弧、弦、圆心角练习题4
- 格式:doc
- 大小:44.50 KB
- 文档页数:1
中考数学专项练习圆的圆心角、弧、弦的关系(含解析)【一】单项选择题1.如图,AB是⊙O的直径,弧BC=弧CD=弧DE,,那么的度数是〔〕A.B.C.D.2.如图,A,B,C,D是⊙O上的四个点,AD∥BC、那么与的数量关系是〔〕A.=B.>C.<D.无法确定3.如果所在圆的半径为3cm,它所对圆心角的度数是120°,那么的长是〔〕cm.A.6πB.3πC.2πD.π4.如下图,正六边形ABCDEF内接于圆O,那么∠ADB的度数为〔〕A.60°B.45°C.30°D.22.5°5.如图,⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且==,那么四边形ABCD的周长等于〔〕A.4cmB.5cmC.6cmD.7cm6.如图,A,B是⊙O的直径,C、D在⊙O上,,假设∠DAB =58°,那么∠CAB=〔〕A.20°B.22°C.24°D.26°7.如图,AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,以下结论中不一定正确的选项是〔〕A.∠ACB=90° B.OE=B E C.BD=BC D.△BDE ∽△CAE8.如下图,M是弧AB的中点,过点M的弦MN交AB于点C,设⊙O 的半径为4cm,MN=4 cm,那么∠ACM的度数是〔〕A.45°B.50°C.55°D.60°9.如图,AB是⊙O的直径,= = ,∠COD=34°,那么∠A EO的度数是〔〕A.51°B.56°C.68°D.78°10.如图,在⊙O中,=,那么AC与BD的关系是〔〕A.AC=BD B.AC <BDC.AC>BDD.不确定【二】填空题11.如图,AB是⊙O的直径,==,∠COD=35°,那么∠AOE =________°.12.,半径为4的圆中,弦AB把圆周分成1:3两部分,那么弦AB长是________.13.圆的一条弦分圆成4:5两部分,那么此弦所对的圆心角等于_____ ___.14.如图,⊙O中,弧AB=弧BC,且弧AB:弧AmC=3:4,那么∠A OC=________度.15.在⊙O中,弦AB∥CD,那么∠AOC________∠BOD、16.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为底边向外作高为AC,BC长的等腰△ACM,等腰△BCN,,的中点分别是P,Q.假设MP+NQ=12,AC+BC=15,那么AB的长是_ _______.17.如下图,∠BOC=∠COD=∠DOE=∠AOE,那么∠DOE=36度,的度数为________度.18.如图,AB是⊙O的直径,如果∠COA=∠DOB=60°,那么与线段OA相等的线段有________,与相等的弧有________ .【三】解答题19.:如下图,AD=BC。
《圆心角、弧、弦、弦心距、间关系》习题 1.下列说法中正确的是( ).
A .相等的圆心角所对的弧相等
B .等弧所对的圆心角相等
C .相等的弦所对的弦心距相等
D .弦心距相等,则弦相等
2.在半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为( ).
A .3cm
B .4cm
C .5cm
D .6cm
3.下列说法:①等弧的度数相等;②等弧的长度相等;③度数相等的两条弧是等弧;④长度相等的两条弧是等弧,其中正确的有( ).
A .1个
B .2个
C .3个
D .4个
4.在⊙O 中,弦AB 所对的劣弧为圆的3
1,圆的半径为4cm ,则弦AB 的长是( ). A .3cm B .2cm C .32cm D .34cm
5.弦AB 把⊙O 分成1∶2两部分,AB =8cm ,则弦AB 的弦心距等于___________.
6.直径为20cm 的圆中,有一条长为310cm 的弦,则这条弦所对的圆心角的度数是___________,这条弦的弦心距是___________.
7.在⊙O 中,AB 是弦,∠OAB =50°,则弦AB 所对的圆心角的度数是___________,弦AB 所对的两条弧的度数是___________.
8.在⊙O 中,OC 是半径,弦EF 过OC 的中点且垂直于OC ,则弦EF 所对的圆心角的度数是___________,弦EF 的弦心距和弦EF 的长的比是___________.
