一道课本探究题的再探究
- 格式:doc
- 大小:0.68 KB
- 文档页数:1
一道课本例题的探究开发663312云南省广南县篆角乡中心学校 陆智勇课本的例题不仅仅是传授知识、巩固方法、培养能力、积淀素养的载体,如果我们对它们进行特殊联想、类比联想、可逆联想和推广引申,这些例题也可作为探究教学的重要材料。
笔者尝试着从课本例题入手,合理开发课本例题,引导学生反思、深化与推广,并结合数学探究教学作了初步的探讨.题目:如图(1),AD 是△ABC 的高,点P,Q 在BC 上,点R 在AC 上,点S 在AB 上,边BC=60cm ,高AD=40cm,四边形PQRS 是正方形.(1)相似吗?与ABC ASR ∆∆ (2)求正方形PQRS 的边长.分析:由于四边形PQRS 为正方形,所以SR ∥BC ,故ASR ∆∽ABC ∆.利用相似三角形对应高的比等于相似比列方程求解.解:(1)ASR ∆∽ABC ∆.理由: 是正方形,因为PQRS 所以SR ∥BC. 所以 .,ACB ARS ABC ASR ∠=∠∠=∠ 所以ASR ∆∽ABC ∆ .(2)由(1)可知ASR ∆∽ABC ∆.根据“相似三角形对应高的比等于相似比,可得设正方形PQRS 的边长 为 AE=(40- χ )cm, 所以 解得:所以正方形PQRS 的边长为24cm.此题是北师大版九年义务教育课程标准实验教科书八年级数学下册第147页.BCSRAD AE =,cm χ.24=χ604040χχ=-的一道例题。
该题是典型的利用“相似三角形对应高的比等于相似比”解决实际问题的例题。
笔者在教学过程中没有停留在问题的解决上,而是以此题为切入口,精心设计了一组变式,恰当设置问题梯度,使难易程度尽量贴近学生的最近发展区,使设计的问题触及学生的兴奋点,把学生从某种抑制状态下激奋起来,使之产生一种一触即发的效果。
变式1:如图(2),△ABC 的内接矩形EFGH 的两邻边之比EF :FG=9:5,长边在BC 上,高AD=16cm,BC=48cm,求矩形EFGH 的周长。
崇左市龙州县第一中学梁伟斌【关键词】盈亏问题初中数学探究策略【中图分类号】G 【文献标识码】A【文章编号】0450-9889(2015)05A-0085-01人教版七年级数学(上册)课本102页有这样的一道探究题:一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总体上是盈利还是亏损,或是不盈不亏?课本的解答是这样的:设盈利25%的那件衣服的进价是x元,它的商品利润就是0.25x元,根据进价与利润的和等于售价,列出方程x+0.25x=60由此得 x=48类似的,可以设另一件衣服的进价是y元,它的商品利润就是-0.25y元,列出方程y-0.25y=60.由此得 y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元。
这道关于销售中的盈亏的探究题,有其特殊性。