如果它们中间有一组量不相等,那么其它各组量也分别不等.要点二、圆的确定(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.要点三、反证法反证法定义:在证明时,先假设命题的结论不成立,然后经过推理,得出矛盾的结果,最后断言结论一定成立,这样的证明方法叫做反证法.要点诠释:反证法也称归谬法,是一种重要的数学证明方法,而且有些命题只能用它去证明.一般证明步骤如下:(1)假定命题的结论不成立;(2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;(3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;(4)肯定原来命题的结论是正确的.【典型例题】类型一、圆心角、弧、弦、弦心距之间的关系及应用1.已知:如图所示,⊙O中弦AB=CD.求证:AD=BC.【思路点拨】本题主要是考查弧、弦、圆心角之间的关系,要证AD=BC,只需证»»AD BC=或证∠AOD=∠BOC即可.【答案与解析】证法一:如图①,∵ AB=CD,∴»»AB CD=.∴»»»»AB BD CD BD-=-,即»»AD BC=,∴ AD=BC.证法二:如图②,连OA、OB、OC、OD,∵ AB=CD,∴∠AOB=∠COD.∴∠AOB-∠DOB=∠COD-∠DOB,即∠AOD=∠BOC,∴ AD=BC.【总结升华】在同圆或等圆中,证两弦相等时常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,必须借助已知的等弦进行推理.举一反三:【变式】(2015秋•丹阳市月考)已知,半径为4的圆中,弦AB把圆周分成1:3两部分,则弦AB长是.【答案】解:连结OA、OB,如图,∵弦AB把圆周分成1:3两部分,∴∠AOB=×360°=90°,∴△OAB为等腰直角三角形,∴AB=OA=4.故答案为4.2.如果在两个圆中有两条相等的弦,那么().A.这两条弦所对的圆心角相等B. 这两条弦所对的弧相等C. 这两条弦都被与它垂直的半径平分相等D. 这两条弦所对的弦心距相等【思路点拨】在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,但在不同圆中则另当别论.【答案与解析】C;解:A.这两条弦所对的圆心角不一定相等,原说法错误,所以本选项错;B.这两条弦所对的弧不一定相等,原说法错误,所以本选项错;C.这两条弦都被垂直于弦的半径平分(垂径定理),原说法正确,所以本选项是对的;D. 这两条弦所对的弦心距不一定相等,原说法错误,所以本选项错;所以选C.【总结升华】本题考查了圆心角、弧、弦、弦心距间的关系,注意在同圆和等圆找个条件,审题要仔细,不要盲目解答.类型二、圆的确定3.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.【思路点拨】要求证:点E是过A,B,D三点的圆的圆心,只要证明AE=BE=DE即可,可以根据等角对等边可以证得.【答案与解析】证明:∵点D在∠BAC的平分线上,∴∠1=∠2.又∵DE∥AC,∴∠2=∠3,∴∠1=∠3.∴AE=DE.又∵BD⊥AD于点D,∴∠ADB=90°.∴∠EBD+∠1=∠EDB+∠3=90°.∴∠EBD=∠EDB.∴BE=DE.∴AE=B E=DE.∵过A,B,D三点确定一圆,又∠ADB=90°,∴AB是A,B,D所在的圆的直径.∴点E是A,B,D所在的圆的圆心.【总结升华】圆心到圆上各点的距离相等,反之,到一个点距离相等的点在同一个圆上.举一反三:【变式】已知直线a和直线外的两点A、B,经过A、B作一圆,使它的圆心在直线a上.【答案与解析】解:如下图,连接AB,作出AB的垂直平分线交直线a于O点,以O为圆心,OA为半径作圆.类型三、反证法4、(2014秋•定陶县期中)用反证法证明:在△ABC中,如果M、N分别是边AB、AC上的点,那么BN、CM不能互相平分.【思路点拨】首先假设BN、CM能互相平分,利用平行四边形的性质进而求出即可.【答案与解析】已知如图,在△ABC中,M、N分别是边AB、AC上的点,求证:BN、CM不能互相平分.O NMCBA证明:假设BN、CM能互相平分,则四边形BCNM为平行四边形,则BM∥CN,即:AB∥AC,这与在△ABC中,AB、AC交于A点相矛盾,所以BN、CM能互相平分结论不成立,故BN、CM不能互相平分.【总结升华】此题主要考查了反证法,正确掌握反证法的步骤是解题关键.举一反三:【变式】用反证法证明“三角形三个内角中至少有两个锐角”时应首先假设 .【答案】三角形三个内角中最多有一个锐角.。
