高三试题—2017-2018学年北京市海淀区高三上学期理科期末数学试卷
- 格式:pdf
- 大小:507.13 KB
- 文档页数:4
2017北京市海淀区高三(上)期末数学(理)一、选择题(共8小题,每小题5分,满分40分)1.抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.32.在极坐标系中,点(1,)与点(1,)的距离为()A.1 B.C.D.3.如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为()A.6 B.7 C.8 D.94.已知向量,满足,()=2,则=()A.﹣ B.C.﹣2 D.25.已知直线l经过双曲线的一个焦点且与其一条渐近线平行,则直线l的方程可以是()A.y=﹣B.y=C.y=2x﹣D.y=﹣2x+6.设x,y满足,则(x+1)2+y2的最小值为()A.1 B.C.5 D.97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为()A.14 B.16 C.18 D.208.如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是()A.[0,1] B.[,] C.[1,2] D.[,2]二、填空题(共6小题,每小题5分,满分30分)9.已知复数z满足(1+i)z=2,则z= .10.6的展开式中常数项是.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为.12.已知圆C:x2﹣2x+y2=0,则圆心坐标为;若直线l过点(﹣1,0)且与圆C相切,则直线l的方程为.13.已知函数y=2sin(ωx+φ)(ω>0,|φ|<).①若f(0)=1,则φ=;②若∃x∈R,使f(x+2)﹣f(x)=4成立,则ω的最小值是.14.已知函数f(x)=e﹣|x|+cosπx,给出下列命题:①f(x)的最大值为2;②f(x)在(﹣10,10)内的零点之和为0;③f(x)的任何一个极大值都大于1.其中,所有正确命题的序号是.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,c=2a,B=120°,且△ABC面积为.(1)求b的值;(2)求tanA的值.16.(13分)诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期 95% 98% 92% 88%第二个周期 94% 94% 83% 80%第三个周期 85% 92% 95% 96%(1)计算表中十二周“水站诚信度”的平均数;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(14分)如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.(1)判断直线DC与直线m的位置关系并证明;(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;(3)求直线A1O与平面A1BD所成角的正弦值.18.(13分)已知A(0,2),B(3,1)是椭圆G:上的两点.(1)求椭圆G的离心率;(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点A),若以BC为直线的圆经过点A,求直线l的方程.19.(14分)已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.(13分)对于无穷数列{a n},{b n},若b i=max{a1,a2,…,a i}﹣min{a1,a2,…,a k}(k=1,2,3,…),则称{b n}是{a n}的“收缩数列”,其中max{a1,a2,…,a k},min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大数和最小数.已知{a n}为无穷数列,其前n项和为S n,数列{b n}是{a n}的“收缩数列”.(1)若a n=2n+1,求{b n}的前n项和;(2)证明:{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=(n=1,2,3,…),求所有满足该条件的{a n}.数学试题答案一、选择题(共8小题,每小题5分,满分40分)1.【考点】抛物线的简单性质.【分析】利用抛物线的方程求出p即可得到结果.【解答】解:抛物线y2=2x的焦点到准线的距离为:p=1.故选:B.【点评】本题考查抛物线的简单性质的应用,是基础题.2.【考点】极坐标刻画点的位置.【分析】极坐标化为直角坐标,即可得出结论.【解答】解:点(1,)与点(1,)的距离,即点(,)与点(﹣,)的距离为,故选B.【点评】本题考查极坐标与直角坐标的互化,比较基础.3.【考点】程序框图.【分析】模拟程序的运行,根据程序流程,依次判断写出a,b的值,可得当a=b=8时,不满足条件a≠b,输出a 的值为8,即可得解.【解答】解:模拟程序的运行,可得a=16,b=24满足条件a≠b,不满足条件a>b,b=24﹣16=8,满足条件a≠b,满足条件a>b,a=16﹣8=8,不满足条件a≠b,输出a的值为8.故选:C.【点评】本题考查的知识点是循环结构,当循环次数不多时,多采用模拟循环的方法,本题属于基础题.4.【考点】平面向量数量积的运算.【分析】根据平面向量的线性运算与数量积运算,即可求出的值.【解答】解:向量,满足+2=,即++=,∴+=﹣,又()=2,∴﹣•=2,∴=﹣2.故选:C.【点评】本题考查了平面向量的线性运算和数量积运算的问题,是基础题.5.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,以及双曲线的焦点坐标,然后求解即可.【解答】解:直线l经过双曲线的焦点(,0),渐近线方程为:y=,选项C、D错误;焦点坐标代入选项A正确,选项B错误.故选:A.【点评】本题考查双曲线的简单性质的应用,考查计算能力.6.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据两点间的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(x+1)2+y2的几何意义是区域内的点到定点A(﹣1,0)的距离的平方,由图象知A到直线x+y﹣2=0的距离最小,此时距离d==,则距离的平方d2=()2=,故选:B.【点评】本题主要考查线性规划的应用,根据两点间的距离公式是解决本题的关键.7.【考点】排列、组合的实际应用.【分析】分类讨论,利用加法原理,可得结论.【解答】解:红色用1次,有6种方法,红色用2次,有2+3+4=9种方法,红色用3次,有3种方法,共18种,故选C.【点评】本题考查计数原理的运用,考查学生的计算能力,比较基础.8.【考点】空间中直线与平面之间的位置关系.【分析】由题意,若x=y=1,则棱DD1与平面BEF交于点D,若x=1,y=0,则棱DD1与平面BEF交于线段DD1,即可得出结论.【解答】解:由题意,若x=y=1,则棱DD1与平面BEF交于点D,符合题意;若x=1,y=0,则棱DD1与平面BEF交于线段DD1,符合题意.故选C.【点评】本题考查线面位置关系,考查特殊法的运用,属于中档题.二、填空题(共6小题,每小题5分,满分30分)9.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,故答案为:1﹣i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.10.【考点】二项式定理的应用.【分析】本题可通过通项公式T r+1=C n r a n﹣r b r来确定常数项,从而根据常数相中x的指数幂为0即可确定C6r(x2)6﹣r中r的值,然后即可求出常数项是15【解答】解:设通项公式为,整理得C6r x12﹣3r,因为是常数项,所以12﹣3r=0,所以r=4,故常数项是c64=15故答案为15.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型.难度系数0.9.一般的通项公式的主要应用是求常数项,求有理项或者求某一项的系数,二项式系数等.所以在今后遇到这样的试题时首先都可以尝试用通项来加以解决.11.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个正方体挖去一个同底同高的四棱锥得到的组合体,分别计算他们的体积,相减可得答案.【解答】解:由已知中的三视图可得:该几何体是一个正方体挖去一个同底同高的四棱锥得到的组合体,正方体的体积为:2×2×2=8,四棱锥的体积为:×2×2×2=,故组合体的体积V=8﹣=,故答案为:【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.12.【考点】圆的一般方程.【分析】圆的方程化为标准方程,可得圆心坐标;圆心到直线的距离d==1,可得直线方程.【解答】解:圆C:x2﹣2x+y2=0,可化为(x﹣1)2+y2=1,圆心坐标为(1,0),设直线l的方程为y﹣0=k(x+1),即kx﹣y+k=0,圆心到直线的距离d==1,∴k=±,∴直线l的方程为y=±(x+1),故答案为(1,0),y=±(x+1)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.13.