9.如图,AB 、CD 是⊙O 的直径,弦AE ∥CD ,连结CE 、BC ,求证:BC =CE .(用两种方法加以证明)
感谢您的阅读,祝您生活愉快。
弧、弦、圆心角学习目标:认识圆心角的观点:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就能够推出其他两个量的相对应的两个值就相等,及其他们在解题中的应用.一、导学过程:(阅读教材 P82 — 83 ,达成课前预习)1、知识准备( 1)圆是轴图形,任何一条所在直线都是它的对称轴.( 2)垂径定理推论.2、预习导航。
( 1)圆心角:极点在的角叫做圆心角。
( 2)等圆:能够的圆叫做等圆,同圆或等圆的半径。
( 3)弧、弦、弦心距、圆心角的关系:定理:在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.相同,还能够获得:在同圆或等圆中,假如两条弧相等,那么它们所对的相等, ?所对的弦也,所对的弦心距也。
在同圆或等圆中,假如两条弦相等,那么它们所对的、、相等.注:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对应的其他各组量也。
二、讲堂练习。
1.假如两个圆心角相等,那么()A .这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D.以上说法都不对2.在同圆中,圆心角∠ AOB=2∠ COD,则两条弧 AB与 CD的关系是()A.AB=2CD B.AB>2CDC.AB<2CDD.不可以确立3.一条弦长恰巧为半径长,则此弦所对的弧是半圆的 _________.4.如图,在⊙O中,AB=AC,∠AOB=60°,求证 : ∠ AOB=∠ BOC=∠ AOCAOB C三、讲堂小结在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,假如两条弧相等,那么它们所对的、、相等.四、反应检测。
1.如图,⊙ O中,假如AB=2CD,那么().A.AB=AC B . AB=AC C . AB<2AC D .AB>2ACACOB2.如图,以平行四边形 ABCD的极点 A 为圆心, AB为半径作圆,分别交BC、AD于 E、F,若∠ D=50°,求BE的度数和BF的度数.3.如图,在⊙ O中, C、D 是直径 AB上两点,且 AC=BD,MC⊥ AB,ND⊥ AB,M、N?在⊙ O上.( 1)求证:AM=(2)若C、D分别为OA、OB中点,则建立吗?BN AM=MN=NB4.如图,∠AOB=90°,C、D 是AB三平分点,AB分别交OC、OD于点E、F,求证: AE=BF=CD.C5. 如图, AB 和 DE是⊙ O的直径,弦 AC∥DE,若弦 BE=3,E 求弦 CE长度。
圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。
【文库独家】九年垂径定理、弦、弧、圆心角、圆周角练习1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
6003. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。
你认为图中有哪些相等的线段?为什么?ADBOCE4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。
5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD ⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。
6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。
CA P ODCE OA D B7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。
8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。
9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<510.下列说法中,正确的是()A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC 等于()A. 140°B. 110°C. 120°D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;B16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
初三数学弧弦圆心角的练习题1. 圆心角是90°的扇形的圆的周长为12π cm,求该扇形的面积。
解析:假设扇形的半径为r cm,则圆心角为90°的弧长为r cm。
根据圆的周长公式,可得:2πr = 12π解得:r = 6 cm扇形的面积为:(1/4)πr² = (1/4)π(6)² = 9π cm²2. 若圆心角为30°,则它所对的弧的度数是多少?解析:圆心角度数与所对弧度数相等,因此该圆心角所对的弧的度数是30°。
3. 在圆上,直径AB的长度为12 cm,弦CD的长度为8 cm。
求圆心角ACB的度数。
解析:对于圆上的任意一个圆心角,其所对的弦长是固定的。
设弦长CD = 8 cm,直径AB = 12 cm。
由于直径等于两个弦加起来的长度,可得:12 cm = 8 cm + CE解得:CE = 4 cm由于圆心角ACB所对的弦CD等于1/2的直径AB,所以CE = 1/2 AB。
因此,圆心角ACB所对的弦CD是直径AB的1/2,即圆心角ACB 的度数为180°的1/2,即90°。
4. 在圆上,弦AC的度数为60°,则对应的圆心角ABC的度数是多少?解析:对于圆上的任意一个圆心角,其度数等于所对的弦的度数的2倍。