圆心角、弧、弦、弦心距之间的关系(通用9篇)圆心角、弧、弦、弦心距之间的关系篇1教学目标:1、使学生理解并掌握1°的弧的概念;2、使学生能够熟练地运用本小节的知识进行有关的计算.3、继续培养学生观察、比较、概括的能力;4、培养学生准确地简述自己观点的能力和计算能力.教学重点:圆心角、弧、弦、弦心距的之间相等关系定理.教学难点:理解1°的概念.教学过程:一、新课引入:同学们,上节课我们学习了圆心角、弧、弦、弦心距之间的关系定理.在同圆或等圆中,相等的圆心角所对的弧相等.如果把顶点在圆心的周角等分成360份,得到每一份圆心角是1°,那么1°的圆心角与它们对的弧的度数之间有怎样的关系呢?教师板书:“9.4圆心角、弧、弦、弦心距之间的关系(二)”,本节课我们专门来研究圆心角的度数和它所对的弧的度数之间的关系.根据学生的已有知识水平点题,教师有意识创设问题情境,一方面激发学生的情趣,另一方面把学生的注意力引到所要讲的教学内容上来.二、新课讲解:为了使学生真正掌握圆心角、弧、弦、弦心距之间的关系的定理,一开课教师提问以下问题:1.什么叫圆心角?什么叫弦心距?2.圆绕着圆心旋转多少度角,才能够与原来的图形重合.3.如果两个圆心角相等,那么它们对的弧相等的前提条件是什么?接下来教师在事先准备好的圆上,一边画图示范,一边讲解:“我把顶点在圆心的周角分成360等份”,提问:“得到每一份的圆心角是多少度?”引导学生观察思考,“顶点为圆心的周角360等份对应的整个圆也被分成360等分的弧,这每一份弧又是多少度呢?”学生回答,教师板书:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(三)重点、难点的学习与目标完成过程学生在教师的启发下得到了1°的弧的概念,为了进一步强化学生对1°的弧的概念的理解,巩固提问:1.度数是2°的圆心角所对的弧的度数是多少?为什么?2.3°的圆心角对着多少度的弧,3°的弧对着多少度的圆心角?3.n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?通过学生回答,学生评价,再让学生观察和类比,可让学生自己说出圆心角的度数和它所对的弧的度数相等.如果学生说的很准确,教师不要重复,只把它完整地写在黑板上就可以了.对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.接下来进行例题教学.径为2cm,求ab的长.分析:由于弦ab所对的劣弧为圆的,所以的度数为120°,由于圆心角的度数等于它们对的弧的度数,所以∠aob的度数应等于的度数,即∠aob=120°.作oc⊥ab于c可构造出直角三角aoc,然后用垂径定理和勾股定理,或用垂径定理和解直角三角形,就可求出ac的长,最后ab=2ac又求出弦长.分析后由学生回答教师板书:解:由题意可知的度数为120°,∴∠aob=120°.作oc⊥ab,垂足为c,则∠aoc=60°,又∵ac=bc,在rt△aoc中,ac=oasin60°=2×sin60°对于这道题的解决方法,教师应该给学生充分思考时间,教师要在分析解决这个例题中,向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例3 如图7-26,已知ab和cd是⊙o的两条直径,弦ce∥ab,=40°,求∠boc的度数.分析:欲求∠boc的度数,只要设法求出∠oce的度数,由已知=40°,可以想到ec的度数等于它们对的圆心角的度数,所以连结oe,构造圆心角∠coe,然后又由等腰三角形coe中,求出∠c的度数,最后根据ce∥ab,得到∠boc的度数.具体解题,略.对于以上两个例题,教师要善于调动学生积极主动地参与到教学活动中,引导用一题多解来考虑这个问题,分析思路教师尽可能不代替,让学生去分析并写出解题过程,此时教师只需强调解题要规范,书写要准确即可.由例3的计算题,改变成一个证明题.已知:如图7-27,ab和cd是两条直径,弦ce∥ab,求证: = .教师给出这道题的目的,是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后教师概括总结各自方法.练习.教材p.90中1、2.教师指导学生在书上完成.三、课堂小结:本节课学到的知识点:1、1°的弧的定义.2、圆心角的度数和它们对的弧的度数相等.本节所学到的方法:1、证明圆心角、弧、弦、弦心距相等的问题,只要满足“在同圆或等圆中”的一组量相等,就可得到所要求的结论;2、求弧的度数往往想它所对的圆心角度数;3、解决弦、弧有关问题,常用的辅助线是作半径、弦心距等,构造直角三角形去解决.四、布置作业:教材p.100中5.教材p102中b组2题.圆心角、弧、弦、弦心距之间的关系篇2第一课时(一)教学目标:(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的认识,发现、归纳能力的培养.教学活动设计教学内容设计(一)圆的对称性和旋转不变性学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.(三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)举出反例:如图,∠AOB=∠COD,但AB CD, .(强化对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.解(略,教材87页)例题拓展:当P点在圆上或圆内是否还有AB=CD呢?(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)练习:(教材88页练习)1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD 的弦心距,根据本节定理及推论填空: .(1)如果AB=CD,那么______,______,______;(2)如果OE=OG,那么______,______,______;(3)如果 = ,那么______,______,______;(4)如果∠AOB=∠COD,那么______,______,______.