第十章 数据的收集1
- 格式:docx
- 大小:234.55 KB
- 文档页数:9
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
§10.1 统计调查(1)【教学目标】1.了解通过全面调查收集数据的方法和划记法,经历简单的数据的收集、整理、描述和分析数据得出结论,即数据处理的一般过程;2.会设计简单的调查问卷收集数据,能根据问题查找有关资料,获得数据信息,会用表格整理数据,用条形图、扇形图直观地描述数据;3.通过实际参与收集、整理、描述、分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,初步培养重视调查研究的良好习惯和科学态度.【教学过程】一、预习导航回忆小学所学的统计的有关知识,并在旁边空白处记录下来.二、新知探究自学课本回答下列问题:我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.尝试练习1:问题一:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?1.收集数据如何收集数据,让各小组的同学在下面的问卷调查中获取数据.填完后交小组长,由小组长表唱票,小组成员在表格中进行统计.1. 确定调查目的;2. 选择调查对象;3. 设计调查问题.2.整理数据语数外物政历地生51 1 2 人学科类3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息. 条形统计图:就是用坐标的形式来描述.如:扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.如图所示:制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o ×20%=72o.注意:各部分的圆心角之和可能与360 o有一定的误差.条形统计图与扇形统计图的优缺点各是什么? 4.全面调查的意义 在上面的调查中,我们利用调查问卷得到了全班同学喜爱的学科数据,利用表格整理数据,并用统计图直观形象的描述了数据.利用表和图分析了解到了全班同学喜爱学科的情况.在这个调查中,全班同学是要考查的全体对象.像这样考查全体对象的调查就叫做全面调查(也叫做普查).三、巩固提高例 经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%,请画出扇形图描述以上统计数据.例 春节文艺晚会是大家都喜欢的节目,下面是路刚班级喜爱某种节目的人数分布 表,但因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题.(1)被墨水遮掉的3处应是① _______ ②_______ ③________;(2)从上表中可知该班同学喜欢_______的人数最多;(3)画出条形图表示全班同学喜欢某种节目的分布情况. 四、课堂小结五、当堂检测1. 某中学初一(3)班50名学生参加数学测验,测验题目共20题,每题5分满分100分.统计结果如下:节目编号节目类别 划计 人数 百分比 1 相声 ① ② ③_ 2 小品 正 8 19% 3 歌曲 正5 12% 4 舞蹈 正 8 19% 5 杂技 正 7 17%6 戏曲 3 7% 合计42421语文% 数学25 %全对的2人对19题的8人对18题的10人对17题的9人对16题的6人对15题的6人对14题的5人对12题的2人对10题的1人对6题的1人.(1)请你设计一张表格对以上数据进行统计并填上相应数据?(2)你能用条形图把上述数据表示出来吗?2. 根据下面的数据制作扇形统计图并回答问题.对滨州市家庭人口数据的一次统计结果表明:2口之家占24%,3口之家占41%,4口之家占20%,5口之家占10%,6口之家占3%,其他占2%.(1)哪一类家庭人口多?占百分之几?(2)哪两类家庭的百分比之和超过了半数,且最多?(3)哪两类家庭的百分比之和刚达到30%?§10.1 统计调查(2)【教学目标】1.了解总体、个体、样本及样本容量的概念,通过抽样调查,初步感受抽样的必要性及样本的代表性,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析;2.理解抽样调查的方法,通过案例理解简单随机抽样,体会用样本估计总体的统计思想,合理运用抽样调查方法来解决实际问题;3.通过实际参与收集、整理、描述、分析数据的活动,体会数学在生活和生产中的作用,激发学生爱数学的热情.【教学过程】一、预习导航我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.二、新知探究自学课本,回答下列问题:如果要对某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?(1) 抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查.,叫做抽样调查.(2)总体、个体、样本、样本容量的定义总体: .个体: .样本: .样本容量: .(3)抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查2000名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此,随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.尝试练习:某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?⑴可以用全面调查的方法对全校学生逐个进行调查吗?这样做你认为有什么不足之处?⑵能否有既省时省力又能解决问题的新方法?请阅读教材P153-155后,小组讨论交流你的理解.⑶什么是总体、个体、样本、样本容量?在上面的问题中总体、个体、样本、样本容量分别是什么?⑷你明白了统计的思想了吗?抽样调查是实际中经常采用的调查方式.抽样调查有什么优点?需要注意什么?⑸见教材P154表10-2,你知道哪个节目最受学生喜爱?百分比为多少?据此你知道全校2000名学生中有多少学生最喜爱这个节目?⑹试用条形图和扇形图来描述表10-2中的数据.三、巩固提高1. 