【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】①由已知可得sinφ=,利用正弦函数的图象及特殊角的三角函数值,结合范围|φ|<,即可得解φ的值.②化简已知等式可得sin(ωx+2ω+φ)﹣sin(ωx+φ)=2,由正弦函数的性质可求ω=(k1﹣k2)π﹣,k1,k2∈Z,结合范围ω>0,即可得解ω的最小值.【解答】解:①∵由已知可得2sinφ=1,可得:sinφ=,∴可得:φ=2kπ+,或φ=2kπ+,k∈Z,∵|φ|<,∴当k=0时,φ=.②∵∃x∈R,使2sin[ω(x+2)+φ]﹣2sin(ωx+φ)=4成立,即:sin(ωx+2ω+φ)﹣sin(ωx+φ)=2,∴∃x∈R,使ωx+2ω+φ=2k1π+,ωx+φ=2k2π+,k∈Z,∴解得:ω=k1π﹣k2π﹣,k1,k2∈Z,又∵ω>0,|∴ω的最小值是.故答案为:,.【点评】本题主要考查了正弦函数的图象和性质,特殊角的三角函数值的综合应用,考查了数形结合思想的应用,属于中档题.14.【考点】命题的真假判断与应用.【分析】根据已知中函数f(x)=e﹣|x|+cosπx,分析函数的最值,对称性,极值,进而可得答案.【解答】解:由→0,故当x=0时,f(x)的最大值为2,故①正确;函数f(x)=e﹣|x|+cosπx,满足f(﹣x)=f(x),故函数为偶函数;其零点关于原点对称,故f(x)在(﹣10,10)内的零点之和为0,故②正确;当cosπx取极大值1时,函数f(x)=e﹣|x|+cosπx取极大值,但均大于1,故③正确;故答案为:①②③【点评】本题以命题的真假判断与应用为载体,考查了函数的最值,函数的极值,函数的零点,函数的奇偶性等知识点,难度中档.三、解答题(共6小题,满分80分)15.【考点】正弦定理.【分析】(1)由已知利用三角形面积公式可求a,c的值,进而利用余弦定理可求b的值.(2)由余弦定理可求cosA的值,进而利用同角三角函数基本关系式可求tanA=的值.【解答】(本题满分为13分)解:(1)∵c=2a,B=120°,△ABC面积为=acsinB=.∴解得:a=1,c=2,∴由余弦定理可得:b===.(2)∵a=1,c=2,b=,∴cosA==,∴tanA==.【点评】本题主要考查了三角形面积公式,余弦定理,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【考点】离散型随机变量的期望与方差;众数、中位数、平均数;离散型随机变量及其分布列.【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数.(2)随机变量X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(3)两次活动效果均好,活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.【解答】解:(1)表中十二周“水站诚信度”的平均数:=×=91%.(2)随机变量X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)=,P(X=3)=,∴X的分布列为:X 0 1 2 3PEX==2.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.【点评】本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.17.【考点】直线与平面所成的角;点、线、面间的距离计算.【分析】(1)利用线面平行的性质判断并证明直线DC与直线m的位置关系;(2)A1D在平面A1OB中的射影为A1O,OG⊥A1O,即可求出A1G的长;(3)求出O到平面A1DB的距离,即可求直线A1O与平面A1BD所成角的正弦值.【解答】解:(1)∵DC∥OB,DC⊄平面A1OB,OB⊂平面A1OB∴DC∥平面A1OB,∵m为平面A1DC与平面A1OB的交线,∴DC∥m;(2)由题意,A1D在平面A1OB中的射影为A1O,∴OG⊥A1O,∴A1G=2A1O=4;(3)△A1OB中,A1B==2,∵A1D=DB=2,∴ ==,设O到平面A1DB的距离为h,则,∴h=,∵A1O=2,∴直线A1O与平面A1BD所成角的正弦值=.【点评】本题考查线面平行的判定与性质,考查线面垂直的证明,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)将A和B点的坐标代入椭圆G的方程,列出方程组求出a和b的值,再求出c和离心率;(2)由(1)求出椭圆G的方程,对直线l的斜率进行讨论,不妨设直线l的方程,与椭圆G的方程联立后,利用韦达定理写出式子,将条件转化为,由向量数量积的坐标运算列出式子,代入化简后求出k的值,即得直线l的方程.【解答】解:(1)∵椭圆G过A(0,2),B(3,1),∴,解得,则=,∴椭圆G的离心率e==;(2)由(1)得,椭圆G的方程是,①当直线的斜率不存在时,则直线BC的方程是x=3,代入椭圆G的方程得,C(3,﹣1),不符合题意;②当直线的斜率存在时,设斜率为k,C(x1,y1),则直线BC的方程为y=k(x﹣3)+1,由得,(3k2+1)x2﹣6k(3k﹣1)x+27k2﹣18k﹣3=0,∴3+x1=,3x1=,则x1=,∵以BC为直径圆经过点A,∴AB⊥AC,则,即(3,﹣1)•(x1,y1﹣2)=0,∴3x1﹣y1+2=0,即3x1﹣[k(x1﹣3)+1]=0,∴(3﹣k)x1+3k+1=0,(3﹣k)•+3k+1=0,化简得,18k2﹣7k﹣1=0,解得k=或k=,∴直线BC的方程为y=(x﹣3)+1或y=(x﹣3)+1,即直线BC的方程是x+2y﹣5=0或x﹣9y+6=0,综上得,直线l的方程是x+2y﹣5=0或x﹣9y+6=0.【点评】本题考查了待定系数法求椭圆标准方程,直线与椭圆位置关系,向量数量积的坐标运算,以及“设而不求”的解题思想方法,考查转化思想,化简、变形、计算能力.19.(14分)(2016秋•海淀区期末)已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)求出函数的导数,问题转化为x2+x+a=0存在大于0的实数根,根据y=x2+x+a在x>0时递增,求出a 的范围即可;(2)求出函数f(x)的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;(3)求出函数g(x)的导数,根据f(e)=﹣>0,得到存在x0∈(1,e)满足g′(x0)=0,从而得到函数的单调区间,求出函数的极小值,证出结论即可.【解答】解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、是一道综合题.20.(13分)(2016秋•海淀区期末)对于无穷数列{a n},{b n},若b i=max{a1,a2,…,a i}﹣min{a1,a2,…,a k}(k=1,2,3,…),则称{b n}是{a n}的“收缩数列”,其中max{a1,a2,…,a k},min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大数和最小数.已知{a n}为无穷数列,其前n项和为S n,数列{b n}是{a n}的“收缩数列”.(1)若a n=2n+1,求{b n}的前n项和;(2)证明:{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=(n=1,2,3,…),求所有满足该条件的{a n}.【考点】数列的求和.【分析】(1)由新定义可得b n=2n﹣2,即可求出前n项和,(2)根据“收缩数列”的定义证明即可,(3)猜想:满足S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1的数列{ a n}是,a n=,a2≥a1,并证明即可.