2013年高考解析分类汇编4:平面向量(师生)
- 格式:doc
- 大小:680.00 KB
- 文档页数:8
F 单元 平面向量F1 平面向量的概念及其线性运算1.F1[2013·江苏卷] 设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.1.12 [解析] 如图所示,DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=⎝⎛⎭⎫12-23AB →+23AC →,又DE →=λ1AB →+λ2AC →,且AB →与AC →不共线,所以λ1=12-23,λ2=23,即λ1+λ2=12. 2.C5,C8,F1[2013·四川卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos(A -B)cos B -sin(A -B)sin(A+C)=-35.(1)求sin A 的值;(2)若a =4 2,b =5,求向量BA →在BC →方向上的投影. 2.解:(1)由cos(A -B)cos B -sin(A -B)sin(A +C)=-35,得cos(A -B)cos B -sin(A -B)sin B =-35.则cos(A -B +B)=-35,即cos A =-35.又0<A<π,则sin A =45.(2)由正弦定理,有a sin A =b sin B,所以,sin B =bsin A a =22.由题知a>b ,则A>B ,故B =π4.根据余弦定理,有(4 2)2=52+c 2-2×5c×⎝⎛⎭⎫-35,解得c =1或c =-7(负值舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22. 3.F1[2013·四川卷] 如图1-6,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.3.2 [解析] 根据向量运算法则,AB →+AD →=AC →=2AO →,故λ=2.4.F1和F3[2013·重庆卷] 在OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k),则实数k =________.4.4 [解析] 因为AB →=OB →-OA →=(1,k -1),且OA →⊥AB →,所以OA →·AB →=0,即-3×1+1×(k -1)=0,解得k =4.F2 平面向量基本定理及向量坐标运算5.F2[2013·北京卷] 已知点A(1,-1),B(3,0),C(2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.5.3 [解析] 设P(x ,y),∴AP →=(x -1,y +1),AB →=(2,1),AC →=(1,2).∵AP →=λAB →+μAC →,∴⎩⎪⎨⎪⎧x -1=2λ+μ,y +1=λ+2μ,解得⎩⎪⎨⎪⎧3λ=2x -y -3,-3μ=x -2y -3.又1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧6≤2x -y≤9,0≤x -2y≤3,此不等式组表示的可行域为平行四边形,如图所示,由于A(3,0),B(5,1),所以|AB|=(5-3)2+(1-0)2=5,点B(5,1)到直线x -2y =0的距离d =35,∴其面积S =5×35=3. 6.F2[2013·湖南卷] 已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为( ) A.2-1 B. 2 C .2+1 D.2+26.C [解析] 由题可知a·b =0,则a ⊥b ,又|a|=|b|=1,且|c -a -b|=1,不妨令c =(x ,y),a =(1,0),b =(0,1),则(x -1)2+(y -1)2=1.又|c|=x 2+y 2,故根据几何关系可知|c|max =12+12+1=1+2,选C.7.F2[2013·天津卷] 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.7.12 [解析] 由题意得BE →=AE →-AB →=AD →+12AB →-AB →=AD →-12AB →,AC →=AD →+AB →,所以AC →·BE →=(AD →+AB →)·⎝⎛⎭⎫AD →-12AB →=AD →2-12AB →2+12AD →·AB →=1-12AB →2+12|AB →|×1×12=1,解之得|AB →|=12或0(舍去). 8.F2,F3[2013·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 中点,则AE →·BD →=________.8.2 [解析] 如图建立平面直角坐标系,则AE →=(1,2),BD →=(-2,2),所以AE →·BD →=2.9.F2、F3、H3、H5和H8[2013·重庆卷] 如图1-5所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.9.解:(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a 2+22b 2=1,从而e 2+4b 2=1.由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q(x 0,0),又设M(x ,y)是椭圆上任意一点,则|QM|2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x -2x 0)2-x 20+8(x ∈[-4,4]).设P(x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点,因此,上式当x =x 1时取最小值,又因为x 1∈(-4,4),所以上式当x =2x 0时取最小值,所以x 1=2x 0,且|QP|2=8-x 20.由对称性知P′(x 1,-y 1),故|PP′|=|2y 1|,所以S =12|2y 1||x 1-x 0|=12×2 8⎝⎛⎭⎫1-x 2116|x 0|=2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q(±2,0),半径|QP|=8-x 20=6,因此,这样的圆有两个,其标准方程分别为(x +2)2+y 2=6,(x -2)2+y 2=6.F3 平面向量的数量积及应用10.F3、H8[2013·全国卷] 已知抛物线C :y 2=8x 与点M(-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B两点.若MA →·MB →=0,则k =( ) A.12 B.22C. 2 D .2 10.