(目的:巩固基础知识)2、(教材88页练习3题,略.定理的简单应用)(五)小结:学生自己归纳,老师指导.知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.(六)作业:教材P99中1(1)、2、3.第二课时(二)教学目标:(1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;(2)进一步培养学生自学能力,应用能力和计算能力;(3)通过例题向学生渗透数形结合能力.教学重点、难点:重点:圆心角、弧、弦、弦心距之间的相等关系的应用.难点:理解1° 弧的概念.教学活动设计:(一)阅读理解学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.理解:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(3)圆心角的度数和它们对的弧的度数相等.(二)概念巩固1、判断题:(1)等弧的度数相等();(2)圆心角相等所对应的弧相等();(3)两条弧的长度相等,则这两条弧所对应的圆心角相等()2、解得题:(1)度数是5°的圆心角所对的弧的度数是多少?为什么?(2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?(3)n°的圆心角对着多少度的弧? n°的弧对着多少度的圆心角?(三)疑难解得对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.(四)应用、归纳、反思例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.学生自主分析,写出解题过程,交流指导.解:(参看教材P89)注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.(解答参考教材P90)题目拓展:1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:= .2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.(五)小节(略)(六)作业:教材P100中4、5题.探究活动我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD ;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.解(略)①AB=CD;② = .(等等)圆心角、弧、弦、弦心距之间的关系篇3第一课时圆心角、弧、弦、弦心距之间的关系(一)教学目标:(1)理解圆的旋转不变性,把握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的熟悉,发现、归纳能力的培养.教学活动设计教学内容设计(一)圆的对称性和旋转不变性学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)圆心角、弧、弦、弦心距之间的关系应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.(三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流) 举出反例:如图,∠aob=∠cod,但ab cd, .(强化对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点o是∠epf的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,求证:ab=cd.解(略,教材87页)例题拓展:当p点在圆上或圆内是否还有ab=cd呢?(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)练习:(教材88页练习)1、已知:如图,ab、cd是⊙o的两条弦,oe、of为ab、cd的弦心距,根据本节定理及推论填空: .(1)假如ab=cd,那么______,______,______;(2)假如oe=og,那么______,______,______;(3)假如 = ,那么______,______,______;(4)假如∠aob=∠cod,那么______,______,______.(目的:巩固基础知识)2、(教材88页练习3题,略.定理的简单应用)(五)小结:学生自己归纳,老师指导.知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.能力和方法:①增加了证实角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.(六)作业:教材p99中1(1)、2、3.第二课时圆心角、弧、弦、弦心距之间的关系(二)教学目标:(1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;(2)进一步培养学生自学能力,应用能力和计算能力;(3)通过例题向学生渗透数形结合能力.教学重点、难点:重点:圆心角、弧、弦、弦心距之间的相等关系的应用.