【解答】解:(1)由a n=2n+1可得{ a n}为递增数列,所以b n=max{ a1,a2,…,a n}﹣min{ a1,a2,…,a n}=a n﹣a1=2n+1﹣3=2n﹣2,故{ b n}的前n项和为(2n﹣2)n=n(n﹣1)(2)因为max{ a1,a2,…,a n}≤max{ a1,a2,…,a n+1},因为min{ a1,a2,…,a n}≥min{ a1,a2,…,a n+1},所以max{ a1,a2,…,a n+1}﹣min{ a1,a2,…,a n+1}≥max{ a1,a2,…,a n}﹣min{ a1,a2,…,a n},所以b n+1≥b n,又因为b n=a1﹣a1=0,所以max{ b1,b2,…,b n}﹣min{ b1,b2,…,b n}=b n﹣b1=b n,所以{ b n}的“收缩数列”仍是{ b n},(3)由S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1,当n=1时,a1=a1,当n=2时,3a1+2a2+a3=6a3+3b3,即3b3=2(a2﹣a1)+(a3﹣a1),(*),若a1<a3<a2,则b3=a2﹣a1,所以由(*)可得a3=a2与a3<a2矛盾,若a3<a1≤a2,则b3=a2﹣a3,所以由(*)可得a3﹣a2=3(a1﹣a3),所以a3﹣a2与a1﹣a3同号,这与a3<a1≤a2矛盾;若a3≥a2,则b3=a3﹣a2,由(*)可得a3=a2,猜想:满足S1+S2+…+S n=n(n+1)a1+n(n﹣1)b1的数列{ a n}是,a n=,a2≥a1,经验证:左式=S1+S2+…+S n=na1+[1+2+…+(n﹣1)]=na1+n(n﹣1)a2,右式=n(n+1)a1+n(n﹣1)b1=n(n+1)a1+n(n﹣1)(a2﹣na1)=na1+n(n﹣1)a2下面证明其它数列都不满足(3)的题设条件由上述n≤3的情况可知,n≤3,a n=,a2≥a1是成立的,假设a k=是首次不符合a n=,a2≥a1的项,则a1≤a2=a3=…=a k﹣1≠a k由题设条件可得(k2﹣k﹣2)a2+a k=k(k﹣1)a1+k(k﹣1)b k(*),若a1<a k<a2,则由(*)可得a k=a2与a k<a2矛盾,若a k<a1≤a2,则b k=a2﹣a k,所以由(*)可得a k﹣a2=k(k﹣1)(a1﹣a k),所以a k﹣a2与a1﹣a k同号,这与a k<a1≤a2矛盾;所以a k≥a2,则b k=a k﹣a1,所以由(*)化简可得a k=a2,这与假设a k≠a2相矛盾,所以不存在数列不满足a n=,a2≥a1的{a n}符合题设条件【点评】本题考查了新定义和应用,考查了数列的求和和分类讨论的思想,以及反证法,属于难题.word下载地址。
海淀区高三年级第一学期期末练习数学(理科)2017.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1B .2C .3D .53.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为 A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .1522y x =-+B .152y x =- C .322y x =- D .23y x =-+6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14 B .16 C .18 D .20 8.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1]B .13[,]22C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.ABCD1D 1A 1B 1C E F开始是否是否a a b=-b b a=-a输出结束,a b输入a b≠a b>10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是__. 14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B =,且∆ABC 面积为32. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一....周期..,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期85%92%95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三俯视图2左视图211主视图角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠=,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-=,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”.(Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ;(Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =,求所有满足该条件的{}n a .海淀区AOBCD1图ODCB2图1A高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);3(1)3y x =+和3(1)3y x =-+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==1332222a a ⨯⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,7b b >∴=. (不写b>0不扣分) (Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:1321sin sin 2147a A B b ==⨯=, 又120B =,所以A 是锐角(或:因为12,a c =<=) 所以217557cos 1sin 19614A A =-==, 所以sin 213tan .cos 557A A A === 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X ==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分.情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的.例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1ADC 平面1A OB m =所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则1(3,1,0),(0,2,0),(0,0,2)A B D -,所以1(3,1,2)A D =-.设(3,,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(3,1,2)(3,,0)30m m -⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330,x y z x y ⎧-++=⎪⎨-+=⎪⎩令1y =,则3,1x z ==, 所以(3,1,1)=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=1115cos ,5A O n A O n A O n⋅<>==⋅.法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,ODCBG1A zxy M所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D =,所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠=,所以160OAG ∠=, 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),(1,3,0),(0,0,2)O A B D -(, 所以11(2,0,2),(3,3,0,)A D A B =-=- 设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,330,x z x y -+=⎧⎪⎨-+=⎪⎩令1x =,则3,1y z ==,所以(1,3,1)n =,设直线1A O 与平面1A BD 所成角为θ,则 sin θ=1115cos ,5AO n AO n AO n ⋅<>==⋅.18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=, 解得212,23a a ==.所以2228,22c a b c =-==, 所以椭圆G 的离心率是6.3c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,O DCBG1A zxy由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列, 所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=-,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤=,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥=,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥=. 又因为1110b a a =-=, 所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-=,所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-,--所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-=,所以1121()ki k i a a b b b =-≤+++∑,(1,2,3,,)k n =即112()k k S ka b b b ≤++++,(1,2,3,,)k n =由1(1,2,3,)n n b b n +≥=可得(1,2,3,,)k n b b k n ≤=又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k =, 所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++-,--即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n n S S S a b +-+++≤+等号成立的条件是1(1,2,3,,)i i n a a b b i n -===,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)精品文档考试教学资料施工组织设计方案。