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A(x 1,y 1),B(x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t(y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t(y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t=2. 11.F3[2013·陕西卷] 已知向量a =(1,m),b =(m ,2),若a ∥b ,则实数m 等于( )A .- 2 B. 2 C .-2或 2 D .011.C [解析] 因为a ∥b ,且a =(1,m),b =(m ,2),可得1m =m 2,解得m =2或- 2. 12.F3[2013·山东卷] 在平面直角坐标系xOy 中,已知OA →=(-1,t),OB →=(2,2).若∠ABO =90°,则实数t 的值为________.12.5 [解析] 由题意得AB →=OB →-OA →=(3,2-t),又∵∠ABO =90°,∴OB →·AB →=2×3+2(2-t)=0,解得t =5.13.F3[2013·辽宁卷] 已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)b -a 3-1a =0D .|b -a 3|+b -a 3-1a=0 13.C [解析] 由题意知当三角形ABC 为直角三角形时,分为两类,∠OAB ,∠OBA 分别为直角,当∠OAB 为直角时b =a 3,当∠OBA 为直角时,OB →·AB →=0,则(a ,a 3)·(a ,a 3-b)=0,所以b -a 3-1a=0,所以(b -a 3)b -a 3-1a=0,故选C. 14.F3[2013·湖北卷] 已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB →在CD →方向上的投影为( ) A.3 22 B.3 152 C .-3 22 D .-3 15214.A [解析] AB →=(2,1),CD →=(5,5),|AB →|·cos 〈AB →,CD →〉=AB →·CD →|CD →|=3 22. 15.F3[2013·全国卷] 已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-115.B [解析] (m +n)⊥(m -+n)·(m -n)=2=n 2,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.16.F3[2013·安徽卷] 若非零向量a ,b 满足|a|=3|b|=|a +2b|,则a 与b 夹角的余弦值为________.16.-13[解析] 设|b|=1,则|a|=3,|a +2b|=3,两端平方得a 2+4a·b +4b 2=9,即9+12cos 〈a ,b 〉+4=9,解得cos 〈a ,b 〉=-13. 17.F3,C4[2013·陕西卷] 已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x),x ∈R ,设函数f(x)=a·b . (1)求f(x)的最小正周期;(2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值. 17.解: f(x)=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x)=3cos xsin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6.(1)f(x)的最小正周期为T =2πω=2π2=π,即函数f(x)的最小正周期为π.(2)∵0≤x≤π2,∴-π6≤2x -π6≤5π6. 由正弦函数的性质,当2x -π6=π2,即x =π3时,f(x)取得最大值1.当2x -π6=-π6,即x =0时,f(0)=-12,当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12,∴f(x)的最小值为-12.因此,f(x)在0,π2上最大值是1,最小值是-12. 18.F3[2013·新课标全国卷Ⅰ] 已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =________.18.2 [解析] b·c =b·[ta +(1-t)b]=ta·b +(1-t)b 2=12t +(1-t)=1-12t =0,即t =2. F4 单元综合19.F4[2013·福建卷] 在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5 D .1019.C [解析] ∵AC →·BD →=1×(-4)+2×2=0,∴AC →⊥BD →,面积S =12|AC →|·|BD →|=12×12+22×(-4)2+22=5, 20.F4[2013·广东卷] 设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc . 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .420.B [解析] ①作OA →=a ,OB →=b ,如图(1),连接AB ,只要c=BA →即可,故①对;②是对的,因为b 和c 不共线,所以可以作为一组基底来表示平面内任一向量;③是错的,如图(2),作OA →=a ,OB →=b ,OC →=μc ,则|OC →|=μ,即点C 的轨迹是圆(去掉和a 共线的两个点),过点A 作OB 的平行线,则可能与圆无交点,即可能无法将a 沿OB →,OC →方向分解;④不一定对,如图(3),作OA →=a ,OB →=λb ,OC →=μc ,则点B ,C 的轨迹是圆(去掉和a 共线的两个点),但不一定有a =λb +μc.综上,选B.21.F4[2013·浙江卷] 设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x||b|的最大值等于________.21.2 |x||b|=|x|2|b|2=x 2x 2e 21+2xye 1·e 2+y 2e 22=x 2x 2+2xy×32+y 2=11+3y x +y x 2=1y x +322+1422.[2013·延安期末] 已知点M(5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0) 22.A [解析] MN →=-3a =-3(1,-2)=(-3,6).设N(x ,y),则MN →=(x -5,y -(-6))=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6, 即⎩⎪⎨⎪⎧x =2,y =0,选A.23.[2013·襄阳一检] 如图K17-1所示,已知AP →=43AB →,用OA →,OB →表示OP →,则OP →等于( ) A.13OA →-43OB → B.13OA →+43OB → C .-13OA →+43OB → D .