难点:理解1° 弧的概念.教学活动设计:(一)阅读理解学生独立阅读p89中,1°的弧的概念,使学生从感性的熟悉到理性的熟悉.理解:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(3)圆心角的度数和它们对的弧的度数相等.(二)概念巩固1、判定题:(1)等弧的度数相等( );(2)圆心角相等所对应的弧相等( );(3)两条弧的长度相等,则这两条弧所对应的圆心角相等( )2、解得题:(1)度数是5°的圆心角所对的弧的度数是多少?为什么?(2)5°的圆心角对着多少度的弧? 5°的弧对着多少度的圆心角?(3)n°的圆心角对着多少度的弧? n°的弧对着多少度的圆心角?(三)疑难解得对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.非凡是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.(四)应用、归纳、反思例1、如图,在⊙o中,弦ab所对的劣弧为圆的 ,圆的半径为2cm,求ab的长.学生自主分析,写出解题过程,交流指导.解:(参看教材p89)注重:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要非凡关注和指导.反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例2、如图,已知ab和cd是⊙o的两条直径,弦ce∥ab, =40°,求∠bod的度数.题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.(解答参考教材p90)题目拓展:1、已知:如上图,已知ab和cd是⊙o的两条直径,弦ce∥ab,求证: = .2、已知:如上图,已知ab和cd是⊙o的两条直径,弦 = ,求证:ce∥ab.目的:是培养学生发散思维能力,由学生自己分析证实思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.(五)小节(略)(六)作业:教材p100中4、5题.探究活动我们已经研究过:已知点o是∠bpd的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,则ab=cd ;现在,若⊙o与∠epf的两边所在的直线分别交于点a、b和c、d,请你结合图形,添加一个适当的条件,使op为∠bpd的平分线.解(略)①ab=cd;② = .(等等)圆心角、弧、弦、弦心距之间的关系篇4教学目标1.使学生理解圆的旋转不变性,理解圆心角、弦心距的概念;2.使学生掌握圆心角、弧、弦、弦心距之间的相等关系定理及推论,并初步学会运用这些关系解决有关问题;3.培养学生观察、分析、归纳的能力,向学生渗透旋转变换的思想及由特殊到一般的认识规律.教学重点和难点圆心角、弧、弦、弦心距之间的相等关系是重点;从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的相等关系是难点.教学过程设计一、创设情景,引入新课圆是轴对称图形.圆的这一性质,帮助我们解决了圆的许多问题.今天我们再来一起研究一下圆还有哪些特性.1.动态演示,发现规律投影出示图7-47,并动态显示:平行四边形绕对角线交点O旋转180°后.问:(1)结果怎样?学生答:和原来的平行四边形重合.(2)这样的图形叫做什么图形?学生答:中心对称图形.投影出示图7-48,并动态显示:⊙O绕圆心O旋转180°.由学生观察后,归纳出:圆是以圆心为对称中心的中心对称图形.投影继续演示如图7-49,让直径AB两个端点A,B绕圆心旋转30°,45°,90°,让学生观察发现什么结论?得出:不论绕圆心旋转多少度,都能够和原来的图形重合.进一步演示,让圆绕着圆心旋转任意角度α,你发现什么?学生答:仍然与原来的图形重合.于是由学生归纳总结,得出圆所特有的性质:圆的旋转不变性.即圆绕圆心旋转任意一个角度α,都能够与原来的图形重合.2.圆心角,弦心距的概念.我们在研究圆的旋转不变性时,⊙O绕圆心O旋转任意角度α后,出现一个角∠AOB,请同学们观察一下,这个角有什么特点?如图7-50.(如有条件可电脑闪动显示图形.)在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上.在此基础上,教师给出圆心角的定义,并板书.顶点在圆心的角叫做圆心角.再进一步观察,AB是∠AOB所对的弧,连结AB,弦AB既是圆心角∠AOB也是AB所对的弦.请同学们回忆,在学习垂径定理时,常作的一条辅助线是什么?学生答:过圆心O作弦AB的垂线.在学生回答的基础上,教师指出:点O到AB的垂直线段OM的长度,即圆心到弦的距离叫做弦心距.如图7-51.(教师板书定义)最后指出:这节课我们就来研究圆心角之间,以及它们所对的弧、弦、弦的弦心距之间的关系.(引出课题)二、大胆猜想,发现定理在图7-52中,再画一圆心角∠A′OB′,如果∠AOB=∠A′OB′,(变化显示两角相等)再作出它们所对的弦AB,A′B′和弦的弦心距OM,OM′,请大家大胆猜想,其余三组量与,弦AB与A′B′,弦心距OM 与OM′的大小关系如何?学生很容易猜出: =,AB=A′B′,OM=OM′.教师进一步提问:同学们刚才的发现仅仅是感性认识,猜想是否正确,必须进行证明,怎样证明呢?