海淀区高三年级第一学期期末练习数学(理科) 2018.1第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1A. B. C.2)在极坐标系A. B. C. D.(3A.4B.5C.6D.7(4的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5A. B. C. D.(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为A. B. C. D.(7)某三棱锥的三视图如图所示,则下列说法中:②三棱锥的四个面全是直角三角形所有正确的说法是A. ①B. ①②C. ②③D. ①③(8..的是A.4个B.4个C. 4个D. 4个第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9的渐近线的距离是 .(10)已知公差为1100项和为 .(11(12)各项系数的和与各项二项式系数的和之比为64:1,(13)长度的最小值为 .(14的取值范围是;的取值范围为 .三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分).(16)(本小题13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。
为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小.......,速度越快.,单位是MIPS)(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.(17)(本小题14分)如题1.将2.(图中未画出)的体积大小,并说明理由.(18)(本小题13分).(19)(本小题14分).(只需写出结论)(20)(本小题13分),,,.7项;(Ⅲ)求证:条件。
海淀区高三年级第一学期期末练习数学(理科)ﻩﻩ 2018. 1ﻩ本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)复数12+=iiﻩﻩﻩ ﻩﻩ ﻩﻩ(A )2-i ﻩ ﻩ(B)2+i ﻩ (C )2--iﻩ(D )2-+i(2)在极坐标系Ox 中,方程2sin ρθ=表示的圆为 ﻩﻩﻩ(A )ﻩ ﻩ (B)(C)ﻩ(D)(3)执行如图所示的程序框图,输出的k 值为(A) 4 (B ) 5 (C) 6 (D) 7 ﻩﻩ ﻩ ﻩ ﻩﻩ(4)设m 是不为零的实数,则“0m >”是“方程221x y m m-=表示双曲线”的ﻩ(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件ﻩﻩﻩ(D )既不充分也不必要条件(5)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m 的值为ﻩﻩﻩ ﻩﻩﻩﻩﻩﻩ ﻩ(Aﻩﻩﻩ(Bﻩﻩ(C或 ﻩ(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为 ﻩ ﻩ ﻩ(A )15ﻩ ﻩ (B )25ﻩﻩﻩ (C)35ﻩﻩ (D)45(7)某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形③所有正确的说法是 ﻩ ﻩ (A)① (B)①② (C )②③ (D)①③ ﻩﻩ ﻩ ﻩ ﻩﻩﻩﻩ ﻩ ﻩﻩ ﻩﻩﻩﻩ ﻩ ﻩﻩ ﻩﻩﻩ (8)已知点F 为抛物线C :()220ypx p =>的焦点,点K 为点F 关于原点的对称点,点M 在抛物线C 上,则下列说法错误..的是 (A)使得MFK ∆为等腰三角形的点M 有且仅有4个 (B)使得MFK ∆为直角三角形的点M 有且仅有4个(C)使得4MKF π∠=的点M 有且仅有4个 (D)使得6MKF π∠=的点M 有且仅有4个第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018北京市海淀区高三数学(理科)(上)期末(word版可编辑修改)的全部内容。
2018北京市海淀区高三数学(理科)(上)期末 2018. 1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。
(1)复数12+=ii(A )2-i (B )2+i(C )2--i(D)2-+i (2)在极坐标系Ox 中,方程2sin ρθ=表示的圆为(A )(B)(C )(D )(3)执行如图所示的程序框图,输出的k 值为(A ) 4 (B) 5 (C) 6 (D ) 7(4)设m 是不为零的实数,则“0m >"是“方程221x y m m-=表示双曲线”的(A )充分而不必要条件 (B )必要而不充分条件(C)充分必要条件 (D )既不充分也不必要条件(5)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m的值为(A(B(C或(或 (6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为(A )15(B )25(C )35(D)45(7)某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形 ③所有正确的说法是(A)①(B)①②(C )②③ (D )①③(8)已知点F 为抛物线C :()220y px p =>的焦点,点K 为点F 关于原点的对称点,点M 在抛物线C 上,则下列说法错误..的是 (A )使得MFK ∆为等腰三角形的点M 有且仅有4个 (B )使得MFK ∆为直角三角形的点M 有且仅有4个(C)使得4MKF π∠=的点M 有且仅有4个 (D)使得6MKF π∠=的点M 有且仅有4个主视图左视图俯视图二、填空题共6小题,每小题5分,共30分。
2017-2018学年北京市海淀区高三(上)期末数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)复数=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i2.(5分)在极坐标系中Ox,方程ρ=2sinθ表示的圆为()A.B.C.D.3.(5分)执行如图所示的程序框图,输出的k值为()A.4 B.5 C.6 D.74.(5分)设m是不为零的实数,则“m>0”是“方程表示的曲线为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)已知直线x﹣y+m=0与圆O:x2+y2=1相交于A,B两点,且△AOB为正三角形,则实数m的值为()A.B.C.或D.或6.(5分)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为()A.B.C.D.7.(5分)某三棱锥的三视图如图所示,则下列说法中:①三棱锥的体积为②三棱锥的四个面全是直角三角形③三棱锥的四个面的面积最大的是所有正确的说法是()A.①B.①②C.②③D.①③8.(5分)已知点F为抛物线C:y2=2px(p>0)的焦点,点K为点F关于原点的对称点,点M在抛物线C上,则下列说法错误的是()A.使得△MFK为等腰三角形的点M有且仅有4个B.使得△MFK为直角三角形的点M有且仅有4个C.使得的点M有且仅有4个D.使得的点M有且仅有4个二、填空题共6小题,每小题5分,共30分.9.(5分)点(2,0)到双曲线的渐近线的距离是.10.(5分)已知公差为1的等差数列{a n}中,a1,a2,a4成等比数列,则{a n}的前100项和为.11.(5分)设抛物线C:y2=4x的顶点为O,经过抛物线C的焦点且垂直于x轴的直线和抛物线C交于A,B两点,则=.12.(5分)已知(5x﹣1)n的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则n=.13.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为,点M是棱BC的中点,点P在底面ABCD内,点Q在线段A1C1上,若PM=1,则PQ长度的最小值为.14.(5分)对任意实数k,定义集合.①若集合D k表示的平面区域是一个三角形,则实数k的取值范围是;②当k=0时,若对任意的(x,y)∈D k,有y≥a(x+3)﹣1恒成立,且存在(x,y)∈D k,使得x﹣y≤a成立,则实数a的取值范围为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)如图,在△ABC中,点D在AC边上,且AD=3BC,AB=.