-13OA →-43OB → 23.C [解析] OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →,选C. 24.[2013·武汉部分学校联考] 已知两点A(1,0),B(1,3),O 为坐标原点,点C 在第二象限,且∠AOC =120°,设OC →=-2OA →+λOB →(λ∈R ),则λ等于( )A .-1B .2C .1D .-224.C [解析] 由题可设OC →=(x ,-3x),所以⎩⎨⎧x =-2+λ,-3x =0+3λ,解得λ=1.故选C. 25.[2013·衡阳期末] 在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|BA →+1|BC →|BC →=3|BD →|BD →,则四边形ABCD 的面积为________.25.3 [解析] 由AB →=DC →=(1,1),可知四边形ABCD 为平行四边形,且|AB →|=|DC →|= 2.因为1|BA →|BA →+1|BC →|BC →=3|BD →|BD →,所以平行四边形ABCD 的对角线BD 平分∠ABC ,四边形为菱形,其边长为2,且对角线BD 是边长3倍,即BD =3×2= 6.设AC 与BD 相交于E ,则CE 2=(2)2-⎝⎛⎭⎫622=12,即CE =22.所以三角形BCD 的面积为12×6×22=32,所以四边形ABCD 的面积为2×32= 3. 26.[2013·上饶月考] 已知平面向量a ,b 满足|a |=3,|b |=2,a 与b 的夹角为60°,若(a -m b )⊥a ,则实数m 的值为( ) A .1 B.32C .2D .3 26.D [解析] 因为()a -mb ⊥a ,所以(a -mb)·a =0,即|a|2-ma·b =0,所以|a|2-m|a||b|cos 60°=0,解得m =327.[2013·三门峡一练] 在平面直角坐标系中,若定点A(1,2)与动点P(x ,y)满足向量OP →在向量OA →上的投影为-5,则点P 的轨迹方程是( )A .x -2y +5=0B .x +2y -5=0C .x +2y +5=0D .x -2y -5=027.C [解析] 由题意知-5=OP →·OA →|OA →|=x +2y 5,所以点P 的轨迹方程是x +2y +5=0,故选C.。
学科教师辅导教案学员姓名年级高三辅导科目数学授课老师课时数2h 第次课授课日期及时段2018 年月日:—:历年高考试题集锦——平面向量1.(2012 四川)设a 、b 都是非零向量,下列四个条件中,使a b|a||b|成立的充分条件是( C )A、a b B 、a // b C 、a 2b D 、a // b 且|a||b|2. (2014 新标 1 文)设D, E,F 分别为ABC的三边BC , CA, AB 的中点,则EB FC (A )A. ADB. 12AD C.12BC D. BC3. (2014 福建文)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则OA OB OC OD 等于( D )A.O MB.2OMC.3OMD.4OM4. (2012 大纲)ABC中,AB边上的高为CD ,若C B a, C A b, a b 0,| a | 1,| b | 2 ,则ADA.1 1a b B .3 32 2a b C .3 33 3a b D .5 54 4a b5 5【简解】由 a b 0 可得ACB 90 ,故A B 5 ,用等面积法求得2 5CD ,所以54 5AD ,故54 4 4 4AD AB (CB CA) a b ,故选答案 D5 5 5 55.(2012 浙江) 设a,b 是两个非零向量.A.若| a +b |=| a |-| b | ,则a ⊥b ;B .若a ⊥b ,则| a +b |=| a |-| b |C.若| a +b |=| a |-| b | ,则存在实数λ,使得a =λ bD.若存在实数λ,使得 a =λb ,则| a +b |=| a |-| b |【解析】| a +b |=| a |-| b | ,两边平方得到 a b =-| a || b |, 则 a 与 b 反向,选 Cword 完美整理版→→→6.(2013 四川) 在平行四边形ABCD中,对角线A C与BD交于点O,AB+AD=λAO,则λ=____2____.6.(2014 新标1理) 已知A,B,C是圆O上的三点,若1AO (AB AC) ,则AB 与AC 的夹角为290 .8.(2012 安徽文)设向量a (1,2 m), b(m1,1),c (2, m) ,若(a c) ⊥b , 则a _____ 2 9.(2014 北京文)已知向量 a 2,4 ,b 1,1 ,则2a b (A )A. 5,7B. 5,9C. 3,7D. 3,9 10.(2012 广东)若向量BA 2,3 ,CA 4,7 ,则BC ( A )A. 2, 4B. 2,4C. 6,10D. 6, 10r 11.(2014 广东文)已知向量a (1,2)r r r,b (3,1),则b a( B )A.( 2,1)B.(2, 1)C.(2,0)D.(4,3)12.(2013 湖北)已知点A( 1, 1)、B(1, 2) 、C( 2, 1) 、D (3, 4) ,则向量AB 在CD 方向上的投影为( A )A.3 22B.3152C .3 22D.315213.(2012 辽宁文)已知向量a = (1, —1) ,b = (2,x). 若a· b = 1, 则x = ( D )(A) — 1 (B) —12(C)12(D)1→14.(2013 辽宁)已知点A(1,3) ,B(4 ,-1) ,则与向量A B同方向的单位向量为( A )A. 3,-545B.45,-35C. -3 4,5 545D. -,3515.(2013 福建)在四边形ABCD中,AC (1, 2) ,BD ( 4, 2) ,则四边形的面积为( C )A. 5 B .2 5 C .5 D .1016.(2013 安徽文)若非零向量a,b满足a 3 b a 2b ,则a,b夹角的余弦值为_____13__. π→→17.(2013 辽宁)设向量a=( 3sin x,sin x) ,b=(cos x,sin x) ,x∈0,2.→→→→(1) 若| a| =| b| ,求x 的值;(2) 设函数f( x) =a·b,求f( x) 的最大值.【答案】(1) π6. ;(2)3.2→→→→→18.(2014 大纲文)已知a、b为单位向量,其夹角为60 ,则(2a-b)· b =( B )word 完美整理版A. -1B. 0C. 1D.27.(2013 新标1理) 已知两个单位向量a,b的夹角为60°,c=t a+(1 -t) b,若b·c=0,则t =__2___.→→8.(2014 新标2) 设向量a,b→→→→满足| a+ b|= 10 ,| a-b→→|= 6 ,则a· b = ( A )A. 1B. 2C. 3D. 5→→9.(2013 新标2) 已知正方形ABCD的边长为2,E为CD的中点,则AE·BD=____2____.10.