苏教版八年级数学下册9.4矩形、菱形、正方形公开课优质教案(21)
- 格式:doc
- 大小:69.01 KB
- 文档页数:1
苏科版数学八年级下册教学设计9.4 矩形、菱形、正方形(1)一. 教材分析苏科版数学八年级下册第9.4节“矩形、菱形、正方形(1)”的内容是在学生已经掌握了平行四边形和梯形的基础上,引入矩形、菱形和正方形的性质。
这部分内容是几何学习中的重要组成部分,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
本节课的主要内容有:矩形的性质,菱形的性质,正方形的性质,以及它们之间的关系。
二. 学情分析学生在学习本节课之前,已经学习了平行四边形和梯形的性质,对于几何图形的性质有一定的了解。
但是,对于矩形、菱形和正方形的性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索矩形、菱形和正方形的性质,从而提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.理解矩形、菱形和正方形的性质。
2.能够运用矩形、菱形和正方形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重难点:矩形、菱形和正方形的性质。
2.难点:如何引导学生自主探索矩形、菱形和正方形的性质。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考、交流等活动,自主探索矩形、菱形和正方形的性质。
2.案例分析法:教师通过具体的案例,让学生理解矩形、菱形和正方形的性质。
3.练习法:教师设计相关的练习题,让学生巩固所学的知识。
六. 教学准备1.教师准备PPT,用于展示矩形、菱形和正方形的性质。
2.教师准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过PPT展示一些生活中的矩形、菱形和正方形的图片,让学生观察并说出它们的名称。
引导学生发现这些图形之间有什么共同的特点。
2.呈现(10分钟)教师通过PPT呈现矩形、菱形和正方形的性质,引导学生观察并思考这些性质是否正确。
3.操练(15分钟)教师设计一些练习题,让学生运用矩形、菱形和正方形的性质进行解答。
质,第四个角也一定是直角.在判定四边形是矩形的条件中,给出“有3个角是直角”的条件,是因为数学结论的表述中一般不给出多余条件.(3)将两个判定条件比较,前者的条件中,除了“有3个角是直角”的条件外,只要求是“四边形”,而后者的条件却包括“平行四边形”和“两条对角线相等”两个方面. (4)矩形的判定与性质的区别.三.教学矩形判定条件的应用1. 处理课本P77例2【设计说明:(1)通过本例的解决,促进学生掌握矩形的判定条件,提高综合解题能力以及有条理地思考与有条理地表达能力.(2)教学注意点: ①要求学生认真读题,分析题目所给的信息,提高审题能力. ②引导学生探索解题途径,培养学生有条理地思考能力.③规范解答过程,培养学生有条理地表达能力.④培养学生的发散思维能力:能否利用“对角线相等的平行四边形是矩形”来判定?】2. 处理补例 在 ABCD 中,以AC 为斜边作Rt △ACE ,又∠BED=900,求证:四边形ABCD 是矩形.【设计说明:(1)通过本例的解决,提高学生思维的灵活性.(2)教学注意点:① 应让学生充分静思后交流解题思路,并说出是怎样发现的?② 通过本题中判定矩形的方法领悟:解题时,应仔细分析题目的条件并进行适当的转化,进而选择适宜的方法,避免强行使用某一种方法而误入歧途.】A BCDE问题1:拿出十根小木条(其中有四根一样长),让学生从中选取四根,能否搭成一个菱形?为什么?问题2:拿出事先准备好的平行四边形(对角线是木条,四边是橡皮筋),转动木条成直角,观察得到的四边形的形状是菱形吗?为什么?问题3:你认为,的四边形是菱形?(四边相等)的平行四边形是菱形?(对角线互相垂直)(注意:一个的基础条件是四边形,一个的基础条件是平行四边形)【设计意图:通过实际操作,获得判定四边形是菱形的初步感知,在此基础上加以推理,形成菱形的判定条件】四边形、平行四边形、菱形之间的关系如图:【设计意图:让学生更直观地理解三者之间的关系】三、例题讲解P80页例4分析:对角线AC与EF已经垂直,因此只需说明四边形AFCE是平行四边形既可,故只需说明OE=OF【设计意图:通过引导学生对已知条件的分析,强化对所学知识的掌握,培养有条理分析问题的能力和灵活应用知识的能力】补充例题如图,在⊿ABC中,CD是∠BCA的平分线,DE∥BC交AC于E,DF∥AC交BC于F,求证:四边形CFDE是菱形证:四边形AFGE是菱形。