(Ⅰ)求DC的值;(Ⅱ)求tan∠ABC的值.16.(13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS)(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.17.(14分)如图1,梯形ABCD中,AD∥BC,CD⊥BC,BC=CD=1,AD=2,E为AD中点.△A1ED为正三角形,将△ABE沿BE翻折到△A1BE的位置,如图2,△A1ED为正三角形.(Ⅰ)求证:平面△A1DE⊥平面BCDE;(Ⅱ)求直线A1B与平面A1CD所成角的正弦值;(Ⅲ)设M,N分别为A1E和BC的中点,试比较三棱锥M﹣A1CD和三棱锥N﹣A1CD(图中未画出)的体积大小,并说明理由.18.(13分)已知椭圆C:x2+2y2=9,点P(2,0)(Ⅰ)求椭圆C的短轴长和离心率;(Ⅱ)过(1,0)的直线l与椭圆C相交于两点M,N,设MN的中点为T,判断|TP|与|TM|的大小,并证明你的结论.19.(14分)已知函数f(x)=2e x﹣ax2﹣2x﹣2.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当a≤0时,求证:函数f(x)有且仅有一个零点;(Ⅲ)当a>0时,写出函数f(x)的零点的个数.(只需写出结论)20.(13分)无穷数列{a n}满足:a1为正整数,且对任意正整数n,a n+1为前n项a1,a2,…,a n中等于a n的项的个数.(Ⅰ)若a1=2,请写出数列{a n}的前7项;(Ⅱ)求证:对于任意正整数M,必存在k∈N*,使得a k>M;(Ⅲ)求证:“a1=1”是“存在m∈N*,当n≥m时,恒有a n+2≥a n成立”的充要条件.2017-2018学年北京市海淀区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)复数=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【解答】解:=.故选:A.2.(5分)在极坐标系中Ox,方程ρ=2sinθ表示的圆为()A.B.C.D.【解答】解:方程ρ=2sinθ,整理得:ρ2=2ρsinθ,转化为:x2+y2﹣2y=0,即:x2+(y﹣1)2=1.根据圆在极坐标系中的位置,只有D符合.故选:D.3.(5分)执行如图所示的程序框图,输出的k值为()A.4 B.5 C.6 D.7【解答】解:模拟程序的运行,可得a=1,k=1不满足条件a>10,执行循环体,a=2,k=2不满足条件a>10,执行循环体,a=4,k=3不满足条件a>10,执行循环体,a=8,k=4不满足条件a>10,执行循环体,a=16,k=5满足条件a>10,退出循环,输出k的值为5.故选:B.4.(5分)设m是不为零的实数,则“m>0”是“方程表示的曲线为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:方程表示的曲线为双曲线⇔m≠0.∴“m>0”是“方程表示的曲线为双曲线”的充分不必要条件.故选:A.5.(5分)已知直线x﹣y+m=0与圆O:x2+y2=1相交于A,B两点,且△AOB为正三角形,则实数m的值为()A.B.C.或D.或【解答】解:直线x﹣y+m=0与圆O:x2+y2=1相交于A,B两点,且△AOB为正三角形,则:△AOB的边长为1,则:圆心(0,0)到直线x﹣y+m=0的距离d=,解得:m=±.故选:D.6.(5分)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为()A.B.C.D.【解答】解:从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,基本事件总数n==20,恰有两个小球编号相邻包含的基本事件个数m=12个,∴恰有两个小球编号相邻的概率为p==.故选:C.7.(5分)某三棱锥的三视图如图所示,则下列说法中:①三棱锥的体积为②三棱锥的四个面全是直角三角形③三棱锥的四个面的面积最大的是所有正确的说法是()A.①B.①②C.②③D.①③【解答】解:依据三视图,可得该几何体,如图三棱锥P﹣ABC,AC=BC=1,AB=.PA=PB,面PC⊥面ABC,P到面ABC的距离为1.①三棱锥的体积为=,正确;②三棱锥的面PAB不是直角三角形,错;③三棱锥的四个面的面积最大的是△PAB,PA=BP═AB=,其面积S=,故错.故选:A8.(5分)已知点F为抛物线C:y2=2px(p>0)的焦点,点K为点F关于原点的对称点,点M在抛物线C上,则下列说法错误的是()A.使得△MFK为等腰三角形的点M有且仅有4个B.使得△MFK为直角三角形的点M有且仅有4个C.使得的点M有且仅有4个D.使得的点M有且仅有4个【解答】解:由△MFK为等腰三角形,若KF=MF,则M有两个点;若MK=MF,则不存在,若MK=FK,则M有两个点,则使得△MFK为等腰三角形的点M有且仅有4个;由△MFK中∠MFK为直角的点M有两个;∠MKF为直角的点M不存在;∠FMK为直角的点M有两个,则使得△MFK为直角三角形的点M有且仅有4个;若的M在第一象限,可得直线MK:y=x+,代入抛物线的方程可得x2﹣px+=0,解得x=,由对称性可得M在第四象限只有一个,则满足的M有且只有2个;使得的点M在第一象限,可得直线MK:y=(x+),代入抛物线的方程,可得x2﹣5px+=0,△=25p2﹣p2=24p2>0,可得点M有2个;若M在第四象限,由对称性可得也有2个,则使得的点M有且只有4个.故选:C.二、填空题共6小题,每小题5分,共30分.9.(5分)点(2,0)到双曲线的渐近线的距离是.【解答】解:双曲线的渐近线为:y=,点(2,0)到双曲线的渐近线的距离是:=.故答案为:.10.(5分)已知公差为1的等差数列{a n}中,a1,a2,a4成等比数列,则{a n}的前100项和为5050.【解答】解:在公差为1的等差数列{a n}中,由a1,a2,a4成等比数列,得:(a1+1)2=a1(a1+3),即a1=1.∴S100=100×=5050.故答案为:5050.11.(5分)设抛物线C:y2=4x的顶点为O,经过抛物线C的焦点且垂直于x轴的直线和抛物线C交于A,B两点,则=2.【解答】解:抛物线C:y2=4x的焦点坐标(1,0),经过抛物线C的焦点且垂直于x轴的直线和抛物线C交于A,B两点,则A(1,2),B(1,﹣2);=(2,0);则=2.故答案为:2.12.(5分)已知(5x﹣1)n的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则n=6.【解答】解:由题意可得=2n=64,∴n=6,故答案为:6.13.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为,点M是棱BC的中点,点P在底面ABCD内,点Q在线段A1C1上,若PM=1,则PQ长度的最小值为.【解答】解:如图,点P在以M为圆心,1以半径的位于平面ABCD内的半圆上,连结A1C1、B1D1,交于点O,取B1C1中点N,OC1中点Q,连结QN,取QN中点E,连结PE,PQ,此时PQ长度取最小值,∵正方体ABCD﹣A1B1C1D1的棱长为,点M是棱BC的中点,点P在底面ABCD 内,点Q在线段A1C1上,PM=1,∴PM=EN=1,∵ON=OB1=B1D1==2,∴QE=2﹣1=1,又PE=CC1=4,∴PQ长度的最小值为:==.故答案为:.14.(5分)对任意实数k,定义集合.①若集合D k表示的平面区域是一个三角形,则实数k的取值范围是(﹣1,1);②当k=0时,若对任意的(x,y)∈D k,有y≥a(x+3)﹣1恒成立,且存在(x,y)∈D k,使得x﹣y≤a成立,则实数a的取值范围为[﹣2,] .【解答】解:①作出不等式组所表示的平面区域,如图所示,若不等式组表示的平面区域是一个三角形,观察图形可得只要满足﹣1<k<1时满足条件,②对任意的(x,y)∈D k,有y≥a(x+3)﹣1恒成立,则a≤恒成立,因为表示与定点(﹣3,﹣1)的斜率,当过点B(2,0)时,此时有最小值,最小值为,即a≤,存在(x,y)∈D k,使得x﹣y≤a成立,则a≥(x﹣y)min,平移目标函数y=x﹣a,当直线和y=x+2重合时,此时x﹣y最小,最小值为﹣2,则a≥﹣2,综上所述a的取值范围为[﹣2,]故答案为:①(﹣1,1)②三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)如图,在△ABC中,点D在AC边上,且AD=3BC,AB=.(Ⅰ)求DC的值;(Ⅱ)求tan∠ABC的值.【解答】(本小题13分)解:(Ⅰ)如图所示,,….(1分)故∠DBC=∠C,DB=DC….(2分)设DC=x,则DB=x,DA=3x.在△ADB中,由余弦定理AB2=DA2+DB2﹣2DA•DB•cos∠ADB….(3分)即,….(4分)解得x=1,即DC=1.….(5分)(Ⅱ)方法一.在△ADB中,由AD>AB,得∠ABD>∠ADB=60°,故….(6分)在△ABC中,由正弦定理….(7分)即,故,….(9分)由,得,….(11分)…(13分)方法二.在△ADB中,由余弦定理….(7分)由∠ABD∈(0,π),故….(9分)故….(11分)故…(13分)16.