(2012 湖南文)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,AP 3且A P AC = 18 .【解析】设AC BD O ,则AC 2( AB BO) ,AP AC = AP 2( AB BO)2AP AB 2AP BO 22AP AB 2AP( AP PB) 2AP 18.11.(2012 江苏)如图,在矩形ABCD中,AB= ,BC=2,点E 为BC的中点,点F 在边CD上,若= ,则的值是.12.(2014 江苏)如图,在□ABCD中,已知,AB 8 ,AD 5,CP 3PD ,AP BP 2 ,则AB AD 的值是.【简解】AP AC =3( AD AP ),1AP AD AB ;43BP AD AB ; 列式解得结果22413.(2015 北京文)设a,b 是非零向量,“a b a b ”是“a//b ”的( A )A.充分而不必要条件 B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件14.(2015 年广东文)在平面直角坐标系x y 中,已知四边形CD 是平行四边形,1, 2 ,word 完美整理版D 2,1 ,则 D C (D )A.2 B .3 C .4 D . 515.(2015 年安徽文)ABC是边长为2 的等边三角形,已知向量a、b 满足AB 2a ,AC 2a b ,则下列结论中正确的是①④⑤。
2013年全国高考数学试题分类解析——平面向量部分1.(安徽理科第13题、文科14题)已知向量,a b 满足()()a b a b +2⋅-=-6,且1a =,2b =,则a 与b 的夹角为 .2.(北京理科第10题)已知向量)1,3(=a ,)1,0(-=b ,)3,(k c =.若b a 2-与c 共线,则=k ___________________。
3.(北京文科11)已知向量),(01),(a b c k ==-=。
若2a b -与c 共线,则k = .4.(福建理科第10题)已知函数x e x f x+=)(,对于曲线)(x f y =上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形②△ABC 可能是直角三角形③△ABC 可能是等腰三角形④△ABC 不可能是等腰三角形其中,正确的判断是A.①③B.①④C. ②③D.②④5.(福建理科15)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量 1122(,),(,),a x y V b x y V =∈=∈以及任意λ∈R ,均有)()1()())1(b f a f b a f λλλλ-+=-+(,则称映射f 具有性质P 。
先给出如下映射:①V y x m y x m f R V f ∈=-=→),(,)(,:11;②V y x m y x m f R V f ∈=+=→),(,)(,:222;③V y x m y x m f R V f ∈=++=→),(,1)(,:33.其中,具有性质P 的映射的序号为________。
(写出所有具有性质P 的映射的序号)6.(福建文科13)若向量)2,1(),1,1(-==b a ,则b a ⋅等于_____________.7.(广东理科3)若向量,,a b c 满足a ∥b 且⊥a c ,则(2)⋅+=c a bA .4B .3C .2D .08.(广东文科3)已知向量)2,1(=a ,)0,1(=b ,)4,3(=c 。
【解析分类汇编系列二:北京2013(一模)数学理】4平面向量1.(2013届北京朝阳区一模理科)(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35【答案】A(3,1)AB OB OA =-=,因为//AB OC ,所以3(1)20m m +-=,解得3m =-,选A.2.(2013届北京海淀一模理科)若向量,a b 满足||||||1==+=a b a b ,则⋅a b 的值为( )A .12-B .12C .1-D .1【答案】A由题意知a a b =+ ,即2222a a a b b =+⋅+ ,所以2122b a b ⋅=-=- ,选A.3.(2013届东城区一模理科)已知ABCD 为平行四边形,若向量AB = a ,AC =b ,则向量BC为( )A .-a bB .a +bC .-b aD .--a b【答案】C因为=BC AC AB - ,所以=BC b a -,选C.4.(2013届东城区一模理科)已知向量OA ,AB ,O 是坐标原点,若AB k OA = ,且AB方向是沿OA 的方向绕着A 点按逆时针方向旋转θ角得到的,则称OA经过一次(,)k θ变换得到AB.现有向量=(1,1)OA 经过一次11(,)k θ变换后得到1AA ,1AA 经过一次22(,)k θ变换后得到12A A ,…,如此下去,21n n A A -- 经过一次(,)n n k θ变换后得到1n n A A -.设1(,)n n A A x y -= ,112n n θ-=,1cos n n k θ=,则y x -等于( )A .1112sin[2()]211sin1sin sin 22n n --- B .1112sin[2()]211cos1cos cos 22n n --- C .1112cos[2()]211sin1sin sin 22n n --- D .1112cos[2()]211cos1cos cos 22n n --- 【答案】B 根据题意,111111111,2cos cos1k θθ-====,所以一次(θ1,k 1)变换就是将向量逆时针旋转1弧度,再将长度伸长为原来的倍,即由逆时针旋转1弧度而得,且=设向量逆时针旋转1弧度,所得的向量为=(x',y')则有•=,所以'cos1sin1'sin1cos1x y =-⎧⎨=+⎩,即向量逆时针旋转1弧度,得到向量=(cos1﹣sin1,sin1+cos1),再将的模长度伸长为原来的倍,得到=(cos1﹣sin1,sin1+cos1)=(1﹣,+1)因此当n=1时,=(x ,y )=(1﹣,+1),即sin11cos1sin11cos1x y ⎧=-⎪⎪⎨⎪=+⎪⎩,由此可得y ﹣x=+1﹣(1﹣)=。