为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们的身高的平均值作为全校学生的平均身高的估计.⑴小明的调查是抽样调查吗?⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量.⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由.2. 举出不宜用全面调查的例子,并说明理由.3. 某班要选3名学生代表本班参加班级间的交流活动.现在按下面的办法抽取:把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学.你觉得上面的抽取过程是简单随机抽样吗?为什么?四、课堂小结五、当堂检测1.要调查下面几个问题,你认为应该作全面调查还是抽样调查?⑴了解全班同学每周体育锻炼的时间.⑵调查市场上某种食品的色素含量是否符合国家标准.⑶鞋厂检测生产的鞋底能承受的弯折次数.2.指出下列调查中的总体、个体、样本和样本容量.⑴从一批电视机中抽取20台,调查电视机的使用寿命.⑵从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.3.小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾,称得每尾的质量如下(单位:千克):0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8.⑴估计这塘鱼的总产量是多少千克?⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?§10.1 统计调查(3)【教学目标】1.感受分层抽样的必要性,初步掌握分层抽样的基本步骤和方法;2.经历收集、处理数据的过程,会用分层抽样的方法来收集数据、整理数据、分析数据、做出决策,能利用分层抽样的知识解决简单实际生活中的问题;3.增强用统计方法解决实际问题的意识,通过研究解决问题的过程,初步培养学生合作交流的意识和探究精神.【教学过程】一、预习导航1.什么是抽样调查?2.什么是总体、个体、样本和样本容量?3.统计的思想是什么?4.抽样调查有什么优点?简单随机抽样时需要注意什么?二、新知探究:自学课本,回答下列问题:(1)分层抽样:.分层抽样的优点:.(2)在什么情况下分层?分层的根据是什么?尝试练习问题某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况.⑴不能用对学生调查数据去估计整个地区电视观众的情况呢?⑵如果抽取一个容量为1000的样本进行调查,你会怎样调查?⑶采用分层抽样与在整个地区直接进行简单随机抽样相比,这样抽取样本一般能更好地反映总体.如果青少年、成年人、老年人的人数比为2∶5∶3,则可按下表抽取:教材P157表10-3是按上述做法进行调查并整理得到的数据,从中可以大致估计出整个地区观众对五种节目的喜爱情况.请你画条形图和扇形图描述表10-3中的数据.⑷由表10-3中数据还可以估计各个年龄段中观众对某类节目喜爱的情况.如,各个娱乐37% 35.2% 19.7%三、巩固提高1. 如果整个地区的观众中,青少年、成年人、老年人的人数比为3∶4∶3,要抽取容量为500的样本,则各年龄段分别抽取多少人合适?2. 根据表10-3,请你计算各个年龄段中最喜爱新闻、体育、戏曲类节目的百分比,画出折线图,分析随年龄变化,观众喜爱节目的变化情况.3. 活动1的问题中,除了根据年龄段分不同的人群,还可以按其他特征分吗?四、课堂小结五、当堂检测1.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.2.对某中学学生户外活动时间进行抽样调查,学校共有学生1500名,其中男生有800名,女生有700名.如果样本大小为150,小明现有三种方案:A:在七年级学生中用简单随机抽样,抽取150名学生进行调查;B:对全校学生进行简单随机抽样,抽取150名学生进行调查;C:分别在男生中用简单随机抽样抽取80名,在女生中用简单随机抽样抽取70名进行调查.你觉得哪种方案调查的结果会更精确一点?说说你的理由.3.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 .4.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成 下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)50403020100项目金额/§10.2 直方图(1)【教学目标】1.了解频数及频数分布的概念,根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布,会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息;2.通过学习用表格整理数据表示频数分布,体会表格在整理数据中的作用,通过学习用简单频数分布直方图描述数据的方法,进一步体会统计图表在描述数据中的作用;3. 初步建立统计的观念,初步培养调查研究的良好习惯和实事求是的科学态度.【教学过程】一、预习导航1.什么是分层抽样?2.分层抽样的优点是什么?二、新知探究自学课本回答下列问题:称为组距.叫做频数.尝试练习:活动1提出问题探索解决问题的方法问题1:为了参加学校年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.你知道应该怎样选择吗?为什么?问题2:已知63名学生的身高数据,为了使选取的参赛选手身高比较整齐,你知道怎样做才能知道数据(身高)的分布情况吗?(即在哪些身高范围学生比较多?而哪些身高范围学生比较少?)活动2 用频数分布描述数据的方法阅读教材,并结合以上探究,你知道用频数分布描述数据的一般步骤是什么?注意对以下概念的理解:1.组距2.频数3.频数分布直方图4.频数折线图活动3 应用频数分布解决简单的实际问题为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(数据见教材).列出样本的频数分布表,画出频数分布直方图.问题在活动1的问题2中,对数据进行分组时,组距取3,把数据分成8组.