(13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS )(Ⅰ)从品牌A 的12次测试中,随机抽取一次,求测试结果小于7的概率; (Ⅱ)从12次测试中,随机抽取三次,记X 为品牌A 的测试结果大于品牌B 的测试结果的次数,求X 的分布列和数学期望E (X );(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价. 【解答】(本小题13分)解:(Ⅰ)从品牌A 的12次测试中,测试结果打开速度小于7的文件有: 测试1、2、5、6、9、10、11,共7次 设该测试结果打开速度小于7为事件A ,因此….(3分)(Ⅱ)12次测试中,品牌A 的测试结果大于品牌B 的测试结果的次数有: 测试1、3、4、5、7、8,共6次 随机变量X 所有可能的取值为:0,1,2,3….(7分)随机变量X 的分布列为….(8分)….(10分)(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,(1分);结合已有数据,能够运用以下8个标准中的任何一个陈述得出该结论的理由,(2分).…(13分).标准1:会用前6次测试品牌A、品牌B的测试结果的平均值与后6次测试品牌A、品牌B的测试结果的平均值进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的平均值均小于打开含有文字和图片的文件的测试结果平均值;这两种品牌的处理器打开含有文字与表格的文件的平均速度均快于打开含有文字和图片的文件的平均速度)标准2:会用前6次测试品牌A、品牌B的测试结果的方差与后6次测试品牌A、品牌B的测试结果的方差进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的方差均小于打开含有文字和图片的文件的测试结果的方差;这两种品牌的处理器打开含有文字与表格的文件速度的波动均小于打开含有文字和图片的文件速度的波动)标准3:会用品牌A前6次测试结果的平均值、后6次测试结果的平均值与品牌B前6次测试结果的平均值、后6次测试结果的平均值进行阐述(品牌A前6次测试结果的平均值大于品牌B前6次测试结果的平均值,品牌A后6次测试结果的平均值小于品牌B后6次测试结果的平均值,品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A打开含有文字和图形的文件的速度快于品牌B)标准4:会用品牌A前6次测试结果的方差、后6次测试结果的方差与品牌B前6次测试结果的方差、后6次测试结果的方差进行阐述(品牌A前6次测试结果的方差大于品牌B前6次测试结果的方差,品牌A后6次测试结果的方差小于品牌B后6次测试结果的方差,品牌A打开含有文字和表格的文件的速度波动大于品牌B,品牌A打开含有文字和图形的文件的速度波动小于品牌B)标准5:会用品牌A这12次测试结果的平均值与品牌B这12次测试结果的平均值进行阐述(品牌A这12次测试结果的平均值小于品牌B这12次测试结果的平均值,品牌A打开文件的平均速度快于B)标准6:会用品牌A这12次测试结果的方差与品牌B这12次测试结果的方差进行阐述(品牌A这12次测试结果的方差小于品牌B这12次测试结果的方差,品牌A打开文件速度的波动小于B)标准7:会用前6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数、后6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(前6次测试结果中,品牌A小于品牌B的有2次,占1/3.后6次测试中,品牌A小于品牌B的有4次,占2/3.故品牌A打开含有文字和表格的文件的速度慢于B,品牌A打开含有文字和图片的文件的速度快于B)标准8:会用这12次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(这12次测试结果中,品牌A小于品牌B的有6次,占1/2.故品牌A和品牌B打开文件的速度相当)参考数据17.(14分)如图1,梯形ABCD中,AD∥BC,CD⊥BC,BC=CD=1,AD=2,E为AD中点.△A1ED为正三角形,将△ABE沿BE翻折到△A1BE的位置,如图2,△A1ED为正三角形.(Ⅰ)求证:平面△A1DE⊥平面BCDE;(Ⅱ)求直线A1B与平面A1CD所成角的正弦值;(Ⅲ)设M,N分别为A1E和BC的中点,试比较三棱锥M﹣A1CD和三棱锥N﹣A1CD(图中未画出)的体积大小,并说明理由.【解答】(Ⅰ)证明:∵BE⊥A1E,BE⊥DE,且A1E∩DE=E,A1E,DE⊂平面A1DE,∴BE⊥平面A1DE,∵BE⊂平面BCDE,∴平面A1DE⊥平面BCDE;(Ⅱ)解:在平面A1DE内过E作ED的垂线,由BE⊥平面A1DE,建系如图.则,B(1,0,0),C(1,1,0),D(0,1,0),E(0,0,0).,,,设平面A 1CD的法向量为,则,即,令z=1,得,∴.∴A1B与平面A1CD所成角的正弦值为;(Ⅲ)解:三棱锥M﹣A1CD和三棱锥N﹣A1CD的体积相等.理由如:方法一、由,,知,则.∵MN⊄平面A1CD,∴MN∥平面A1CD.故点M、N到平面A1CD的距离相等,有三棱锥M﹣A1CD和N﹣A1CD同底等高,则体积相等.方法二、如图,取DE中点P,连接MP,NP,MN.∵在△A1DE中,M,P分别是A1E,DE的中点,∴MP∥A1D,在正方形BCDE中,∵N,P分别是BC,DE的中点,∴NP∥CD,∵MP∩NP=P,MP,NP⊂平面MNP,A1D,CD⊂平面A1CD,∴平面MNP∥平面A1CD.∵MN⊂平面MNP,∴MN∥平面A1CD.故点M、N到平面A1CD的距离相等,有三棱锥M﹣A1CD和N﹣A1CD同底等高,则体积相等.18.(13分)已知椭圆C:x2+2y2=9,点P(2,0)(Ⅰ)求椭圆C的短轴长和离心率;(Ⅱ)过(1,0)的直线l与椭圆C相交于两点M,N,设MN的中点为T,判断|TP|与|TM|的大小,并证明你的结论.【解答】(本小题13分)解:(Ⅰ)椭圆C:x2+2y2=9,化为:,故a2=9,,,有a=3,.…..(3分)椭圆C的短轴长为,离心率为.…..(5分)(Ⅱ)结论是:|TP|<|TM|.…..(6分)设直线l:x=my+1,M(x1,y1),N(x2,y2),,整理得:(m2+2)y2+2my﹣8=0…..(8分)△=(2m)2+32(m2+2)=36m2+64>0故,…..(10分)=(x1﹣2)(x2﹣2)+y1y2…..(11分)=(my1﹣1)(my2﹣1)+y1y2=(m2+1)y1y2﹣m(y1+y2)+1==<0…..(12分)故∠MPN>90°,即点P在以MN为直径的圆内,故|TP|<|TM|…..(13分)19.(14分)已知函数f(x)=2e x﹣ax2﹣2x﹣2.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当a≤0时,求证:函数f(x)有且仅有一个零点;(Ⅲ)当a>0时,写出函数f(x)的零点的个数.(只需写出结论)【解答】解:(Ⅰ)因为函数f(x)=2e x﹣ax2﹣2x﹣2,所以f′(x)=2e x﹣2ax﹣2,故f(0)=0,f'(0)=0,曲线y=f(x)在x=0处的切线方程为y=0;(Ⅱ)证明:当a≤0时,令g(x)=f′(x)=2e x﹣2ax﹣2,则g′(x)=2e x﹣2a>0,故g(x)是R上的增函数.由g(0)=0,故当x<0时,g(x)<0,当x>0时,g(x)>0.即当x<0时,f′(x)<0,当x>0时,f′(x)>0.故f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增.函数f(x)的最小值为f(0).由f(0)=0,故f(x)有且仅有一个零点.(Ⅲ)当a=1时,f(x)有一个零点;当a>0且a≠1时,f(x)有两个零点.20.(13分)无穷数列{a n}满足:a1为正整数,且对任意正整数n,a n+1为前n项a1,a2,…,a n中等于a n的项的个数.(Ⅰ)若a1=2,请写出数列{a n}的前7项;(Ⅱ)求证:对于任意正整数M,必存在k∈N*,使得a k>M;(Ⅲ)求证:“a1=1”是“存在m∈N*,当n≥m时,恒有a n+2≥a n成立”的充要条件.【解答】解:(Ⅰ)2,1,1,2,2,3,1 …,证明(Ⅱ)假设存在正整数M,使得对任意的k∈N*,a k≤M.由题意,a k∈{1,2,3,…,M}考虑数列{a n}的前M2+1项:a1,a2,a3,…,其中至少有M+1项的取值相同,不妨设此时有:,矛盾.故对于任意的正整数M,必存在k∈N*,使得a k>M.证明(Ⅲ)充分性:当a1=1时,数列{a n}为1,1,2,1,3,1,4,…,1,k﹣1,1,k,…特别地,a2k﹣1=k,a2k=1故对任意的n∈N*(1)若n为偶数,则a n+2=a n=1(2)若n为奇数,则综上,a n+2≥a n恒成立,特别地,取m=1有当n≥m时,恒有a n+2≥a n成立必要性:方法一:假设存在a1=k(k>1),使得“存在m∈N*,当n≥m时,恒有a n+2≥a n 成立”则数列{a n}的前k2+1项为k,1,1,2,1,3,1,4,…,1,k﹣1,1,k2,2,3,2,4,…,2,k﹣1,2,k3,3,4,…,3,k﹣1,3,k…k﹣2,k﹣2,k﹣1,k﹣2,kk﹣1,k﹣1,kk后面的项顺次为k+1,1,k+1,2,…,k+1,kk+2,1,k+2,2,…,k+2,kk+3,1,k+3,2,…,k+3,k…对任意的m,总存在n≥m,使得a n=k,a n+2=1,这与a n≤a n+2矛盾,故若存在m∈N*,当n≥m时,恒有a n≥a n成立,必有a1=1+2≥a n恒成立,记max{a1,a2,…,a m}=s.方法二:若存在m∈N*,当n≥m时,a n+2由第(2)问的结论可知:存在k∈N*,使得a k>s(由s的定义知k≥m+1)不妨设a k是数列{a n}中第一个大于等于s+1的项,即a1,a2,…,a k均小于等﹣1于s.=1.因为k﹣1≥m,所以a k+1≥a k﹣1,即1≥a k﹣1且a k﹣1为正整数,所以a k 则a k+1=1.﹣1记a k=t≥s+1,由数列{a n}的定义可知,在a1,a2,…,a k﹣1中恰有t项等于1.假设a 1≠1,则可设,其中1<i1<i2<…<i t=k﹣1,考虑这t个1的前一项,即,因为它们均为不超过s的正整数,且t≥s+1,所以中一定存在两项相等,将其记为a,则数列{a n}中相邻两项恰好为(a,1)的情况至少出现2次,但根据数列{a n}的定义可知:第二个a的后一项应该至少为2,不能为1,所以矛盾,故假设a1≠1不成立,所以a1=1,即必要性得证综上,“a1=1”是“存在m∈N*,当n≥m时,恒有a n+2≥a n成立”的充要条件.。