2013年高考试题分类汇编(平面向量)考点1 平面向量基本定理1.(2013·广东卷·理科)设a 是已知的平面向量且0a ≠.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a b c =+;②给定向量b 和c ,总存在实数λ和μ,使a b c λμ=+;③给定向量b 和正数,总存在单位向量c ,使a b c λμ=+.④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a b c λμ=+.上述命题中的向量b , c 和a 在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.42.(2013·陕西卷·理科)设,a b 为向量,则“a b a b ⋅=”是“a b ∥”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2013·北京卷·理科)向量,,a b c 在正方形网格中的位置如图所示, 若c a b λμ=+(,)R λμ∈,则λμ= .4.(2013·江苏卷)设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+=(21λλ,为实数),则21λλ+的值为 . 考点2 平面向量基本运算1.(2013·安徽卷·理科)在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ==⋅=则点集{},1,,|P OP OA OB R λμλμλμ=++≤∈所表示的区域的面积是a b cA.2.在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA的取值范围是A.B.C.D. 3.(2013·安徽卷·文科)若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为 . 4.(2013·江西卷·理科)设12 e e ,为单位向量。
平面向量一、选择填空题1.(江苏2003年5分)O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P 满足[)(),0,,AB AC OP OA P AB ACλλ=++∈+∞则的轨迹一定通过ABC 的【】A .外心B .内心C .重心D .垂心【答案】B 。
【考点】向量的线性运算性质及几何意义。
【分析】∵AB AB、AC AC 分别表示向量AB 、AC 方向上的单位向量,∴AB ACAB AC +的方向与∠BAC 的角平分线一致。
再由()AB ACOP OA AB ACλ=++可得到()AB AC OP OA AB AC λ-=+ ,即()AB ACAP AB ACλ=+可得答案:向量AP 的方向与∠BAC的角平分线一致。
∴一定通过△ABC 的内心。
故选B 。
2.(江苏2004年4分)平面向量b a ,中,已知a =(4,-3),b =1,且b a ⋅=5,则向量b = ▲ . 【答案】43, 53⎛⎫- ⎪⎝⎭。
【考点】平面向量数量积的运算。
【分析】∵a =(4,-3),∴5a =。
又∵b =1,b a ⋅=5,∴5cos , 151a b a b a b ⋅===⨯⋅。
∴, a b 同向。
∴()1143 4, 3, 5553b a ⎛⎫==-=- ⎪⎝⎭ 。
3.(江苏2005年4分)在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则OA (OB OC )⋅+的最小值是 ▲ 【答案】-2。
【考点】向量与解析几何的综合应用。
【分析】如图,由向量的运算法则,得OA (OB OC)2OA OM 2OA OM ⋅+=⋅⋅=-⋅。
设OA x = ,则由AM=2得,OM 2x =-。
则()()22OA (OB OC)2224212x x x x x ⋅+=--=-=-- 。
∴当x =1时,OA (OB OC)⋅+有最小值-2。
4.(江苏2006年5分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN ||MP |MN NP 0⋅+⋅=,则动点P (x ,y )的轨迹方程为【 】(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 【答案】B 。
【专项冲击波】2013年高考数学讲练测系列专题05 平面向量(教师版)【考纲解读】1. 理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义.2.了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件.3.理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.【考点预测】高考对平面向量的考点分为以下两类:(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大.(2)考查平面向量的综合应用.平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强.【要点梳理】1.向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;2.实数与向量的乘积及是一个向量,熟练其含义;3.两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;;4.两个向量夹角的范围是:[0,]5.向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件.【考点在线】考点一向量概念及运算例1. (2012年高考浙江卷理科5)设a,b是两个非零向量,下列说法正确的是()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|【答案】C【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.【名师点睛】本题考查向量的概念、向量的加法与减法以及向量共线的条件,考查分析问题、解决问题的能力.【备考提示】:熟练平面向量的基础知识是解答好本题的关键.练习1: (山东省临沂市2013届高三上学期期中考试 文)如图,已知4,,,3AP AB OA OB OP OP =用表示则等于( )A .1433OA OB -B .1433OA OB +C .1433OA OB -+D .1433OA OB --【答案】C【解析】OP OA AP =+ 4414()3333OA AB OA OB OA OA OB =+=+-=-+,选C.考点二 平面向量的数量积例 2.(云南省玉溪一中2013届高三第四次月考文)已知平面向量,a b满足3,2,a b a b == 与的夹角为60°,若(),a mb a -⊥ 则实数m 的值为( )A.1B.32C.2D.3【名师点睛】本题考查两个向量垂直的充要条件、向量的数量积、向量的夹角等平面向量知识.【备考提示】:熟练向量的基础知识是解答好本题的关键.练习2: (2012年高考辽宁卷文科1)已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =(A) —1 (B) —12 (C) 12(D)1 【答案】D【解析】21,1a b x x ⋅=-=∴= ,故选D.考点三 向量与三角函数等知识的综合例3. (2012年高考湖北卷理科17)(本小题满分12分)已知向量(c o s s i n ,s i n x xx ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(1) 求函数f (x )的最小正周期; (2) 若y=f (x )的图像经过点(,0)4π,求函数f (x )在区间3[0,]5π上的取值范围.