如果组距取2或4,那么数据分成几个组?这样做能否选出身高比较整齐的40名队员?三、巩固提高1. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.四、课堂小结五、当堂检测1.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5,则第四组频数是______.3.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第3题)/min§10.2 直方图(2)【教学目标】1.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布;2.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 进一步体会统计图表在描述数据中的作用;3. 增强学习统计的兴趣,初步培养调查研究的良好习惯和科学态度.【教学过程】一、预习导航1.什么是组距、频数?2.用频数分布描述数据的一般步骤是什么?二、新知探究:活动熟练掌握用频数分布直方图解决问题的一般步骤从蔬菜大棚中收集到50株西红柿秧上小西红柿的个数:28 62 54 29 32 47 68 27 55 4336 79 46 54 25 82 16 39 32 6461 59 67 56 45 74 49 36 39 5285 65 48 58 59 64 91 67 54 5768 54 71 26 59 47 58 52 52 70请按组距为10将数据分组,列出频数分布表,画出频数分布直方图和频数折线图,分析数据分布的情况.(先独立思考后分组交流评讲)三、巩固提高:⑴全班有多少同学?⑵组距是多少?组数是多少?⑶跳绳的次数x在100≤x<140范围内的同学有多少?占全班同学的百分之几?⑷画出适当的统计图表示上面的信息.⑸你怎样评价这个班的跳绳成绩?四、课堂小结五、当堂检测1.某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数..)(1)抽取样本的容量为;(2)根据表中数据,补全图中频数分布直方图;(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为人.2.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数)组别噪声声级分组频数频率1 44.5~59.5 4 0.12 59.5~74.5 a 0.23 74.5~89.5 10 0.254 89.5~104.5 b c5 104.5~119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?第十章 数据的收集、整理与描述复习【教学目标】1. 通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实;2. 通过复习,进一步明确数据处理的一般过程;3. 在与他人交流合作的过程中学会收集、整理、描述数据. 【教学过程】一、本章知识网络: 数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识链接:1. 统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比. 条形统计图 可以表示出各种情况下各个项目的具体数目. 折线统计图 可以表现出同一对象的发展变化情况2. 全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调查中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体 样本容量 样本中个体的数目 3. 直方图画频数分布直方图的一般步骤(1)计算最大值与最小值 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图三、巩固练习:1. 右图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生 人, 七年级共捐款 元,该校三个年级共捐款 元.人均捐款数(元)0246810121416七年级八年级九年级年级/日4821温度/℃2. 某校七年级学生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题.(1)该班有多少名男生?(2)若立定跳远的成绩在 2.0米以上(包括2.0米)为合格率是多少四、当堂检测 一、精心选一选,你一定能行1.下列调查适合作全面调查的是( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人 3.要反映某市一周内每天的最高气温的变化情况,宜采用( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( ) A.144 B.162 C.216 D.250二、耐心填一填,你一定很棒的! 6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,样本是______________.7.小明家本月的开支情况如右图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元.8.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有_____________万人.9.测得某市2月份1~10日最低气温随日期变化折线图如图所示 ()1 最低气温为2c 的天数为_______天.()2 该市这10天的天气变化趋势是___________________.三、挑战你的技能10.老师布置每位学生估计本班的数学平均成绩,小玲是数学兴趣小组的成员,就向数学兴趣小组的全体成员做了调查,用他们的数学平均成绩估计本班的数学平均成绩,这样的抽样调查合理吗?为什么?11.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试.将所得的成绩(成绩均为整数)进行整理(如下边所示),请你画出频数分布直方图和频数折线图,并回答问题:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)测试成绩在70≤x<80范围的同学有多少?占全班同学的百分比?(4)画出适当的统计图表示上面的信息.(5)你怎样评价这个班的测试成绩?12. 某校学生会准备调查全校七年级学生 每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最合理的是(填“甲”、或“乙”或“丙”)____________________(2)他们采用了最为合适的调查方法收集数据,并绘制了条形和扇形统计图,请将两幅统计图补充完整;图1(3)若该七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数.20分钟约40分钟及以上图2。