因此,圆心角ABC的度数为60°的2倍,即120°。
5. 在圆上,弦DE的度数等于圆心角DFE的度数的4倍,并且圆心角DFE的度数比弦DE多30°。
求弦DE所对的圆心角的度数。
解析:设圆心角DFE的度数为x°。
根据题意可得:弦DE的度数 = 圆心角DFE的度数的4倍 = 4x°圆心角DFE的度数 = 弦DE的度数 + 30° = 4x° + 30°根据圆心角与所对弦的关系,可得:弦DE所对的圆心角的度数 = 圆心角DFE的度数的2倍 = 2(4x° + 30°) = 8x° + 60°综上所述,弦DE所对的圆心角的度数为8x° + 60°。
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
圆心角、弧、弦的关系精选题38道一.选择题(共18小题)1.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°2.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA 3.如图,已知A,B均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°4.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8B.10C.11D.125.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°6.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC 的度数为()A.20°B.25°C.30°D.50°7.如图,⊙O中,如果=2,那么()A.AB=AC B.AB=2AC C.AB<2AC D.AB>2AC8.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°9.如图所示,正六边形ABCDEF内接于圆O,则∠ADB的度数为()A.60°B.45°C.30°D.22.5°10.如图,AB为⊙O的直径,点C、D是的三等分点,∠AOE=60°,则∠BOD的度数为()A.40°B.60°C.80°D.120°11.下列语句中,正确的有()①相等的圆心角所对的弧相等;②等弦对等弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个12.如图,在Rt△ABC中,∠C=90°,∠A=28°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.28°B.64°C.56°D.124°13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为劣弧BD的中点,若∠DAB =40°,则∠ABC的度数是()A.140°B.40°C.70°D.50°14.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°15.如图,⊙O的弦AC=BD,且AC⊥BD于E,连接AD,若AD=3,则⊙O的周长为()A.6πB.4πC.3πD.4π16.下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等17.如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D为的中点,DM ⊥AC于M,则DM的长为()A.B.C.1D.18.在半径为1的⊙O中,若弦AB的长为1,则弦AB所对的圆心角的度数为()A.90°B.60°C.30°D.15°二.填空题(共15小题)19.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.20.如图,在⊙O中,=,若∠AOB=40°,则∠COD=°.21.在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为.22.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于.23.如图,半圆O的半径为1,C是半圆O上一点,且∠AOC=45°,D是上的一动点,则四边形AODC的面积S的取值范围是.24.如图,在⊙O中,AC为⊙O直径,B为圆上一点,若∠OBC=26°,则∠AOB的度数为.25.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是.26.如图,AB是⊙O的弦,若∠AOB=110°,则∠A的大小为(度).27.如图,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于度.28.如图,已知AB、CD是⊙O的直径,=,∠BOD=32°,则∠COE的度数为度.29.如图,在半径为2的⊙O中,弦AB与弦CD相交于点M,如果AB=CD=2,∠AMC =120°,那么OM的长为.30.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=.31.在半径为6的⊙O中,长为6的弦所对的圆心角是°.32.如图,点A、B、C、D在⊙O上,,则AC BD(填“>”“<”或“=”).33.将一个圆分割成三个扇形,它们圆心角度数之间的关系为2:3:4,则这三个扇形中圆心角最小的度数是度.三.解答题(共5小题)34.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.35.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE;(2)若BD=6,CE=8,求⊙O的半径.36.如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD.求证:CE=BE.37.