工程力学第3章习题解答
- 格式:doc
- 大小:854.50 KB
- 文档页数:14
3-3在图示刚架中,已知q m =3kN∕m , F =6.2 kN, M =IOkN m ,不计刚架自重。
求固定端A处的约束力。
F AX =0,F Ay =6 kN,M A = 12 kN m3-4杆AB及其两端滚子的整体重心在G点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
对于给定的r角,试求平衡时的:角。
解:解法一:AB为三力汇交平衡,如图所示ΔAOG中Ao=IS in:,. AQG =90 J,/OAG =90 --,.乙AGo "--l由正弦定理:3,型1 -sin(日+ P) sin(90°-日)sin(T+P) 3 cos 日)即3s i n c o s -Si nc o S ^COSSi n:即2t a n =t a n:=arct a1nt(an)解法二::' F x=0,F RA-Gsin v -0 (1)X F y =0,F RB -GCOSv -0 (2)I M A(F )=0,-G丄sin(" -)∙F RB I sin - -0 (3)3解(1 )、(2)、(3)联立,得β =a rc t erpt(a n)3-5由AC和CD构成的组合梁通过铰链C连接。
支承和受力如图所示。
已知均布载荷强度q =10kN∕m ,力偶矩M =4OkN m ,不计梁重。
FA=-15kN ; F B =40kN ; F c =5kN ; F D =15kN解:取CD段为研究对象,受力如图所示。
V- M c( F )=0, 4F D -M -2q =0 ;F D =15 kN取图整体为研究对象,受力如图所示。
' M A(F)=0,2F B 8F D-M -16q =0;F B= 40kN、F y =0,F Ay -F B -4q F D =0 ;F A^ -15 kNX F X=O,F AX =0重心在铅直线EC上,起重载荷P2 = 10kN。
如不计梁重,求支座A、B和D三处的约束反力。
工程力学(天津大学)第3章答案习 题3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()NF F F y x 5.4666.1616.437222R 2R R =-+-='+'='1O1'FF 1200mmF 3FF 2yx1 100mm80mm 31 2(a习题3(b (cM OF ´Rθ x yOd F RxyO设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctan arctanR R'︒=--=''=x y F F θ因为0R <'xF ,0R <'yF ,所以主矢F 'R 在第三象限。
将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F3-3如图(a )所示,4个力和一个力偶组成一平面任意力系。
3-3在图示刚架中,已知kN/m 3=m q ,26=F kN ,m kN 10⋅=M ,不计刚架自重。
求固定端A 处的约束力。
m kN 12kN 60⋅===A Ay Ax M F F ,,3-4杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
对于给定的θ角,试求平衡时的β角。
B解:解法一:AB 为三力汇交平衡,如图所示ΔAOG 中 βs i n l AO =, θ-︒=∠90AOG ,β-︒=∠90OAG ,βθ+=∠AGO由正弦定理:)90sin(3)sin(sin θβθβ-︒=+ll ,)cos 31)sin(sin θβθβ=+l 即 βθβθθβs i n c o s c o s s i n c o s s i n 3+=即 θβt a n t a n 2=)t a n21a r c t a n (θβ= 解法二::0=∑x F ,0sin R =-θG F A (1) 0=∑y F ,0cos R =-θG F B(2) 0)(=∑F A M ,0sin )sin(3R =++-ββθl F l G B(3)解(1)、(2)、(3)联立,得 )t a n21a r c t a n (θβ=3-5 由AC 和CD 构成的组合梁通过铰链C 连接。
支承和受力如图所示。
已知均布载荷强度kN/m 10=q ,力偶矩m kN 40⋅=M ,不计梁重。
kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;;解:取CD 段为研究对象,受力如图所示。
0)(=∑F CM,024=--q M F D ;kN 15=D F取图整体为研究对象,受力如图所示。
0)(=∑F AM ,01682=--+q M F F D B;kN 40=B F0=∑yF ,04=+-+D BAyF q F F ;kN 15-=Ay F0=∑x F ,0=AxF3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。
第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。