由305x π≤≤得556366x πππ-≤-≤,所以15sin()1236x π-≤-≤,得512sin()236x π--≤--≤-所以()f x 在区间3[0,]5π上的取值范围为[1-. 【名师点睛】本小题主要考查平面向量的数量积的坐标运算,同时考查运用同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式来化简求值,考查分析问题与解决问题的能力.【备考提示】:熟练平面向量以及三角函数的基础知识是解答好本题的关键.练习3: (2012年高考陕西卷文科7)设向量a =(1.cos θ)与b=(-1, 2cos θ)垂直,则cos 2θ等于 ( )A2B 12C .0 D.-1【答案】C【解析】22,0,12cos 0,cos22cos 10.a b a b θθθ⊥∴⋅=∴-+=∴=-=正确的是C.【考题回放】1.(2012年高考辽宁卷理科3)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )(A) a ∥b (B) a ⊥b (C){0,1,3} (D)a +b =a -b 【答案】B【解析一】由|a +b |=|a -b |,平方可得a ⋅b =0, 所以a ⊥b ,故选B【解析二】根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b ,故选B2. (2012年高考福建卷文科3)已知向量a=(x-1,2),b=(2,1),则a ⊥b 的充要条件是( ) A.x=-12B.x=-1C.x=5D.x=0 【答案】D【解析】有向量垂直的充要条件得2(x-1)+2=0 所以x=0 ,D 正确。
各地解析分类汇编:平面向量1.【云南省昆明一中2013届高三新课程第一次摸底测试理】已知点(5,6)(1,2),3M a MN a -=-=-和向量若,则点N 的坐标为A .(2,0)B .(-3,6)C .(6,2)D .(—2,0)【答案】A【解析】33(1,2)(3,6)MN a =-=--=-,设(,)N x y ,则(5,(6))(3,6)MN x y =---=-,所以5366x y -=-⎧⎨+=⎩,即2=0x y =⎧⎨⎩,选A. 2.【云南省玉溪一中2013届高三第四次月考理】如右图,在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A.19 B 31C. 1D. 3 【答案】A【解析】因为13AN NC =,所以14AN AC=设BP BN λ=,则()AP AB BP AB BN AB AB AN λλ=+=+=+-(1)(1)4AB AN AB AC λλλλ=+-=+-,又29AP m AB AC −−→−−→−−→=+,所以有2491m λλ⎧-=⎪⎨⎪+=⎩,即8919m λ⎧=-⎪⎪⎨⎪=⎪⎩,选A.3.【云南省玉溪一中2013届高三第四次月考理】定义行列式运算1234a a a a =3241a a a a -.将函数sin 2()cos 2x f x x=6π个单位,以下是所得函数图象的一个对称中心是 ( ) A .,04π⎛⎫ ⎪⎝⎭ B .(,0)2π C .,03π⎛⎫ ⎪⎝⎭ D .,012π⎛⎫ ⎪⎝⎭【答案】B【解析】由行列式的定义可知sin 2()cos 2x f x x=sin 222sin(2)3x x x π==-,函数的图象向左平移6π个单位,得到的函数为()2sin[2()]2sin 263g x x x ππ=+-=,所以有()2s i n (2)2s i n 022g πππ=⨯==,所以(,0)2π是函数()g x 的一个零点,选B. 4.【天津市天津一中2013届高三上学期一月考 理】已知向量,,a b c 中任意两个都不共线,且a b +与c 共线, b c +与a 共线,则向量a b c ++ A.a B.bC.cD.0【答案】D【解析】因为a b +与c 共线,所以有a b mc +=,又b c +与a 共线,所以有b c na +=,即b mc a =-且b c na =-+,因为,,a b c 中任意两个都不共线,则有11m n =-⎧⎨=-⎩,所以b mc a c a =-=--,即0a b c ++=,选D.5.【天津市新华中学2012届高三上学期第二次月考理】已知a =(-3,2),b =(-1,0),向量a λ+b 与a -2b 垂直,则实数λ的值为A. -71 B. 71 C. -61 D. 61【答案】A 【解析】(31,2),2(1a b a b λλλ+=---=-,因为向量a λ+b 与a -2b 垂直,所以()(2)0a b a b λ+-=,即3140λλ++=,解得17λ=-,选A.6.【山东省烟台市2013届高三上学期期中考试理】已知向量b a 、,其中2=a ,2=b ,且a b)a ⊥-(,则向量a 和b 的夹角是 A .4πB .2πC .43πD .π【答案】A【解析】由题意知.2,02)(2=⋅∴=⋅-=⋅-=⋅-设a 与b 的夹角为θ,则.4,22c o s πθθ===故选A ,. 7.【山东省烟台市2013届高三上学期期中考试理】在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为A. 等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形.【答案】A【解析】如图,由AC c +aPA bPB +=知b c c a b a c )()()(-+-=-+-=,而与为不共线向量,0=-=-∴b c c a ,.c b a ==∴故选A.8.【山东省泰安市2013届高三上学期期中考试数学理】已知a 、b 均为单位向量,它们的夹角为3π,那么3a b +等于D.4【答案】C【解析】因为2223323a b a b a b +=++,所以231923cos 133a b π+=++⨯=,所以313a b +=,选C.9.【山东省泰安市2013届高三上学期期中考试数学理】如图,已知正六边形P 1P 2P 3P 4P 5P 6下列向量的数量积中最大的是A.1213PP PP ⋅B.1214PP PP ⋅C.1215PP PP ⋅D.1216PP PP ⋅【答案】A 【解析】设正六边形的边长为1,则12131133cos3032PP PP PP PP ===,121412141cos 60212PP PP PP PP ==⨯=,12151215cos900PP PP PP PP ==,121612161cos1202PP PP PP PP ==-,所以数量积最大的选A.10.【山东省实验中学2013届高三第一次诊断性测试理】已知向量(3,1),(0,1),(,3),2,a b c k a b c k ===+=若与垂直则A .—3B .—2C .lD .-l【答案】A【解析】因为2a b c +与垂直,所以有2=0a b c +(),即2=0a c b c +0=,解得3k =-,选A.11.