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连接DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.38.如图,在⊙O中,=,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.圆心角、弧、弦的关系精选题38道参考答案与试题解析一.选择题(共18小题)1.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出结论.【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.【点评】本题考查了圆心角、弧、弦的关系,圆周角定理;熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.2.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA 【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴=,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.如图,已知A,B均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°【分析】由同弧所对的圆心角和圆周角的关系可得,∠AOB=2∠ACB,则结果即可得出.【解答】解:由题意得,∠ACB=∠AOB=×80°=40°.故选:D.【点评】本题考查了圆心角、弧、弦的关系,重点是圆周角定理的应用.4.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8B.10C.11D.12【分析】作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,再利用勾股定理,继而求得答案.【解答】解:作直径CF,连接BF,如图,则∠FBC=90°,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴=,∴DE=BF=6,∴BC==8.解法二:如图,过点A作AM⊥BC于M,AN⊥DE于N.∵AM⊥BC,AN⊥DE,∴CM=MB,DN=NE=3,∵AC=AB=AD=AE,∴∠BAC=2∠MAC,∠EAD=2∠DAN,∵∠BAC+∠EAD=180°,∴2∠CAM+2∠DAN=180°,∴∠CAM+∠DAN=90°,∵∠ACM+∠CAM=90°,∴∠ACM=∠DAN,∵∠AMC=∠AND=90°,∴△AMC≌△DNA(AAS),∴AM=DN=3,∴CM===4,∴BC=2CM=8.故选:A.【点评】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.注意掌握辅助线的作法.5.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和进行内角和定理求出即可.【解答】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=×75°=50°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠AOC)=65°,故选:C.【点评】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC=2∠ABC是解此题的关键.6.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC 的度数为()A.20°B.25°C.30°D.50°【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=,然后根据圆周角定理计算∠ADC的度数.【解答】解:∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=,∴∠ADC=∠BOC=25°.故选:B.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.7.如图,⊙O中,如果=2,那么()A.AB=AC B.AB=2AC C.AB<2AC D.AB>2AC【分析】取弧AB的中点D,连接AD,DB,由已知条件可知AD=BD=AC,在△ADB中由三角形的三边关系可知AD+BD>AB,即2AC>AB,问题得解.【解答】解:取弧AB的中点D,连接AD,DB,∵=2,∴AD=BD=AC,在△ADB中由三角形的三边关系可知AD+BD>AB,∴2AC>AB,即AB<2AC,故选:C.【点评】本题考查了圆心角、弧、弦的关系以及三角形三边关系定理:三角形两边之和大于第三边,题目设计新颖,是一道不错的中考题.8.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°【分析】连接OB,如图,利用圆心角、弧、弦的关系得到∠AOB=∠COB=∠AOC=60°,然后根据圆周角定理得到∠D的度数.【解答】解:连接OB,如图,∵点B是的中点,∴∠AOB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.如图所示,正六边形ABCDEF内接于圆O,则∠ADB的度数为()A.60°B.45°C.30°D.22.5°【分析】由正六边形ABCDEF,可求出的度数,再得到∠ADB的度数.【解答】解:∵正六边形ABCDEF内接于圆O∴的度数等于360°÷6=60°∴∠ADB=30°故选:C.【点评】理解正多边的定义;掌握圆周角定理及其推论.10.如图,AB为⊙O的直径,点C、D是的三等分点,∠AOE=60°,则∠BOD的度数为()A.40°B.60°C.80°D.120°【分析】先求出∠BOE=120°,根据点C、D是的三等分点求出的度数是80°,再求出答案即可.