2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。
3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。
4、平面一般力系向已知中心点简化后得到一力和一力偶距。
5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。
6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。
三个独立的方程,可以求解三个未知量。
7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。
8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。
9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。
10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。
它是平面一般力系的特殊情况。
11.平面平行力系有两个独立方程,可以解出两个未知量。
12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。
(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。
(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。
(√)(2)该力在坐标轴上的投影一定为负值。
第三章 平衡方程的应用习题解析3—1静定多跨梁的荷载及尺寸如图3-1所示,长度单位为m ,求支座反力和中间铰处的压力。
图3-1 题3—1图解:a)按照约束的性质画静定多跨梁BC 段受力图(见图3-2),对于BC 梁由平衡条件得到如下方程:图3-2062021660cos ,0)(201=⨯⨯-⨯=∑=NC ni i B F F M ,kN 120=NC F060sin ,001=-=∑=NC Bx ni ix F F F , kN 9.10360sin 0==NC Bx F F060cos kN 620,001=+⨯-=∑=NC By ni iy F F F , kN F By 60=故支座反力C 反力kN 120=NC F ,方向垂直与支撑面;中间铰处B 的压力kN 9.103=Bx F 、kN 60=By F 。
如果同学有兴趣,可以进一步计算固定端A 约束反力,按照约束的性质画AB 段受力图(见图3-3),由作用反作用定律得'Bx F Bx F =kN 9.103=、'By F By F =kN 60=。
对于BC 梁由平衡条件得到如下方程:图3-3'1,0Bx Ax ni ix F F F ==∑=kN 9.103=01=∑=ni iy F , 'By Ay F F =kN 60=0340,0)('1=⨯-⋅-=∑=By A ni i A F m kN M F M ,A M m kN ⋅=220b) 按照约束的性质画静定多跨梁ABC 段、CD 段受力图(见图3-4),对于BC 梁由平衡条件得到如下方程:图3-40m kN 22.521m kN 54,0)(21=⋅⨯⨯-⋅-⨯=∑=ND ni i C F F M , m kN 5.2⋅=ND F0,01==∑=Cx ni ix F F0kN 25.2,01=+⨯-=∑=ND Cy ni iy F F F , kN 5.2=Cy F由作用反作用定律得'Cx F Cx F ==0、'Cy F Cy F =kN 5.2=。
⼯程⼒学课后答案第三章圆轴的扭转1. 试画出图⽰轴的扭矩图。
解:(1)计算扭矩。
将轴分为2段,逐段计算扭矩。
对AB段:∑M X=0, T1-3kN·m=0可得:T1=3kN·m对BC段:∑M X=0, T2-1kN·m=0可得:T2=1kN·m(2)画扭矩图。
根据计算结果,按⽐例画出扭矩图如图。
2.图⽰⼀传动轴,转速n=200r/min,轮A为主动轴,输⼊功率P A=60kW,轮B,C,D 均为从动轮,输出功率为P B=20kW,P C=15kW,P D=25kW。
1)试画出该轴的扭矩图;2)若将轮A和轮C位置对调,试分析对轴的受⼒是否有利?解:(1)计算外⼒偶矩。
M A=9549×60/200=2864.7N·m同理可得:M B=954.9N·m,M C=716.2N·m,M D=1193.6N·m(2)计算扭矩。
将将轴分为3段,逐段计算扭矩。
对AB段:∑M x=0, T1+M B=0可得:T1=-954.9N·m对BC段:∑M x=0, T2+M B-M A=0可得:T2=1909.8N·m对BC段:∑M x=0, T3-M=0可得:T3=1193.6N·m(3)画扭矩图。
根据计算结果,按⽐例画出扭矩图如右图。
(4)将轮A和轮C位置对调后,由扭矩图可知最⼤绝对值扭矩较之原来有所降低,对轴的受⼒有利。
3. 圆轴的直径d=50mm,转速n=120r/min。