七年级数学(人教版)第十章《数据的收集、整理与描述》教材分析西葛中学董介文一、教材的地位:在当今的信息社会里,我们需要用数据解决问题。
统计概率所提供的“运用数据进行推断”的思考方法已成为现代社会一种普遍使用并且强有力的思维方式。
数据的收集、整理与描述与我们的生活息息相关。
例如:日本的福田地震、海啸和核泄漏问题已成为全世界人民关注的焦点,每天都需要收集大量的统计数据,并对这些数据进行精细的分析,并得出结论,从而采取有效措施;全国的人口普查;一个家庭的收入与支出;分析中考学生的数学成绩;统计学生的视力情况、身高、体重等等,都需要收集数据、整理数据、描述数据、得出结论。
这一章的知识充分体现了数学来源于生活,并服务于生活,更注重了数学的时效性。
在人教版的数学课程中,已加强统计概率的份量,已将“统计与概率”列为知识领域之一,成为与“数与代数”“图形与几何”并重的内容,这使得义务教育阶段的数学课程结构更加合理,使学生解决问题的能力得到更全面的培养。
在近几年的中考120分中,与数据的收集、整理与描述相关的这些统计知识和概率知识所占的比重有所加大,占9分左右。
“统计与概率”领域主要学习收集、整理、描述和分析数据等处理数据的基本方法和概率的初步知识,这些内容在三个年级均有安排,教学要求随着年级的升高和学生水平的增长逐渐提高。
本套教材安排了三章。
这三章内容采用统计部分和概率部分分开编排的方式,前两章是统计,最后一章是概率。
统计部分的两章内容按照数据处理基本过程的不同侧重点来安排,分别是7年级下册的第10章“数据的收集、整理与描述”,8年级下册的第20章“数据的分析”;概率部分为9年级上册的第25章“概率初步”。
二、教材安排:第十章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程。
2024年人教版初中数学教案一、教学内容本节课选自2024年人教版初中数学教材七年级下册第十章《数据的收集与整理》,具体包括:章节一“数据的收集与处理”中的10.1.1“收集数据”,10.1.2“整理数据”。
二、教学目标1. 让学生掌握数据收集的基本方法,了解数据整理的步骤,提高数据处理能力。
2. 培养学生运用数学知识解决实际问题的能力,增强数据分析观念。
3. 培养学生合作交流、积极参与的学习态度,提高他们的实践操作能力。
三、教学难点与重点教学难点:数据收集与整理的方法和步骤。
教学重点:如何将实际问题转化为数学问题,运用数学知识解决实际问题。
四、教具与学具准备教具:多媒体设备、黑板、粉笔、直尺、圆规等。
学具:笔记本、铅笔、直尺、圆规、剪刀、胶水等。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示学校附近的交通情况,提出问题:“如何收集和整理这些交通数据?”引导学生思考。
2. 教学新课(25分钟)(1)讲解数据收集的方法:问卷调查、观察法、访谈法等。
(2)讲解数据整理的步骤:清洗数据、分类整理、汇总统计等。
(3)通过例题讲解,让学生了解如何将实际问题转化为数学问题。
3. 随堂练习(10分钟)发放练习题,让学生独立完成,巩固所学知识。
4. 小组讨论(10分钟)(1)在实际问题中,如何选择合适的数据收集方法?(2)数据整理的步骤中,哪一步骤最容易出错?如何避免?各小组汇报讨论成果,进行课堂交流。
六、板书设计1. 数据收集方法:问卷调查、观察法、访谈法等。
2. 数据整理步骤:清洗数据、分类整理、汇总统计等。
3. 例题:将实际问题转化为数学问题。
七、作业设计1. 作业题目:(1)收集本班同学的身高数据,进行整理和分析。
(2)观察身边的物体,选择合适的方法收集数据,进行整理和分析。
2. 答案:(1)身高数据整理表格。
(2)物体数据整理表格。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解数据收集与整理的实际意义。
第十章数据的收集、整理与描述10.1统计调查1.全面调查:考察全体对象的调查,叫做全面调查。
2.抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这样的调查,称为抽样调查。
3(1)总体:所要考察对象的全体称为总体;(2)个体:组成总体的每一个考察对象称为个体;(3)样本:从总体中抽取一部分个体,叫做总体的一个样本;(4)样本容量:样本中数据的个数,叫做样本容量。
4.简单随机抽样:总体中的每一个个体都有相等的机会被抽到,这样的抽样方法,叫做简单随机抽样.10.2数据的描述一、理解频数和频率1频数、在频数分布中,落入每个小组内的数据的个数,叫做该组的频数。
2、频率频数与数据总数的比叫做频率。
总数频数频率 3、两者的关系频数与频率都反映每个数据的频繁程度,频数之和等于数据总数,每小组频率之和等于1,各小组所占百分比的和为100%二、常见的四种统计图1、条形图用一个单位长度表示一定的数量,根据数量的多少画出长短不同的图形,然后把这些条形按照一定顺序排列起来。
特点:(1)能够体现每组中的具体数据;(2)易于比较数据之间的差别注意事项:(1)画条形统计图时宽窄必须相同;(2)取一个单位长度表示数量多少要根据具体情况而定(3)复式条形统计图中表示不同项目的直条,要用不同的线纹和颜色区别开,并在制图日期下面注明图例3.折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