【解答】解:∵∠AOE=60°,∴∠BOE=180°﹣∠AOE=120°,∴的度数是120°,∵点C、D是的三等分点,∴的度数是×120°=80°,∴∠BOD=80°,故选:C.【点评】本题考查了圆心角、弧、弦之间的关系,题目比较典型,难度不是很大.11.下列语句中,正确的有()①相等的圆心角所对的弧相等;②等弦对等弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个【分析】根据圆心角,弧,弦之间的关系,等弧,轴对称等知识一一判断即可.【解答】解:①相等的圆心角所对的弧相等,错误,条件是同圆或等圆中.②等弦对等弧,错误,弦所对的弧有两条,不一定相等.③长度相等的两条弧是等弧,错误,等弧是完全重合的两条弧.④经过圆心的每一条直线都是圆的对称轴.正确.故选:A.【点评】本题考查圆心角,弧,弦之间的关系,等弧,轴对称等知识,解题的关键是理解基本概念,属于中考常考题型.12.如图,在Rt△ABC中,∠C=90°,∠A=28°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.28°B.64°C.56°D.124°【分析】先利用互余计算出∠B=64°,再利用半径相等和等腰三角形的性质得到∠CDB =∠B=64°,则根据三角形内角和定理可计算出∠BCD,然后根据圆心角的度数等于它所对弧的度数求解.【解答】解:∵∠C=90°,∠A=28°,∴∠B=62°,∵CB=CD,∴∠CDB=∠B=62°,∴∠BCD=180°﹣62°﹣62°=56°,∴的度数为56°.故选:C.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为劣弧BD的中点,若∠DAB =40°,则∠ABC的度数是()A.140°B.40°C.70°D.50°【分析】连接AC,根据圆周角定理得到∠CAB=20°,∠ACB=90°,根据直角三角形的性质计算即可.【解答】解:连接AC,∵点C为劣弧BD的中点,∠DAB=40°,∴∠CAB=∠DAB=20°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣20°=70°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.14.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°【分析】连接O1P,O2P,如图,先根据O1P=O1O2得到∠O1PO2=∠O1O2P=63°,然后根据三角形内角和求出∠PO1O2即可.【解答】解:连接O1P,O2P,如图,∵P在小量角器上对应的刻度为63°,即∠O1O2P=63°,而O1P=O1O2,∴∠O1PO2=∠O1O2P=63°,∴∠PO1O2=180°﹣63°﹣63°=54°,即点P在大量角器上对应的刻度为54°(只考虑小于90°的角).故选:A.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.15.如图,⊙O的弦AC=BD,且AC⊥BD于E,连接AD,若AD=3,则⊙O的周长为()A.6πB.4πC.3πD.4π【分析】连接AB,AO,DO,根据⊙O的弦AC=BD求出=,根据圆周角定理求出∠BAC=∠ABD,求出∠ABD=∠BAC=(180°﹣∠AEB)=45°,根据圆周角定理求出∠AOD=2∠ABD=90°,解直角三角形求出AO,再求出答案即可.【解答】解:连接AB,AO,DO,∵⊙O的弦AC=BD,∴=,∴=,∴∠BAC=∠ABD,∵AC⊥BD,∴∠AEB=90°,∴∠ABD=∠BAC=(180°﹣∠AEB)=45°,∴∠AOD=2∠ABD=90°,即△AOD是等腰直角三角形,∵AD=3,AO2+OD2=AD2,∴AO=3,∴⊙O的周长是2×π×3=6π,故选:A.【点评】本题考查了勾股定理,圆周角定理,圆心角、弧、弦之间的关系,等腰直角三角形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.16.下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【分析】根据题意画出符合已知条件的图形,再逐个判断即可.【解答】解:A.如图,弦AB=弦AB,但是所对的两段弧不相等,故本选项不符合题意;B.在同圆或等圆中,相等的弧所对的弦相等,故本选项符合题意;C.如图,∠AOB=∠COD,但是弦AB和弦CD不相等,故本选项不符合题意;D.如图,弦AB=弦AB,但是圆心角∠ADB和∠ACB不相等,故本选项不符合题意;故选:B.【点评】本题考查了圆心角、弧、弦之间的关系,能熟记圆心角、弧、弦之间的关系是解此题的关键,注意:在同圆或等圆中,两个圆心角、两条弧、两条弦,如果其中有一对量相等,那么其余两对量也分别相等.17.如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D为的中点,DM ⊥AC于M,则DM的长为()A.B.C.1D.【分析】如图,连接OD交AC于H,连接BC.利用勾股定理求出BC,再利用相似三角形的性质求出OH,AH,DH,证明△DMH∽△AOH,构建关系式即可解决问题.【解答】解:如图,连接OD交AC于H,连接BC.∵AB是直径,∴∠ACB=90°,∴BC==6,∵=,∴OD⊥AB,∵∠OAH=∠CAB,∠AOH=∠ACB=90°,∴△AOH∽△ACB,∴==∴==∴OH=,AH=,∵DH=OD﹣OH=5﹣=,∵DM⊥AC,∵∠DMH=∠AOH=90°,∠DHM=∠AHO,∴△DMH∽△AOH,∴=,∴=,∴DM=1,故选:C.【点评】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.在半径为1的⊙O中,若弦AB的长为1,则弦AB所对的圆心角的度数为()A.90°B.60°C.30°D.15°【分析】由题意可得△OAB为等边三角形,从而可求得弦AB所对的圆心角的度数.