苏科版数学八年级下册教学设计9.4 矩形、菱形、正方形(2)一. 教材分析本节课内容为苏科版数学八年级下册9.4矩形、菱形、正方形(2),是在学生已经掌握了矩形、菱形、正方形的性质和判定方法的基础上进行进一步的学习。
本节课的主要内容有:矩形、菱形、正方形的性质和判定,以及它们之间的关系。
通过本节课的学习,使学生进一步理解矩形、菱形、正方形的性质,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在之前的学习中已经掌握了矩形、菱形、正方形的基本性质和判定方法,但对于一些特殊的性质和判定方法可能还不够熟练。
此外,学生可能对矩形、菱形、正方形之间的关系有一定的了解,但可能还不够深入。
因此,在教学过程中,需要引导学生复习前面的知识,帮助学生进一步理解和掌握矩形、菱形、正方形的性质和判定方法,以及它们之间的关系。
三. 教学目标1.理解矩形、菱形、正方形的性质和判定方法。
2.掌握矩形、菱形、正方形之间的关系。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.矩形、菱形、正方形的性质和判定方法。
2.矩形、菱形、正方形之间的关系。
五. 教学方法采用问题驱动法和案例教学法,引导学生通过观察、思考、归纳、总结的方式来学习矩形、菱形、正方形的性质和判定方法,以及它们之间的关系。
同时,结合多媒体教学,利用图片、动画等形式,帮助学生直观地理解矩形、菱形、正方形的性质和判定方法。
六. 教学准备1.多媒体教学设备。
2.矩形、菱形、正方形的图片和动画。
3.矩形、菱形、正方形的性质和判定方法的案例。
七. 教学过程1.导入(5分钟)通过展示矩形、菱形、正方形的图片和动画,引导学生回顾矩形、菱形、正方形的性质和判定方法。
2.呈现(10分钟)呈现矩形、菱形、正方形之间的关系,引导学生观察、思考、归纳、总结。
3.操练(10分钟)学生分组讨论,根据矩形、菱形、正方形的性质和判定方法,判断一些给定的图形是矩形、菱形还是正方形。
A D BC F E 9.4 矩形、菱形、正方形(2)一、学习目标:1、理解矩形的概念,掌握矩形的性质;2、经历探索矩形的概念与性质的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法;并在探索过程中理解特殊与一般的关系。
二、预习反馈:1、预习课本p110-112,掌握矩形的相关性质。
2、一个活动的平行四边形木框,用两根橡皮筋分别套在相对的两个顶点上。
拉动一对不相邻的顶点A 、C ,即可改变平行四边形的形状,如图所示。
(1)无论∠α如何变化,四边形ABCD 还是平行四边形吗?(2)随着∠α的变化,两条对角线长度有没有变化?(3)当∠α为直角时,平行四边形就变成 。
3、(1)________的平行四边形叫做矩形,每一个矩形最少有______条对称轴。
(2)在对称性方面,矩形与一般平行四边形相比较,相同之处是:•二者都是_____对称图形。
不同之处是:它还是____________对称图形。
4、如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,CE∥DB,交AB•的延长线于点E .AC 和CE 相等吗?为什么?三、例题精讲:例 1:已知:如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,DE 、DF 分别是△BDC 、△ADC 的角平分线.求证:四边形DECF 是矩形.例2:如图,在矩形ABCD 中,AB =3, BC = 4, BE⊥AC 于E .试求出AC 、BE 的长。
例3:如图,矩形ABCD 中,对角线AC 、BD 交于O 点,CE⊥BD 于E ,OF⊥AB 于F ,BE :DE=1:3,OF=2cm ,求AC 的长。
四、巩固训练:1、矩形的定义中有两个条件:一是 ____________,二是 _________________。
2、判断:(1)有一个角是直角的四边形是矩形。
( )(2)矩形的对角线互相平分。
教学目标:1.了解矩形、菱形和正方形的特点和性质;2.能够根据所学知识解决与矩形、菱形和正方形相关的实际问题;3.能够灵活运用所学知识解决与矩形、菱形和正方形相关的综合问题。
教学重点:1.熟练掌握矩形、菱形和正方形的特点和性质;2.能够运用相关知识解决实际问题。
教学难点:能够灵活运用所学知识解决与矩形、菱形和正方形相关的综合问题。
教学准备:教学PPT、教材、黑板、彩色粉笔、实物矩形、菱形和正方形模型等。
教学过程:一、导入(5分钟)1.师生问候;2.通过图片展示,复习矩形、菱形和正方形的特点和性质。