特点:不但能表示各部分数量的多少(但不如条形图直观),而且易于显示数据的变化趋势注意事项:横轴表示不同的年份月份等时间,不同时间之间的距离要根据年份或者月份的间隔来确定.4、频数分布直方图用频数(率)来表示各组数据的分布情况特点:(1)能够显示各组频数分布情况;(2)易于显示各组之间频数的差别.注意事项:(1)各个小长方形的面积等于各组的频数,由于小长方形的底相等,因此,只要比较它们的高,就可以直观的看出各组频数的大小;(2)各矩形之间没有空隙,各小组的频数之和等于总数;(3)将每组中的频数与频率相除可得数据总数的大小.三、统计图与统计表的区别统计表反映的数据准确且易查找,统计图很直观地表示出数据变化的情况,但往往不能看出准确的数据。
七年级数学下册第十章数据的收集整理与描述考点总结单选题1、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个答案:A分析:根据总体、个体、样本、样本容量的定义,总体是我们把所要考查的对象的全体,个体是把组成总体的每一个考查对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位,判断即可.解:①这3000名初一学生的数学成绩的全体是总体,说法正确;②每个初一学生的数学成绩是个体,说法正确;③200名初一学生的数学成绩是总体的一个样本,说法正确;所以其中说法正确的是3个.故选:A.小提示:本题考查了总体、个体、样本、样本容量的定义,熟练掌握相关定义是解本题的关键.2、如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人答案:C分析:根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.解:总人数=60÷20%=300(人);300×40%=120(人),故选:C.小提示:本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.3、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量答案:C分析:总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.小提示:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°答案:B分析:过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出及角平分线的定义可得“∠FBE+∠EDF=12结论.如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=1(∠ABE+∠CDE)=149.5°,2∵四边形的BFDE的内角和为360°,∴∠BFD=360°-149.5°-61°=149.5°.故选B.小提示:本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查昆仑学校的空气质量情况D.调查疫情期间某超市人员的健康码答案:D分析:根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.解:A.调查北京冬奥会开幕式的收视率,适合抽样调查,故选项A不符合题意;B.调查某批玉米种子的发芽率,适合抽样调查,故选项B不符合题意;C.调查昆仑学校的空气质量情况,适合抽样调查,故选项C不符合题意;D.调查疫情期间某超市人员的健康码,适合全面调查,故选项D符合题意;故选:D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C分析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4×100%=8 %,故D选项错误,50故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次为.1800D.2100答案:A分析:依据抽取的样本中周阅读时间超过一个半小时的职工人数所占的百分比,即可估计该公司所有职工中,周阅读时间超过一个半小时的职工人数.=1200(人),解:由题可得,3000×10+230∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选A.小提示:本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,对总体的估计也就越精确.8、平顶山某校有3000名学生,随机抽取了300名学生进行睡眠质量调查,下列说法错误的是()A.总体是该校3000名学生的睡眠质量B.个体是每一个学生C.样本是抽取的300名学生的睡眠质量D.样本容量是300答案:B分析:根据题意可得3000名学生的睡眠质量情况,从中抽取了300名学生进行睡眠质量调查,这个问题中的总体是3000名学生的睡眠质量情况,样本是抽取的300名学生睡眠质量情况,个体是每一个学生的睡眠质量情况,样本容量是300,注意样本容量不能加任何单位.解:A.总体是该校3000名学生的睡眠质量,故此选项正确,不合题意;B.个体是每名学生的睡眠质量,故此选项错误,符合题意;C.样本是抽取的300名学生的睡眠质量,故此选项正确,不合题意;D.样本容量是300,故此选项正确,不合题意;故选:B.小提示:本题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00—10:00时段这三种出行方式不同时刻出发所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若7:00前出发,地铁是最快的出行方式B.若选择公交出行且需要30分钟以内到达,则7:00之前出发均可C.驾车出行所用时长受出发时刻影响较小D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间答案:D分析:根据折线统计图中的信息进行判定即可得出答案.解:A.根据统计图可得,7:00出行,公交快,故A选项说法不正确,不符合题意;B.根据统计图可得,若选择公交出行且需要30分钟以内到达,则6:00之前出发均可,故B选项说法不正确,不符合题意;C.