若该轴横截⾯的最⼤切应⼒τmax=60MPa,问圆轴传递的功率多⼤?解:W P=πd3/16=24543.7mm3由τmax=T/W P可得:T=1472.6N·m由M= T=9549×P/n可得:P=T×n/9549=18.5kW4. 在保证相同的外⼒偶矩作⽤产⽣相等的最⼤切应⼒的前提下,⽤内外径之⽐d/D=3/4的空⼼圆轴代替实⼼圆轴,问能够省多少材料?5. 阶梯轴AB如图所⽰,AC段直径d1=40mm,CB段直径d2=70mm,外⼒偶矩M B=1500N·m,M A=600N·m,M C=900N·m,G=80GPa,[τ]=60MPa,[φ/]=2(o)/m。
《工程力学》第三章精选习题及解答提示3—1 图示空间三力5001=F N ,10002=F N ,7003=F N ,求此三力在x ,y ,z 轴上的投影;并写出三力矢量表达式。
【解】(1)求三力在x ,y ,z 轴上的投影。
力1F的投影: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯=+⨯==⨯=+⨯-=N 224515002110N 447525002122211112211F F y xoz F F F F z y x 轴垂直)坐标面内,与位于—(———=-- 力2F 的投影(采用二次投影法):⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⨯=++⨯=-=⨯-=+⨯+++⨯-=⨯=+⨯+++⨯-=N 26714110003211N 802143100032132132N 53514210003223213222222222222222222222222F F F F F F z y x =-- 力3F 的投影(3F 位于xoy 坐标面内,与x 轴平行同向):⎪⎩⎪⎨⎧====00N 7003333z y x F F F F(2)写出三力的矢量表达式: k i k F j F i F F z y x ⋅+⋅-=⋅+⋅+⋅=2244471111 k j i k F j F i F F z y x ⋅+⋅-⋅-=⋅+⋅+⋅=2678025352222 i k F j F i F F z y x ⋅=⋅+⋅+⋅=7003333 3—2 半径为r 的斜齿轮,其上作用有力F ,如图所示。
已知角α和角β,求力F 沿坐标轴的投影及力F 对y 轴之矩。
【解】(1)求力在坐标轴的投影。
根据图中所示的力F 的位置关系,可知本题宜采用二次投影法:⎪⎩⎪⎨⎧⋅-=⋅⋅-=⋅⋅=αβαβαsin cos cos sin cos F F F F F F z y x(2)求力F 对y 轴之矩: 由图可知,力F 可分解为三个分力,分别是:轴向力a F ;径向力r F ;圆周力t F ,即: t r a F F F F ++=由合力矩定理得:βαβαsin cos sin cos 00)()()()(⋅⋅⋅=⋅⋅⋅++=++=r F r F F m F m F m F m t y r y a y y 3—3 铅垂力500=F N ,作用于曲柄上,如图所示,求该力对于各坐标轴之矩。
3-3在图示刚架中,已知kN/m 3=m q ,26=F kN ,m kN 10⋅=M ,不计刚架自重。
求固定端A 处的约束力。
m kN 12kN 60⋅===A Ay Ax M F F ,,
3-4杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
对于给定的θ角,试求平衡时的β角。
A θ
3
l G
β
G
θB
B
F A
R F 3
2l O
解:解法一:AB 为三力汇交平衡,如图所示ΔAOG 中
βsin l AO =, θ-︒=∠90AOG ,β-︒=∠90OAG ,βθ+=∠AGO
由正弦定理:)
90sin(3)sin(sin θβθβ-︒=
+l
l ,)cos 31)sin(sin θβθβ=+l 即 βθβθθβsin cos cos sin cos sin 3+=
即 θβtan tan 2= )tan 2
1arctan(θβ= 解法二::
0=∑x F ,0sin R =-θG F A (1) 0=∑y F ,0cos R =-θG F B
(2) 0)(=∑F A M ,0sin )sin(3
R =++-ββθl F l G B (3)
解(1)、(2)、(3)联立,得 )tan 2
1
arctan(θβ=
3-5 由AC 和CD 构成的组合梁通过铰链C 连接。
支承和受力如图所示。
已知均布载荷强度
kN/m 10=q ,力偶矩m kN 40⋅=M ,不计梁重。
kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;;
解:取CD 段为研究对象,受力如图所示。
0)(=∑F C
M
,024=--q M F D ;kN 15=D F
取图整体为研究对象,受力如图所示。
0)(=∑F A
M ,01682=--+q M F F D B
;kN 40=B F
0=∑y
F ,04=+-+D B
Ay
F q F F ;kN 15-=Ay F
0=∑x F ,0=Ax
F
3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。
已知起重机重P1 = 50kN ,重心在铅直线EC 上,起重载荷P2 = 10kN 。
如不计梁重,求支座A 、B 和D 三处的约束反力。
解:(1)取起重机为研究对象,受力如图。