【山东省师大附中2013届高三12月第三次模拟检测理】非零向量,a b 使得||||||a b a b -=+成立的一个充分非必要条件是( ) A . //a b B. 20a b += C. ||||a ba b =D. a b = 【答案】B【解析】要使||||||a b a b -=+成立,则有,a b 共线且方向相反,所以当20a b +=时,满足2a b =-,满足条件,所以选B.12.【山东省济南外国语学校2013届高三上学期期中考试 理科】已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k=( )A. -12B. -6C. 6D. 12 【答案】D【解析】因为(2)0a a b -=,即(2,1)(5,2)0k -=,所以10+20k -=,即12k =,选D.13.【山东省聊城市东阿一中2013届高三上学期期初考试 】已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b ( )A. 5B.10C.5D.25 【答案】C【解析】因为222a (2,1),ab 10,a b (a b)50a 2a b b →→→→→→→→→→→=⋅=+=+==++,解得可知=→b 5,选C14.【山东省临沂市2013届高三上学期期中考试理】设,,x y ∈R 向量(,1),(1,),(2,4),a xb yc a c b c a b===-⊥+且则A B C .D .10【答案】B【解析】因为,a c ⊥所以240x -=,解得2x =,又//,b c 所以240y +=,所以2y =-,所以(1,1)(3,1)a b x y +=++=-,所以||10a b +=,选B. 15.【山东省临沂市2013届高三上学期期中考试理】在△ABC 中,AB=4,∠ABC=30°,D 是边BC 上的一点,且,AD AB AD AC ⋅=⋅则AD AB ⋅的值等于A .—4B .0C .4D .8【答案】C【解析】由,A D A B A D A C ⋅=⋅得()0AD AB AC AD CB ⋅-=⋅=,即AD CB ⊥,所以2,60A D B A D =∠=,所以14242AD AB ⋅=⨯⨯=,选C. 16.【山东省青岛市2013届高三上学期期中考试理】已知非零向量a 、b ,满足a b ⊥,则函数2()()f x ax b =+(R)x ∈是A. 既是奇函数又是偶函数B. 非奇非偶函数C. 偶函数D. 奇函数 【答案】C【解析】因为a b ⊥,所以0a b =,所以2222()()f x ax b a x b =+=+,所以2()()f x ax b =+为偶函数,选C.17.【山东省实验中学2013届高三第一次诊断性测试理】已知点O 为△ABC 内一点,且230,OA OB OC ++=则△A OB 、△AOC、△BOC 的面积之比等于A .9:4:1B .1:4:9C .3:2:1D .1:2:3【答案】C【解析】,延长OB 到'B ,使'2OB OB =,延长OC 到'C ,使'3OC OC =,连结''B C ,取''B C 的中点'A ,则232',OB OC OA OA +==-所以,,'A O A 三点共线且O 为三角形''AB C 的重心,18.【山东省青岛市2013届高三上学期期中考试理】已知O 是ABC △所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,则A .2AO OD =B .AO OD =C .3AO OD = D .2AO OD =【答案】B【解析】因为D 为BC 边中点,所以由20OA OB OC ++=得22OB OC OA AO +=-=,即22OD AO =,所以AO OD =,选B.19.【 山东省滨州市滨城区一中2013届高三11月质检数学理】已知向量a ,b ,则0=∙b a是a ⊥b 的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要【答案】B【解析】因为向量,a b r r中有可能为零向量,所以0a b ⋅=r r 时,推不出a b ⊥r r 。
2013年高考解析分类汇编4:平面向量一、选择题 1.(2013年高考辽宁卷(文3))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,2 .(2013年高考湖北卷(文))已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB在CD方向上的投影为( )A B C . D .3.(2013年高考大纲卷(文3))已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则( )A .4-B .3-C .-2D .-14 .(2013年高考湖南(文8))已知a,b 是单位向量,a·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为____ ____ ( )A 1 BC 1+D 2+5 .(2013年高考广东卷(文10))设 a 是已知的平面向量且≠0 a ,关于向量 a 的分解,有如下四个命题:①给定向量 b ,总存在向量 c ,使=+a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;上述命题中的向量 b , c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .46 .(2013年高考陕西卷(文2))已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于 ( )A .BC .D .07 .(2013年高考辽宁卷(文9))已知点()()()30,0,0,,,.O A b B a a若ABC ∆为直角三角形,则必有 ( )A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--=8 .(2013年高考福建卷(文))在四边形ABCD 中,)2,4(),2,1(-==BD AC,则该四边形的面积为( ) A .5 B .52C .5D .10二、填空题9 .(2013年高考四川卷(文12))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_____________.10.(2013年高考天津卷(文12))在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为______. 11.(2013年高考重庆卷(文14))OA 为边,OB 为对角线的矩形中,(3,1)OA =-,(2,)OB k =- ,则实数k =____________.12.( 2013年高考山东卷(文15))在平面直角坐标系xOy 中,已知(1,)OA t =- ,(2,2)OB =,若90o ABO ∠=,则实数t 的值为______13.(2013年高考浙江卷(文17))设e 1.e 2为单位向量,非零向量b=xe 1+ye 2,x.y∈R..若e 1.e 2的夹角为6π,则x b的最大值等于_______. 14.(2013年高考安徽(文))若非零向量,a b 满足32a b a b ==+ ,则,a b夹角的余弦值为_______.15.(2013年上海高考数学试题(文科16))已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为1a 、2a 、3a;以C 为起点,其余顶点为终点的向量分别为1c 、2c 、3c.若{},,,1,2,3i j k l ∈且,i j k l ≠≠,则()()i j k l a a c c +⋅+ 的最小值是________.16.(2013年高考课标Ⅱ卷(文14))(14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=_______。