【解答】解:∵在半径为1的⊙O中,弦AB的长为1,∴OA=OB=AB=1,∴△OAB为等边三角形,∴弦AB所对的圆心角的度数为60°.故选:B.【点评】本题考查了圆心角、弧、弦的关系及等边三角形的判定与性质,熟练掌握相关性质及定理是解题的关键.二.填空题(共15小题)19.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为y=.【分析】连接PO并延长交⊙O于D,连接BD,根据圆周角定理得到∠C=∠D,∠PBD =90°,求得∠P AC=∠PBD,根据相似三角形的性质即可得到结论.【解答】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,∵P A⊥BC,∴∠P AC=90°,∴∠P AC=∠PBD,∴△P AC∽△PBD,∴=,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴=,∴xy=30,∴y=,故答案为:y=.【点评】本题考查了圆周角定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.20.如图,在⊙O中,=,若∠AOB=40°,则∠COD=40°.【分析】先根据在⊙O中,=,可得出=,再由∠AOB=40°即可得出结论.【解答】解:∵在⊙O中,=,∴=,∵∠AOB=40°,∴∠COD=∠AOB=40°.故答案为:40.【点评】本题考查的是圆心角、弧、弦的关系,即在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.21.在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为60°.【分析】先画图,由等边三角形的判定和性质求得弦AB所对的圆心角.【解答】解:如图,∵AB=OA=OB,∴△AOB为等边三角形,∴∠AOB=60°,故答案为60°.【点评】本题考查了圆心角、弧、弦之间的关系,以及等边三角形的判定和性质.22.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于2.【分析】由圆心角∠AOB=120°,可得△AOB是等腰三角形,又由OC⊥AB,再利用含30°角的直角三角形的性质,可求得OC的长.【解答】解:如图,∵圆心角∠AOB=120°,OA=OB,∴△OAB是等腰三角形,∵OC⊥AB,∴∠ACO=90°,∠A=30°,∴OC=.故答案为:2【点评】此题考查了垂径定理、含30°角的直角三角形的性质.注意根据题意作出图形是关键.23.如图,半圆O的半径为1,C是半圆O上一点,且∠AOC=45°,D是上的一动点,则四边形AODC的面积S的取值范围是<S≤.【分析】根据题意首先得出△AOC的面积,进而得出四边形最小值,要使四边形AODC 面积最大,则要使△COD面积最大.以CO为底DE为高.要使△COD面积最大,则DE 最长,进而得出答案.【解答】解:如图,过点C作CF垂直AO于点F,过点D作DE垂直CO于点E,∵CO=AO=1,∠COA=45°,∴CF=FO=,∴S△AOC=×1×=,则面积最小的四边形面积为D无限接近点C,所以最小面积无限接近但是不能取到,∵△AOC面积确定,∴要使四边形AODC面积最大,则要使△COD面积最大.以CO为底DE为高.要使△COD面积最大,则DE最长.当∠COD=90°时DE最长为半径,S四边形AODC=S△AOC+S△COE=+×1×1=.∴<S≤,故答案为:<S≤.【点评】此题主要考查了圆心角,弧,弦之间的关系,解直角三角形等知识,正确得出四边形的最大值是解题关键.24.如图,在⊙O中,AC为⊙O直径,B为圆上一点,若∠OBC=26°,则∠AOB的度数为52°.【分析】根据等腰三角形的性质得出∠C=∠OBC,求出∠C,再根据圆周角定理求出∠AOB=2∠C,再求出答案即可.【解答】解:∵∠OBC=26°,OB=OC,∴∠C=∠OBC=26°,∴∠AOB=2∠C=52°,故答案为:52°.【点评】本题考查了圆周角定理和等腰三角形的性质,注意:一条弧所对的圆周角等于它所对的圆心角的一半.25.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是8.【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中,,∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===8,故答案为8.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.26.如图,AB是⊙O的弦,若∠AOB=110°,则∠A的大小为35(度).【分析】根据等腰三角形的性质得到∠A=∠B,根据三角形内角和定理计算即可.【解答】解:∵OA=OB,∴∠A=∠B,∵∠AOB=110°,∴∠A==35°,故答案为:35.【点评】本题考查的是圆心角、弧、弦的关系,等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.27.如图,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于40度.【分析】由于点C是弧AB的中点,根据等弧对等角可知:∠BOC是∠BOA的一半;在等腰△AOB中,根据三角形内角和定理即可求出∠BOA的度数,由此得解.【解答】解:△OAB中,OA=OB,∴∠BOA=180°﹣2∠A=80°;∵点C是弧AB的中点,即=,∴∠BOC=∠BOA=40°.故答案为:40.【点评】此题主要考查了圆心角、弧的关系:在同圆或等圆中,等弧所对的圆心角相等.28.如图,已知AB、CD是⊙O的直径,=,∠BOD=32°,则∠COE的度数为64度.