海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准2018.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案DDABACBD二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由sin cos 0x x +≠得ππ,4x k k ≠-∈Z .因为,cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x x x x x-=++-----------------------------------2分9. 2 10.4511. (0,1);4 12.2313.214.43;①②③cos sin x x =+π2sin()4x =+,-------------------------------------4分因为在ABC ∆中,3cos 05A =-<,所以ππ2A <<,-------------------------------------5分所以24sin 1cos 5A A =-=,------------------------------------7分所以431()sin cos 555f A A A =+=-=.-----------------------------------8分(Ⅱ)由(Ⅰ)可得π()2sin()4f x x =+,所以()f x 的最小正周期2πT =.-----------------------------------10分 因为函数sin y x=的对称轴为ππ+,2x k k =∈Z,-----------------------------------11分又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z , 所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =.--------------------------------3分(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为0.450.290.010.75++=----------------------------------4分由题意可知随机变量X的取值为:0,1,2,3.----------------------------------5分 事件“Xk=”的含义是在3次射击中,恰有k 次击中目标靶的环数不低于8环.3333()1(0,1,2,3)44kkk P X k C k -⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭----------------------------------8分即X 的分布列为X123P16496427642764所以X的期望是1927279()0123646464644E X =⨯+⨯+⨯+⨯=.------------------------10分 (Ⅲ)甲队员的射击成绩更稳定.---------------------------------13分17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,AC BD O = ,所以O为,AC BD中点.-------------------------------------1分 又因为,PA PC PB PD ==,所以,PO AC PO BD⊥⊥,---------------------------------------3分 所以PO ⊥底面ABCD.----------------------------------------4分(Ⅱ)由底面ABCD 是菱形可得AC BD ⊥,又由(Ⅰ)可知,PO AC PO BD ⊥⊥. 如图,以O 为原点建立空间直角坐标系O xyz -.由PAC ∆是边长为2的等边三角形,6PB PD ==,可得3,3PO OB OD ===.所以(1,0,0),(1,0,0),(0,3,0),(0,0,3)A C B P -.---------------------------------------5分所以(1,0,3)CP = ,(1,0,3)AP =-.由已知可得133(,0,)444OF OA AP =+=-----------------------------------------6分设平面BDF 的法向量为(,,)x y z =n ,则0,0,OB OF ⎧⋅=⎪⎨⋅=⎪⎩ n n 即30,330.44y x z ⎧=⎪⎨+=⎪⎩ 令1x =,则3z =-,所以(1,0,3)=-n .----------------------------------------8分因为1cos 2||||CP CP CP ⋅<⋅>==-⋅n n n ,----------------------------------------9分PAFB CDOx yz所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30 . -----------------------------------------10分(Ⅲ)设BM BPλ=(01)λ≤≤,则(1,3(1),3)CM CB BM CB BP λλλ=+=+=-.---------------------------------11分若使CM ∥平面BDF ,需且仅需0CM ⋅=n 且CM ⊄平面BDF ,---------------------12分解得1[0,1]3λ=∈,----------------------------------------13分所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BM BP=13.-----------------------------------14分 18.(本小题共13分) 解:(Ⅰ)2e (2)(2)'()(e )e x x xa x a x f x ----==,x ∈R.------------------------------------------2分当1a =-时,()f x ,'()f x 的情况如下表:x(,2)-∞ 2 (2,)+∞'()f x -0 +()f x↘ 极小值↗所以,当1a =-时,函数()f x 的极小值为2e --.-----------------------------------------6分(Ⅱ)(2)'()'()e xa x F x f x --==. ①当0a <时,(),'()F x F x 的情况如下表:--------------------------------7分因为(1)10F =>,------------------------------8分若使函数()F x 没有零点,需且仅需2(2)10e aF =+>,解得2e a >-,-------------------9分所以此时2e 0a -<<;-----------------------------------------------10分 ②当0a >时,(),'()F x F x 的情况如下表:--------11分 因为(2)(1)0F F >>,且10110101110e 10e 10(1)0eea aaF a------=<<,---------------------------12分x(,2)-∞ 2 (2,)+∞'()f x -0 +()f x↘ 极小值↗x(,2)-∞2 (2,)+∞ '()f x+0 -()f x↗ 极大值↘所以此时函数()F x 总存在零点. --------------------------------------------13分综上所述,所求实数a 的取值范围是2e 0a -<<.19.