0)(=∑F F M ,0512P R =--W F F G ,kN 50R =G F
(2)取CD 为研究对象,受力如图
0)(=∑F C M ,016'R R =-G D F F ,kN 33.8R =D F
(3)整体作研究对象,受力图(c )
0)(=∑F A M ,0361012R P R =+--B D F F W F ,kN 100R =B F
0=∑x F ,0=Ax F
0=∑y F ,kN 33.48-=Ay F
3-7 构架由杆AB ,AC 和DF 铰接而成,如图所示。
在DEF 杆上作用一矩为M 的力偶。
不计各杆的重量,求AB 杆上铰链A ,D 和B 所受的力。
3-8 图示构架中,物体P重1200N,由细绳跨过滑轮E而水平系于墙上,尺寸如图。
不计杆和滑轮的重量,求支承A和B处的约束力,以及杆BC的内力F BC。
解:(1)整体为研究对象,受力图(a ),W F =T
0=∑A M ,0)5.1()2(4T R =--+-⋅r F r W F B ,N 1050R =B F 0=∑x F ,N 1200T ===W F F Ax 0=∑y F ,N 501=Ay F
(2)研究对象CDE (BC 为二力杆),受力图(b ) 0=∑D M ,0)5.1(5.1sin T =-+⋅+⨯r F r W F BC θ
N 15005
41200
sin -=-=-=
θ
W F BC (压力)
3-9 图示结构中,A 处为固定端约束,C 处为光滑接触,D 处为铰链连接。
已知
N 40021==F F ,m N 300⋅=M ,mm 400==BC AB ,mm 300==CE CD ,︒=45α,
不计各构件自重,求固定端
A
处与铰链
D
处 的约束力。
3-10 图示结构由直角弯杆DAB 与直杆BC 、CD 铰接而成,并在A 处与B 处用固定铰支座和可动铰支座固定。
杆DC 受均布载荷q 的作用,杆BC 受矩为2
qa M 的力偶作用。
不计各构件的自重。
求铰链D 受的力。
3-11 图示构架,由直杆BC ,CD 及直角弯杆AB 组成,各杆自重不计,载荷分布及尺寸如图。
在销钉B 上作用载荷P 。
已知q 、a 、M 、且2
qa M 。
求固定端A 的约束力及销钉B 对BC 杆、AB 杆的作用力。
3-12无重曲杆ABCD有两个直角,且平面ABC与平面BCD垂直。
杆的D端为球铰支座,A 端为轴承约束,如图所示。
在曲杆的AB、BC和CD上作用三个力偶,力偶所在平面分别垂直
A、处于A
B、BC和CD三线段。
已知力偶矩M2和M3 ,求使曲杆处于平衡的力偶矩M1和D 的约束力。
解:如图所示:ΣF x = 0,F Dx = 0
ΣM y = 0,012=⋅-d F M Az ,1
2
d M F Az =
ΣF z = 0,1
2
d M F Dz -
= ΣM z = 0,013=⋅+d F M Ay ,1
3
d M F Ay -
= ΣF y = 0,1
3d M F Dy
=
ΣM x = 0,0231=⋅+⋅--d F d F M Az Ay ,21
23131M d d
M d d M +=
3-13在图示转轴中,已知:Q=4KN ,r=0.5m ,轮C 与水平轴AB 垂直,自重均不计。
试求平衡时力偶矩M 的大小及轴承A 、B 的约束反力。
解:Σm Y =0, M -Qr=0, M=2KN ·m
ΣY=0, N AY =0
Σmx=0, N Bz ·6-Q ·2=0, N BZ =4/3KN
Σmz=0, N BX =0 ΣX=0, N AX =0
ΣZ=0, N AZ +N Bz -Q=0,N AZ =8/3KN
3-14匀质杆AB 重Q 长L ,AB 两端分别支于光滑的墙面及水平地板上,位置如图所示,并以二水平索AC 及BD 维持其平衡。
试求(1)墙及地板的反力;(2)两索的拉力。
解:ΣZ=0 N B =Q
Σmx=0
N B ·BDsin30°-Q ·2
1
BDsin30°-Sc ·BDtg60°=0 Sc=0.144Q Σm Y =0
-N B ·BDsin60°+Q ·2
1
BDsin60°+N A ·BDtg60°=0 N A =0.039Q
ΣY=0 -S B cos60°+Sc=0 S B =0.288Q
3-14 平面悬臂桁架所受的载荷如图所示。
求杆1,2和3的内力。
3-15 平面桁架的支座和载荷如图所示。
ABC为等边三角形,E,F为两腰中点,又AD=DB。
F。
求杆CD的内力
CD
ED为零杆,取BDF研究,F CD=-0.866F
3-17 平面桁架的支座和载荷如图所示,求杆1,2和3的内力。
3-18 均质圆柱重P 、半径为r ,搁在不计自重的水平杆和固定斜面之间。
杆端A 为光滑铰链,D 端受一铅垂向上的力F ,圆柱上作用一力偶。
如图所示。
已知P F =,圆柱与杆和斜面间的静滑动摩擦系数皆为f S =0.3,不计滚动摩阻,当
︒=45α时,AB=BD 。
求此时能保持系统
静止的力偶矩M 的最小值。
3-19 如图所示,A块重500N,轮轴B重1000N,A块与轮轴的轴以水平绳连接。
在轮轴外绕以细绳,此绳跨过一光滑的滑轮D,在绳的端点系一重物C。
如A块与平面间的摩擦系数为0.5,轮轴与平面间的摩擦系数为0.2,不计滚动摩阻,试求使系统平衡时物体C的重量P 的最大值。