根据统计图可得,地铁出行所用时长受出发时刻影响较小,故C选项说法不正确,不符合题意;D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间,故D选间说法正确,符合题意.故选:D.小提示:本题主要考查了折线统计图,根据题目要求读懂折线统计图中的信息进行求解是解决本题的关键.10、如图是某种学生快餐的营养成分统计图,若脂肪有30g,则蛋白质有()A.135gB.130gC.125gD.120g答案:A分析:脂肪有30g占总质量的10%,可知总质量为300g,再根据蛋白质所占比例即可求解.由题意可得,30÷10%×45%=300×0.45=135g,即快餐中蛋白质有135克,故选:A.小提示:本题考查了扇形统计图的知识点,数量掌握扇形统计图并正确计算是解答本题的关键.填空题11、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.答案:①②分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、经调查,我区高中学生上学所用的交通方式中,选择“电瓶车”、“自行车”、“其他”的比例为5:2:5,若该校学生有600人,则选择“电瓶车”的学生人数是___________.答案:250人分析:用总人数600乘以选择“电瓶车”的比例即可.=250人,解:选择“电瓶车”的学生人数是600×55+2+5所以答案是:250人.小提示:此题考查了利用总体中部分的比例求总体中的数量,正确理解题意是解题的关键.13、为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是______.答案:抽取400名学生的数学成绩分析:根据样本的定义解答.解:为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是抽取400名学生的数学成绩,所以答案是:抽取400名学生的数学成绩.小提示:此题考查了样本的定义:抽取的部分的调查对象是样本,熟记定义是解题的关键.14、某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,你认为调查结果________普遍代表性.答案:不具有分析:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.利用样本的代表性和广泛性即可作出判断.解:在某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,范围和人群太集中,不具有代表性.所以答案是:不具有小提示:本题考查了调查的对象的选择,要读懂题意,分清调查的内容所对应的调查对象是什么是解题的关键.注意所选取的对象要具有代表性.15、某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好答案:(1)21;(2) 96% ;(3)A试题分析:(1)根据总人数=频数÷频率计算;(2)得出60分以上的频率和除以总即为本次测试这50名学生成绩的及格率=96%;(3)由及格率很高,故由频数分布表可以看出该年级此学科的成绩较好.试题解析:(1)由题意可知:测试90分以上(包括90分)的人数为50×0.42=21人;=96%;(2)本次测试这50名学生成绩的及格率是0.04+0.16+0.34+0.421(3)由频数分布表可以看出该年级此学科的及格率比较高,优秀人数比较多,成绩较好.故选A.解答题16、某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:舞请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.答案:(1)10%(2)100人(3)见解析(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大分析:(1)用1分别减去A、C、D类的百分比即可得到a的值;(2)用A类学生数除以它所占的百分比即可得到总人数;(3)用35%乘以总人数得到B类人数,再补全条形统计图画树状图;(4)根据选择两个项目的人数得出答案.(1)解:a=1﹣35%﹣25%﹣30%=10%,所以答案是:10%;(2)解:25÷25%=100(人),答:本次调查的学生总人数是100人;(3)解:B类学生人数:100×35%=35,补全条形统计图如图,(4)解:建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.17、2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了名学生,并补全条形统计图.(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数.(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数.答案:(1)500;补全条形统计图见解析(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数57.6°(3)估计该校学生的作业时间不少于2小时的学生人数为1320人分析:(1)用完成作业时间是2小时的学生人数除以相应的比例即可得到调查总数,然后用总数乘以1.5小时人数所在的比例;(2)作业时长为2.5小时对应的扇形圆心角度数等于80×360°=57.6°;500(3)不少于2小时的学生人数为总数乘以不少于2小时的学生所占比例.(1)140÷28%=500;500×36%=180(人),(2)作业时长为2.5小时对应的扇形圆心角度数为80×360°=57.6°;500=1320 (人)(3)3000×140+80500小提示:本题考查了条形统计图和扇形统计图的知识,从图中获取正确的信息是本题的解题关键.18、某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.答案:(1)50(2)见解析(3)72°(4)该校初二年级跳绳成绩为“优秀”的人数为90人分析:(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1) 中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.(1)解:由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);所以答案是:50;(2)由(1)的优秀的人数为:50-3-7-10-20=10,如图所示:;(3)×360°=72°,“中等”部分所对应的圆心角的度数是:1050所以答案是:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:450×10=90(人).50答:该校初二年级跳绳成绩为“优秀”的人数为90人.小提示:此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.。