【分析】根据对顶角相等求出∠AOC=32°,根据圆心角、弧、弦之间的关系得出∠AOC =∠AOE,求出∠AOE的度数,再求出答案即可.【解答】解:∵∠BOD=32°,∴∠AOC=∠BOD=32°,∵=,∴∠AOE=∠AOC=32°,∴∠COE=∠AOC+∠AOE=32°+32°=64°,故答案为:64.【点评】本题考查了对顶角相等和圆心角、弧、弦之间的关系,能根据圆心角、弧、弦之间的关系得出∠AOC=∠AOE是解此题的关键.29.如图,在半径为2的⊙O中,弦AB与弦CD相交于点M,如果AB=CD=2,∠AMC=120°,那么OM的长为.【分析】根据圆心角、弦、弧、弦心距之间的关系以及勾股定理可求出OE、OF,再利用全等三角形可求出∠OME=60°,进而利用直角三角形的边角关系求解即可.【解答】解:如图,过点O作OE⊥AB,OF⊥CD,垂足为E、F,连接OA,则AE=BE=AB=,CF=DF=CD=,在Rt△AOE中,∵OA=2,AE=,∴OE==1,∵AB=CD,∴OE=OF=1,又∵OM=OM,∴Rt△OEM≌Rt△OFM(HL),∴∠OME=∠OMF=∠AMC=60°,∴OM==,故答案为:.【点评】本题考查圆心角、弦、弧、弦心距之间的关系,勾股定理,全等三角形以及直角三角形的边角关系,掌握圆心角、弦、弧、弦心距之间的关系以及勾股定理可求是解决问题的关键.30.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=4﹣4.【分析】连接OC,作EF⊥OC于F,根据圆心角、弧、弦的关系定理得到∠AOC=30°,根据等腰三角形的性质、三角形内角和定理得到∠ECF=45°,根据正切的定义列式计算,得到答案.【解答】解:连接OC,作EF⊥OC于F,∵点A关于直线CD的对称点为E,点E落在半径OA上,∴CE=CA,∵=,∴∠AOC=∠AOB=30°,∵OA=OC,∴∠OAC=∠OCA=75°,∵CE=CA,∴∠CAE=∠CEA=75°,∴∠CAE=30°,∴∠ECF=45°,设EF=x,则FC=x,在Rt△EOF中,tan∠EOF=,∴OF==x,由题意得,OF+FC=OC,即x+x=4,解得,x=2﹣2,∵∠EOF=30°,∴OE=2EF=4﹣4,故答案为:4﹣4.【点评】本题考查的是圆心角、弧、弦的关系、解直角三角形的应用、三角形内角和定理,掌握锐角三角函数的定义是解题的关键.31.在半径为6的⊙O中,长为6的弦所对的圆心角是60°.【分析】根据等边三角形的性质得到∠AOB=60°,得到答案.【解答】解:∵OA=OB=AB=6,∴△AOB为等边三角形,∴∠AOB=60°,故答案为:60.【点评】本题考查的是圆心角、弧、弦的关系定理、等边三角形的判定和性质,掌握圆周角的定义、等边三角形的判定定理和性质定理是解题的关键.32.如图,点A、B、C、D在⊙O上,,则AC=BD(填“>”“<”或“=”).【分析】根据同圆与等圆中,圆心角、弦、弧的关系得出=即可.【解答】解:∵=,∴+=+,即=,∴AC=BD,故答案为:=.【点评】本题考查圆心角、弦、弧的关系,掌握在同圆与等圆中,两个圆心角、两条弦、两条弧中有一组量相等,那么其余两组量也对应相等是正确解答的前提.33.将一个圆分割成三个扇形,它们圆心角度数之间的关系为2:3:4,则这三个扇形中圆心角最小的度数是80度.【分析】利用题目中所给的圆心角的度数之比去乘360°,从而可求得圆心角的度数.【解答】解:∵周角的度数是360°,∴这三个扇形中圆心角最小的度数是,故答案为:80.【点评】考查了扇形圆心角的度数问题,注意周角的度数是360°.三.解答题(共5小题)34.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.【分析】(1)要证明CF=BF,可以证明∠ECB=∠DBC;AB是⊙O的直径,则∠ACB =90°,又知CE⊥AB,则∠CEB=90°,则∠DBC=90°﹣∠ACE=∠A,∠ECB=∠A,则∠ECB=∠DBC;(2)在直角三角形ACB中,AB2=AC2+BC2,又知,BC=CD,所以可以求得AB的长,即可求得圆的半径;再利用面积法求得CE的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB=∠A.又∵C是的中点,∴=,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF=BF;(2)解:∵=,∴BC=CD=6,∵∠ACB=90°,∴AB===10,∴⊙O的半径为5,∵S△ABC=AB•CE=BC•AC,∴CE===.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、圆周角定理、等腰三角形的性质以及角平分线的性质等知识.此题综合性很强,难度适中,注意数形结合思想与方程思想的应用.35.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE;(2)若BD=6,CE=8,求⊙O的半径.【分析】(1)连接AD,通过证得△CAD≌△BAD(SAS),得出∠ACD=∠ABD,进而根据ASA证得△CED≌△BFD(ASA),即可证得结论;(2)根据圆内接四边形的性质证得∠ABD=90°,从而证得AD是直径,根据勾股定理求得ED,进而求得AB,然后根据勾股定理求得AD,从而求得半径.【解答】(1)证明:连接AD,∵点D是的中点,∴∠CAD=∠BAD,∴CD=BD,在△CAD和△BAD中,,∴△CAD≌△BAD(SAS),∴∠ACD=∠ABD,∴∠DCE=∠DBF,在△CED和△BFD中,,∴△CED≌△BFD(ASA),∴DF=DE;(2)解:∵四边形ABDC是圆内接四边形,∴∠DBF=∠ACD,∵∠ACD=∠ABD,∴∠ABD=∠DBF,∴∠ABD=90°,∴∠ECD=∠ABD=90°,∴AD是⊙O的直径,∵CD=BD=6,CE=8,∴DE==10,∴EB=10+6=16,在Rt△ABE中,AB2+BE2=AE2,设AB=AC=x,则x2+162=(x+8)2,解得x=12,∴AB=12,在Rt△ABD中,AB2+BD2=AD2,∴AD==6,∴⊙O的半径为3.