学生最容易想到的是证全等的方法,但得不到=,怎样证明弧相等呢?让学生思考并启发学生回忆等弧的定义是什么?学生:在同圆或等圆中,能够完全重合的弧叫等弧.请同学们想一想,你用什么方法让和重合呢?学生:旋转.下面我们就来尝试利用旋转变换的思想证明 =.把∠AOB连同旋转,使OA与OA′重合,电脑开始显示旋转过程.教师边演示边提问.我们发现射线OB与射线OB′也会重合,为什么?学生:因为∠AOB=∠A′OB′,所以射线OB与射线OB′重合.要证明与重合,关键在于点A与点A′,点B与点B′是否分别重合.这两对点分别重合吗?学生:重合.你能说明理由吗?学生:因为OA=OA′,OB=OB′,所以点A与点A′重合,点B与点B′重合.当两段孤的两个端点重合后,我们可以得到哪些量重合呢?学生:与重合,弦AB与A′B′重合,OM与OM′重合.为什么OM也与OM′重合呢?学生:根据垂线的唯一性.于是有结论: =,AB=A′B′,OM=OM′.以上证明运用了圆的旋转不变性.得到结论后,教师板书证明过程,并引导学生用简洁的文字叙述这个真命题.教师板书定理.定理:在同圆____中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.教师引导学生补全定理内容.投影显示如图7-53,⊙O与⊙O′为等圆,∠AOB=∠A′O′B′,OM与O′M′分别为AB与A′B′的弦心距,请学生回答与 .AB与A′B′,OM与O′M′还相等吗?为什么?在学生回答的基础上,教师指出:以上三组量仍然相等,因为两个等圆可以叠合成同圆.(投影显示叠合过程)这样通过叠合,把等圆转化成了同圆,教师把定理补充完整.然后,请同学们思考定理的条件和结论分别是什么?并回答:定理是在同圆或等圆这个大前提下,已知圆心角相等,得出其余三组量相等.请同学们思考,在这个大前提下,把圆心角相等与三个结论中的任何一个交换位置,可以得到三个新命题,这三个命题是真命题吗?如何证明?在学生讨论的基础上,简单地说明证明方法.最后,教师把这四个真命题概括起来,得到定理的推论.请学生归纳,教师板书.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三、巩固应用、变式练习例1 判断题,下列说法正确吗?为什么?(1)如图7-54:因为∠AOB=∠A′OB′,所以AB=.(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么 =.分析:(1)、(2)都是不对的.在图7-54中,因为和不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.例2 如图7-55,点P在⊙O上,点O在∠EPF的角平分线上,∠EPF的两边交⊙O于点A和B.求证:PA=PB.让学生先思考,再叙述思路,教师板书示范.证明:作OM⊥PA,ON⊥PB,垂足为M,N.把P点当做运动的点,将例2演变如下:变式1(投影打出)已知:如图7-56,点O在∠EPF的平分线上,⊙O和∠EPF的两边分别交于点A,B和C,D.求证:AB=CD.师生共同分析之后,由学生口述证明过程.变式2(投影打出)已知:如图7-57,⊙O的弦AB,CD相交于点P,∠APO=∠CPO,求证:AB=CD.由学生口述证题思路.说明:这组例题均是利用弦心距相等来证明弦相等的问题,当然,也可利用其它方法来证,只不过前者较为简便.练习1 已知:如图7-58,AD=BC.求证:AB=CD.师生共同分析后,学生练习,一学生上黑板板演.变式练习.已知:如图7-58, =,求证:AB=CD.四、师生共同小结教师提问:(1)这节课学习了哪些具体内容?(2)本节的定理和推论是用什么方法证明的?(3)应注意哪些问题?在学生回答的基础上,教师总结.(1)这节课主要学习了两部分内容:一是证明了圆是中心对称图形.得到圆的特性——圆的旋转不变性;二是学习了在同圆或等圆中,圆。
(第1题图)(第2题图)(第3题图)
.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ) 69°C.48°D.38°
.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,的直径,BD交AC于点则∠AEB等于( ).
70°B.90°C.110°D.120°
(第4题图)(第5题图)如图所示,∠1,∠2,∠3
.∠1>∠2>∠3 B.∠3>∠1>∠2.∠2>∠1>∠3 D.∠3>∠2>∠1.在半径等于5cm的圆内有长为的弦,则此弦所对的圆周角为(
o B.30o或
二、填空题
在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么
(第12题图)
为直径,则∠A+∠B+∠C=________度.
OA⊥CE、OB⊥DE,求证==.⌒ AE AE
⌒ EF EF ⌒ FB FB 在上滑动
AB∥CD,∠BAC=32°,∴∠C=∠A=32°,∠AOD=2∠C=64°.
∠BOD=69°,由圆内接四边形的外角等于它的内对角得∠DCE=∠BAD=69°.
的直径,所以∠D=∠A=50°,∠DBC=40°,∠ABD=60°-40°=20°,∠ACD=∠ABD=20°,∠AED=∠ACD+∠D=20°+50°=70°,
【答案】;
=, 的长=.
第11题。