17.(2013年高考课标Ⅰ卷(文13))已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____.18.(2013年高考北京卷(文))已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB ACλμ=+10λμ≤≤≤≤(2,1)的点P 组成,则D 的面积为__________.2013年高考解析分类汇编4:平面向量一、选择题 19.(2013年高考辽宁卷(文3))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A(3,4)AB =- ,所以||5AB = ,这样同方向的单位向量是134(,)555AB =- ,选A.20 .(2013年高考湖北卷(文))已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB在CD方向上的投影为 ( )A B C . D .【答案】A本题考查向量的投影以及数量的坐标运算。
因为(2,1),(5,5)AB CD ==,所以(2,1)(5,5)15AB CD ⋅=⋅=,CD == 。
所以向量在方向上的投影为cos ,2AB CD AB AB CD CD⋅<>===,选A.21.(2013年高考大纲卷(文3))已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则( )A .4-B .3-C .-2D .-1【答案】B0)62()1,1()3,32()()(=+-=--∙+=-⊥+λλ,所以3-=λ,故选B.22 .(2013年高考湖南(文8))已知a,b 是单位向量,a·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为____ ____ ( )A 1 BC 1+D 2+【答案】C【命题立意】本题考查数量积的应用。
因为0a b ⋅= ,即a b ⊥ ,又1a b ==,所以a b += ,a b固定,设u a b =+ ,则1c u -= ,即c 的终点在以u 对应点为圆心,半径为1的圆上。
则当c 与u方向相同时,max1c= ,选C.23 .(2013年高考广东卷(文10))设 a 是已知的平面向量且≠0 a ,关于向量a 的分解,有如下四个命题:①给定向量 b ,总存在向量 c ,使=+a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;上述命题中的向量 b , c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .4【答案】B本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则.利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a,所以④是假命题.综上,本题选B.24 .(2013年高考陕西卷(文2))已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于( )A .BC .D .0【答案】C因为(1,),(,2),//,a m b m a b ==且所以12m m m ⋅=⋅⇒=,所以选C25 .(2013年高考辽宁卷(文9))已知点()()()30,0,0,,,.O A b B a a若ABC ∆为直角三角形,则必有 ( ) A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--= 【答案】C若A 为直角,则根据A 、B 纵坐标相等,所以30b a -=;若B 为直角,则利用1OB AB K K =-得310b a a--=,所以选C26 .(2013年高考福建卷(文))在四边形ABCD 中,)2,4(),2,1(-==BD AC,则该四边形的面积为( ) A .5B .52C .5D .10【答案】C本题考查的是向量垂直的判断以及向量的模长.因为022)4(1=⨯+-⨯=⋅BD AC ,所以⊥,所以四边形的面积为522)4(212||||2222=+-⋅+=⋅BD AC ,故选C二、填空题27 .(2013年高考四川卷(文12))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_____________.【答案】2AO AC AD AB 2==+,所以2=λ,故填2.28.(2013年高考天津卷(文12))在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为______. 【答案】12因为E 为CD 的中点,所以1122BE BC CE AD DC AD AB =+=-=- . AD AC AB =+因为·1AC BE = ,所以22111·()()1222AC BE AD AB AD AB AD AB AB AD =-⋅+=-+⋅= ,即2111cos60122AB AB -+= ,所以211024AB AB -+=,解得12AB = 。
29.(2013年高考重庆卷(文14))OA 为边,OB 为对角线的矩形中,(3,1)OA =-,(2,)OB k =- ,则实数k =____________.【答案】4本题考查向量的坐标运算以及向量的数量积的运算。
在矩形中,(3,1),(2,)OA OB k =-=-,所以(2,)(3,1)(1,1)AB OB OA k k =-=---=-,因为AB OA ⊥ ,所以0AB OA ⋅= ,即310k -+-=,解得4k =。
30.( 2013年高考山东卷(文15))在平面直角坐标系xOy 中,已知(1,)OA t =- ,(2,2)OB =,若90o ABO ∠=,则实数t 的值为______【答案】5(3,2)BA t =--,因为90oABO ∠=,所以(3,2)(2,2)6240BA OB t t ∙=--∙=-+-=,故5t =。