【点评】本题考查了圆心角、弧、弦的关系,圆周角定理,圆内接四边形的性质,勾股定理的应用以及三角形全等的判定和性质,熟练掌握和灵活应用性质定理是解题的关键.36.如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD.求证:CE=BE.【分析】根据圆心角、弧、弦的关系定理的推论得到=,结合图形得到=,进而得到∠C=∠B,根据等腰三角形的判定定理证明结论.【解答】证明:∵AB=CD,∴=,∴﹣=﹣,即=,∴∠C=∠B,∴CE=BE.【点评】本题考查的是圆心角、弧、弦的关系定理的推论,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.37.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连接DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.【分析】(1)连接AD,求出∠DAE,再利用等腰三角形的性质解决问题即可.(2)如图,过点A作AF⊥CD,垂足为F.利用面积法求出AF,再利用勾股定理求出CF,可得结论.【解答】解:(1)如图,连接AD.∵∠BAC=90°,∠ABC=20°,∴∠ACD=70°.∵AC=AD,∴∠ACD=∠ADC=70°,∴∠CAD=180°﹣70°﹣70°=40°,∴∠DAE=90°﹣40°=50°.又∵AD=AE,∴.(2)如图,过点A作AF⊥CD,垂足为F.∵∠BAC=90°,AC=3,AB=4,∴BC=5.又∵•AF•BC=•AC•AB,∴,∴.∵AC=AD,AF⊥CD,∴.【点评】本题考查垂径定理,圆心角,弧,弦之间的关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.38.如图,在⊙O中,=,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.【分析】根据弧相等,则对应的弦相等从而证明AB=AC,则△ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得.【解答】证明:∵=,∴AB=AC∴△ABC是等腰三角形∵∠ACB=60°∴△ABC是等边三角形,∴AB=BC=CA∴∠AOB=∠BOC=∠COA.【点评】本题考查了圆心角、弧、弦的关系以及等边三角形的判定,正确理解圆心角、弧、弦的关系是关键.。
弧、弦、圆心角的关系同步练习一、填空题:1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是»AC上任一点(不与A、C重合),则∠ADC的度数是________.DCBAO(1) (2) (3)2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB是⊙O的直径,»»BC BD,∠A=25°,则∠BOD的度数为________.6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°D DCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D 是»AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°1.同圆中两弦长分别为x 1和x 2它们所对的圆心角相等,那么( )A .x 1 >x 2B .x 1 <x 2 C. x 1 =x 2 D .不能确定2.下列说法正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等;④经过圆心的每一条直线都是圆的对称轴A .1个B .2个C .3个D .4个3.在⊙O 中同弦所对的圆周角( )A .相等B .互补C .相等或互补D .以上都不对4.如图所示,如果的⊙O 半径为2弦AB= AB 的距离OE 为( )A. 1 B . C .12D 5.如图所示,⊙O 的半径为5,弧AB 所对的圆心角为120°,则弦AB 的长为( ) A.3B .2C .8 D . 6.如图所示,正方形ABCD 内接于⊙O 中,P 是弧AD 上任意一点,则∠ABP+∠DCP 等于( ) A .90° B 。
2012——2013i 学年度第一学期九年级上册数学练习
24.1.3弧、弦、圆心角练习四
1、 在同圆或等圆中,如果两个圆心角、两条弧、 或 中有一组是相等的,那么,所对应的其余各组量都分别相等。
2、在⊙O 中的两条弦AB 和CD ,AB>CD ,AB 和CD 的弦心距分别为OM 和ON ,则OM__________ON 。
3、在⊙O 中,直径AB 为6cm,弦BC 为4cm ,则弦BC 的弦心距为_____ cm 。
4、 如图,在⊙O 中,弦EF ∥直径AB ,若弧AE 的度数为50°,则弧EF 的度数为 ,弧BF 的度数为 ,∠EOF= °,∠EFO= °。
5 ⊙O 中,如果弧AB=2弧BC ,那么下列说法中正确的是( )
A. AB=BC
B. AB=2BC
C. AB >2BC
D. AB<2BC
6 、AB 为⊙O 的直径,C 、D 为半圆AB 上两点,且弧AC 、弧CD 、弧DB
的度数的比为3∶2∶5,则∠AOC= °,∠COD= °,
∠DOB= °。
7. 在⊙O 中,弦AB=8cm ,弦心距为cm 34,则圆心角∠AOB= 。
8. 已知:如图,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D 。
求证:∠OBA=∠OCD 。
9. 已知:如图,∠AOB=90°,C 、D 是弧AB 的三等分点,AB 分别交OC 、OD 于点E 、F 。
求证:AE=BF=CD 。
10. 在圆O 中,AC=DB ,求证:
⋂AE。