二、新课展示(10分钟)1.导入:让学生回顾矩形、菱形和正方形的特点和性质;2.激发学生思考:给学生出示一些图形,让他们判断属于矩形、菱形还是正方形,并解释自己的判断依据;3.板书:矩形、菱形和正方形的定义和特点;4.讲解各个图形的特点和性质,包括对角线、周长、面积等的计算公式;5.教师示范使用公式计算示例题;三、让学生动手操作(30分钟)1.教师出示一些实物矩形、菱形和正方形模型,让学生根据其特点和性质进行分类;2.学生自主完成教材课后练习,让学生独立思考并解答相应问题;3.教师巡回指导,发现问题并给予指正;四、合作探究(15分钟)1.教师组织学生分组合作完成一些矩形、菱形和正方形相关的课堂任务;2.学生分享自己的解题思路和方法,加深对知识的理解;五、拓展应用(15分钟)1.教师出示一些综合应用题,让学生运用所学知识解决;2.学生独立思考并解答问题,教师做出及时评价和反馈。
六、总结归纳(5分钟)1.引导学生总结矩形、菱形和正方形的特点和性质;2.学生进行知识点小结,教师进行梳理和补充;七、作业布置(2分钟)1.要求学生预习下一课内容;2.布置课后作业,巩固所学知识和方法。
教学反思通过本节课的教学设计,学生能够从实物体验入手,通过观察、分类等操作,加深对矩形、菱形和正方形的认识和理解。
通过合作探究和拓展应用,使学生能够灵活运用所学知识解决不同类型的问题,培养学生的问题解决能力和创新思维。
9.4矩形、菱形、正方形(2)【教学目标】1.理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形.2.了解两条平行线之间的距离的意义,并会求两条平行线之间的距离.3.会有条理的思考与表达,并逐步学会分析与综合的思考方法.【重、难点】重点:会用矩形的判定定理证明一个四边形(平行四边形)是矩形.难点:综合运用矩形的性质定理与判定定理进行计算与证明.【教学过程】活动1(1)矩形的四个角都是直角,反过来,四个角(或三个角)都是直角的四边形是矩形吗?如果是,请给出证明.已知:在四边形ABCD中,∠A=∠B=∠C=90°求证:四边形ABCD是矩形。
证明:∵∠A=∠B=90°∴ ∠A+∠B=180°∴AD∥BC同理可证:AB∥CD∴四边形ABCD是平行四边形又∵∠A=90°∴四边形ABCD是矩形(2)当一个平行四边形框架扭动成矩形时,它的两条对角线相等,反过来,对角线相等的平行四边形是矩形吗?如果是,请给出证明.B已知:平行四边形ABCD ,AC=BD 。
求证:四边形ABCD 是矩形。
证明: ∵ AB=CD, BC=BC, AC=BD ∴ △ABC≌ △DCB(SSS ) ∴∠ABC=∠DCB ∵ AB//CD∴ ∠ABC+∠DCB=180° ∴ ∠ABC=∠DCB=90°又∵ 四边形ABCD 是平行四边形 ∴四边形ABCD 是矩形归纳矩形的判定定理:有三个角是直角的四边形是矩形 对角线相等的平行四边形是矩形 。
例题讲解:例 1.已知:如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,DE 、DF 分别是△BDC 、△ADC 的角平分线.求证:四边形DECF 证明:∵∠ACB=90°,D 是AB 的中点,∴DC= AB=DA=DB∵ DC=DA,DF 平分∠ADC, ∴DF⊥AC 即∠DFC=90° 同理∠DEC=90 °∴四边形DECF 是矩形(三个角是直角的四边形是矩形)例2.如图,直线1l ∥2l ,A 、C 是直线1l 上任意两点,AB ⊥2l ,CD ⊥2l ,垂足分21A DB Cl 2l 1 别为B 、D .线段AB 、CD 相等吗?为什么? 解:由AB ⊥l 2 ,CD ⊥ l 2 , 可知AB ∥ CD. 又因为l 1∥l 2 , 所以四边形ABCD 是矩形, AB=CD .两条平行线之间的距离处处相等.【反馈练习】1. 下面说法正确的是 ( ) A .有一个角是直角的四边形是矩形; B .有两条对角线相等四边形是矩形;C .有一组对边平行,有一个内角是直角的四边形是矩形;D .有两组对角分别相等,且有一个角是直角的四边形是矩形.2.矩形的两条对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.3.如图所示,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下面的结论:①△ODC 是等边三角形;②BC =2AB ;③∠AOE =135°;④S △AOE =S △COE 其中正确的结论有 ( )A .1个B .2个C .3个D .4个4.已知:四边形ABCD 中,AB =CD ,∠A+∠D=180°,AC 、BD 相交于点O ,△AOB 是等边三角形.求证:四边形ABCD 是矩形.5. 如图,在△AB C 中,点O 是AC 边上的一动点, 过点O作直线MN//BC, 设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .(1)说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【教学反思】AEB CFO N MD。