第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
第十章数据的收集、整理与描述测试1 统计调查(一)学习要求了解全面调查是一种收集数据的方法,会设计简单的调查问卷收集数据,会用统计表和扇形图描述数据;能根据问题查找有关资料,获得数据信息。
课堂学习检测一、填空题1.做统计调查时,通常先采用问卷调查的方法____________,为此要设计______;为了更清楚地了解数据所蕴含的规律,经常用表格______;为了更直观地看出表中的信息,还可以用统计图来____________.2.在调查中,考察全体对象的调查叫做_____________.3.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为____________部分(选择A,B,C,D填空).4.2008年4月16日至20日,在北京奥林匹克公园公共区举办了“好运北京”综合测试赛.测试期间,公共餐饮售卖点5日的营业额如图所示:测试赛公共区餐饮售卖点5日营业额条形图则营业额最高的是______日,它和营业额最低的那天相比,相差______元.二、选择题5.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好).(A)生活质量稳步提高(B)生活质量逐步下降(C)生活质量有升有降(D)生活质量稳定不变6.下列调查适合全面调查的是( ).(A)调查2009年6月份市场上某品牌饮料的质量(B)了解中央电视台直播北京奥运会开幕式的全国收视率情况(C)环保部门调查5月份黄河某段水域的水质情况(D)了解全班同学本周末参加社区活动的时间7.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是( ).(A)该班喜欢乒乓球的学生最多(B)该班喜欢排球与篮球的学生一样多(C)该班喜欢足球的人数是喜欢排球人数的1.25倍(D)该班喜欢其他球类活动的人数为5人三、解答题8.学校食堂的主食主要有:米饭、馒头、花卷、面条,你班的同学最喜欢哪种主食,请设计一个调查问卷.综合、运用、诊断9.下图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为______;(2)把两幅统计图补充完整.10.查阅动物百科全书,得到信息:丹顶鹤体长约140厘米,营巢于周围环水的浅滩或深草丛中,每次产卵2枚,为国家一级保护动物;绿孔雀体长100~230厘米,营巢于灌木丛、竹丛间的地面,每次产卵4~8枚,为国家一级保护动物;鸳鸯体长38~44厘米,营巢于树洞中,每次产卵7~12枚,为国家二级保护动物.请用一张统计表表示上述信息.11(2)根据扇形图分析学校图书馆的借书率高吗?(3)根据以上信息,请你向学校提出一条好的建议.12.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图,解答下列问题:(1)1999年该地区共销售盒饭__________万盒;(2)该地区盒饭销量最大的年份是______年,这一年的年销量是______万盒;(3)计算出这三年中该地区平均每家快餐公司的年销售盒饭数量(精确到0.01万).拓展、探究、思考13.阅读下面材料:中国人民银行资料显示,到2001年底,我国城乡居民银行存款数额为8.7万亿人民币.你想了解居民存款的目的是什么吗?下图是根据中国人民银行提供的资料制作的统计图,图中的百分比是受访者中选择不同存款的目的(每人只选一项)人数的百分比.(资料来源:中国人民银行2002年1月20日)观察上图后,研究下面问题:(1)选择人数最多的前四类的存款目的分别是______、______、______、______,这四类人数的百分比之和是______.(2)图中的各个百分比是如何得到的?所有百分比之和是多少?(3)(4)谈谈对上述数据调查、分析后的体会.测试2 统计调查(二)学习要求1.了解通过抽样调查收集处理数据的方法,明确用样本估计总体是统计的基本思想.2.通过实例理解总体、样本和样本容量的概念.3.会用折线图表示经过整理的数据,直观地反映数据规律.课堂学习检测一、填空题1.抽样调查是只从总体中抽取___________进行调查,然后根据___________推断全体对象的情况;要考察的全体对象称为___________,组成其的每一个考察对象称为______ _____,被抽取的那些___________组成一个___________.2.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是________________,个体是________________,抽取的样本是___________,样本容量是_________.3.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果___________,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作___________.4.下列调查的样本中不缺乏代表性的有哪几个___________.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七1班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.二、选择题5.