苏科版数学八年级下册9.4《矩形、菱形、正方形》说课稿2一. 教材分析苏科版数学八年级下册9.4《矩形、菱形、正方形》是学生在学习了平面几何基本概念和性质之后的内容。
这部分内容主要介绍了矩形、菱形、正方形的性质和判定。
通过这部分的学习,学生可以进一步理解和掌握平面几何中的基本形状和性质,为后续的学习打下坚实的基础。
二. 学情分析学生在学习这部分内容时,已经具备了一定的几何基础,对平面几何的基本概念和性质有一定的了解。
但同时,学生对这部分内容的掌握程度参差不齐,部分学生可能对矩形、菱形、正方形的性质和判定不够清晰。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 说教学目标1.知识与技能:学生能够理解和掌握矩形、菱形、正方形的性质和判定方法。
2.过程与方法:学生能够通过观察、分析和推理,探索矩形、菱形、正方形的性质。
3.情感态度与价值观:学生能够培养对数学的兴趣,提高独立思考和解决问题的能力。
四. 说教学重难点1.教学重点:矩形、菱形、正方形的性质和判定方法。
2.教学难点:矩形、菱形、正方形性质的推理和证明。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法和小组合作法进行教学。
2.教学手段:利用多媒体课件、几何模型和黑板进行教学。
六. 说教学过程1.导入:通过复习平面几何的基本概念和性质,引出矩形、菱形、正方形的学习。
2.新课讲解:讲解矩形、菱形、正方形的性质和判定方法,结合实例进行分析。
3.课堂练习:学生进行练习,巩固所学知识。
4.小组讨论:学生分组讨论,探索矩形、菱形、正方形的性质。
5.总结讲解:对学生的讨论进行总结,讲解矩形、菱形、正方形性质的推理和证明。
6.课堂小结:对本节课的内容进行总结,强调重点和难点。
七. 说板书设计板书设计如下:1.矩形、菱形、正方形的性质–矩形:对边平行且相等,对角相等–菱形:四边相等,对角相等–正方形:四边相等,对角相等,对边平行且相等2.矩形、菱形、正方形的判定方法–矩形:对边平行且相等,对角相等–菱形:四边相等,对角相等–正方形:四边相等,对角相等,对边平行且相等八. 说教学评价教学评价主要通过课堂练习、小组讨论和课后作业进行。
平行四边形 9.4 矩形、菱形、正方形(5)
学习目标:1.感受正方形的中心对称性,掌握正方形的概念 2.理解正方形与矩形、菱形之间的关系,从边、角、对角线三个方面归
纳正方形的性质
3.能正确地应用正方形的性质解决问题
重点、难点:理解正方形与矩形、菱形之间的关系,能正确地应用正方形的性质
解决问题
学习过程
一.【预学指导】初步感知、激发兴趣 1、下列结论:①正方形具有平行四边形的一切性质;②正方形具有矩形的一切性质;③正方形具有菱形的一切性质;④正方形既是轴对称图形又是中心对称图形,其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 2、在右面的关系图恰当位置填出矩形、菱形、正方形。
3、平行四边形、矩形、菱形、正方形都具有的性质是( )
A 、对角线相等
B 、对角线互相平分
C 、对角线平分一组对角
D 、对角线互相垂直
二.【问题探究】
问题1:1、平行四边形、矩形、菱形、正方形之间有怎样的关系?
议一议 正方形的边、角和对角线各具有什么性质?
边:
角:
对角线:
问题2:1.(说一说) 的矩形是正方形?
2.(说一说) 的菱形是正方形?
问题3:如图,已知点E 、F 在正方形ABCD 的对角线AC 上,AE=CF ,判断
四边形BFDE 是何四边形,并说明理由。
三.【拓展提升】
1 .如图,正方形ABCD 中,AC=10,P 是AB 上的任意一点,
AC 于E , PF ⊥BD 于F ,则求PE+PF 的值。
以上结论可以用一句话概括:正方形边上任一点到两对角线
的距离之和等于 。
问题3.E 为正方形ABCD 对角线AC 上一点,过点E 作EG ⊥于G ,EF ⊥AB 于F 。
(1) 试猜测DE 与FG 的关系,并说明理由;
(2) 如果正方形ABCD 的边长为4cm ,求四边形BGEF 四.【课堂小结】 通过这节课的学习,你有什么感受呢?
【板书设计】
【教学反思】
个人复备 个人复备。