为了了解某校九年级学生的视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).(A)每名学生的视力(B)60名学生的视力(C)60名学生(D)该校九年级学生的双眼视力6.为了反映某地区的天气变化趋势,最好选择( ).(A)扇形统计图(B)条形统计图(C)折线统计图(D)以上三种都不行7.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).(A)选取一个班级的学生(B)选取50名男生(C)选取50名女生(D)随机选取50名七年级学生三、解答题8.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集的数据,绘制成如图.(1)学校采用的调查方式是___________________________________________________.(2)选择喜欢“踢毽子”的学生有多少人,并在图中将“踢毽子”部分的图形补充完整.(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.9.某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,让若干名学生从足球、乒乓球、篮球、排球四种球类运动中选择自己最喜欢的一种,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类运动;图中用乒乓球、足球、排球、篮球代表喜欢该项目的学生人数).图1 图2请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的扇形圆心角是多少度?(3)补全折线统计图.综合、运用、诊断一、填空题10.在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种__________抽样;通常样本容量越大,估计精度就会越______(填“高”或“低”).11.为了让大家感受丢弃塑料袋对环境的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45位学生,那么根据提供的数据估计本周全班各家平均丢弃塑料袋数量约为______.12.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:甲公司乙公司从2003年到2007年,这两家公司中销售量增长较快的是____________.13.为了解09届本科生的就业情况,某网站对09届本科生的签约状况进行了网络调查,至3月底,参与网络调查的12000人中,只有4320人已与用人单位签约.在这个网络调查中,样本容量是______.二、选择题14.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( ).(A)1万件(B)19万件(C)15万件(D)20万件15.如图为某产品产量增长情况统计图,下列说法正确的是( ).(A)产量持续增长(B)产量有增有减(C)开始产量不变(D)条件不足,无法判断三、解答题16.一面粉厂生产面粉,规定每袋标准质量为50kg.采用自动装袋工艺后,每袋面粉的实际质量和标准质量有一定的误差.任选50袋称质量结果如下:(单位:kg)48.5×1袋49.0×4袋49.5×10袋50.0×19袋50.5×9袋51.0×5袋51.5×2袋(1)计算每袋面粉的质量与标准质量的误差,对误差进行分类,统计各类误差的面粉袋拓展、探究、思考17.为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,按照老年人、成年人、青少年各年龄段实际人口3∶5∶2的比例,随机抽取一定数量的观众进行调查,得到如下统计图:(1)上面所用的调查方法是______(填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值; A :_________ B :__________(3)求该地区喜爱娱乐节目的成年人的人数.18.台州素有“七山一水两分田”之说,据此画成统计图1.图2是台州市2004~2008年的人口统计图(单位:万人).图1 图2资 料◆自1997年以来,台州市已连续12年实现耕地总面积基本不变.◆台州市2008年人均耕地面积0.4亩,不到全国人均耕地的31,相当于联合国粮农组织确定的人均0.8亩耕地警戒线的21.(1)请你计算扇形统计图中表示“田”的扇形圆心角的度数;(2)请你指出台州市2004~2008年的人口变化趋势,并据此推断台州市2004~2008年人均耕地面积是不断增加还是不断减少?(人均耕地面积=耕地总面积÷人口)(3)结合统计图和资料的信息,计算台州市2008年耕地总面积约是多少万亩?参考答案第十章数据的收集、整理与描述测试11.收集数据,调查问卷;整理数据;描述数据.2.全面调查.3.A.4.18,11900.5.A.6.D.7.D.8.略.9.(1)500;(2)101112.(1)118;(2)2000,120;(3)(1×50+2×59+1.5×80)÷(50+59+80)≈1.52(万盒).13.(1)教育费、养老费、买房装修、预防意外,55.6%;(2)不同存款目的的人数占总人数的百分比,100%;测试21.一部分对象;调查数据;总体;个体;个体;样本.2.这批手表的防水性能;每只手表的防水性能;10只手表的防水性能;10. 3.花费少、省时;全面、准确;样本的情况;抽样调查. 4.②,③. 5.D . 6.C . 7.D . 8.(1)抽样调查;(2)25人,如图;(3)16010020800=⨯(人).9.(1)20÷20%=100(人);(2)36°;(3)喜欢篮球的有40人,喜欢排球的有10人.(图略)10.简单随机;高. 11.28个. 12.甲公司. 13.12000. 14.B . 15.A . 1617.(1)抽样调查;(2)A =20,B =40;(3),1500002535300000=++⨯.45000%30150000%,30360108=⨯= 18.(1)360°×20%=72°;(2)台州市2004~2008年的人口不断增加,台州市2004~2008年的人均耕地面积不断 减少;(3)0.4×575=230(万亩).。