(本小题共14分)解:(Ⅰ)由题意得1c =, ---------------------------------------1分 由12c a =可得2a =, ------------------------------------------2分所以2223b a c =-=, -------------------------------------------3分所以椭圆的方程为22143x y +=.---------------------------------------------4分(Ⅱ)由题意可得点3(2,0),(1,)2A M -,------------------------------------------6分所以由题意可设直线1:2l y x n =+,1n ≠.------------------------------------------7分设1122(,),(,)B x y C x y , 由221,4312x y y x n ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x nx n ++-=.由题意可得2224(3)1230n n n ∆=--=->,即(2,2)n ∈-且1n ≠.-------------------------8分21212,3x x n x x n +=-=-.-------------------------------------9分因为1212332211MB MCy y k k x x --+=+-------------------------------------10分 121212121212131311222211111(1)(2)1()1x n x n n n x x x x n x x x x x x +-+---=+=++-----+-=+-++2(1)(2)102n n n n -+=-=+-, ---------------------------------13分 所以直线,MB MC 关于直线m 对称. ---------------------------------14分20.(本小题共13分)解:(Ⅰ)①②③都是等比源函数. -----------------------------------3分(Ⅱ)函数()21x f x =+不是等比源函数. ------------------------------------4分证明如下:假设存在正整数,,m n k 且m n k <<,使得(),(),()f m f n f k 成等比数列,2(21)(21)(21)n m k +=++,整理得2122222n n m k m k +++=++,-------------------------5分等式两边同除以2,m 得2122221n m n m k k m --+-+=++.因为1,2n m k m -≥-≥,所以等式左边为偶数,等式右边为奇数, 所以等式2122221n m n m k k m --+-+=++不可能成立,所以假设不成立,说明函数()21x f x =+不是等比源函数.-----------------------------8分(Ⅲ)法1:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列.*,d b ∀∈N ,2(1),(1)(1),(1)(1)g g d g d ++成等比数列,因为(1)(1)(1)((1)11)[(1)1]g d g g d g g +=++-=+,2(1)(1)(1)(2(1)(1)11)[2(1)(1)1]g d g g g d d g g g d +=+++-=++, 所以(1),[(1)1],[2(1)(1)1]g g g g g g d +++*{()|}g n n ∈∈N ,所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分(Ⅲ)法2:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列.由2()(1)()g m g g k =⋅,(其中1m k <<)可得2[(1)(1)](1)[(1)(1)]g m d g g k d +-=⋅+-,整理得(1)[2(1)(1)](1)(1)m g m d g k -+-=-,令(1)1m g =+,则(1)[2(1)(1)](1)(1)g g g d g k +=-,所以2(1)(1)1=++,k g g d所以*,d b∀∈N,数列{()}+++成g g g g g g dg n中总存在三项(1),[(1)1],[2(1)(1)1]等比数列.所以*∀∈N,函数(),d bg x dx b=+都是等比源函数.-------------------------------------------13分。
1D 1A 1B 1C F北京市海淀区2016-2017学年度第一学期高三期末理科数学2017.1一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为( ) A .12B .1 C.2D .32.在极坐标系中,点14π⎛⎫⎪⎝⎭,与点314π⎛⎫⎪⎝⎭,的距离为( ) A .1 B C D 3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24则执行该程序框图输出的结果为( ) A .6 B .7 C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a b ( ) A .12-B .12C .2-D .2 5.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是( ) A.12y x =-B .12y x =C .2y x =-D .2y x =-6.设x y ,满足0202x y x y x -≤⎧⎪+-≥⎨⎪≤⎩,则()221x y ++的最小值为( )A .1B .92C .5D .5 7.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂.成红色...,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为( ) A .14 B .16 C .18 D .208.如图,已知正方体1111ABCD A BC D -的棱长为1,E F ,分别是棱11ADB C ,上的动点,设俯视图主视图1AE x B F y ==,.若棱1DD 与平面BEF 有公共点,则x y +的取值范围是( )A .[]01,B .1322⎡⎤⎢⎥⎣⎦,C .[]12,D .322⎡⎤⎢⎥⎣⎦二、填空题共6小题,每小题5分,共30分.9.已知复数z 满足()12i z +=,则z =_________.10.在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为_________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为_________. 12.已知圆22:20C x x y -+=,则圆心坐标为_________;若直线l 过点()10-, 且与圆C 相切,则直线l 的方程为_________.13.已知函数()2sin 02y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,. ①若()01f =,则ϕ=_________;②若x R ∃∈,使()()24f x f x +-=成立,则ω的最小值是_________. 14.已知函数()||cos x f x e x π-=+,给出下列命题: ①()f x 的最大值为2;②()f x 在()1010-,内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是_________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,2c a =,120B =,且ABC ∆. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基. 某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”. 为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1AOD 位置,使得1120AOB ∠=;如图2,设m 为平面1A DC 与平面1AOB 的交线. (Ⅰ)判断直线DC 与直线m 的位置关系并证明;(Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1AG 的长; (Ⅲ)求直线1AO 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知()()0231A B , ,, 是椭圆()2222:10x y G a b a b+=>>上的两点.AOBCD1图ODCB2图1A(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19.(本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间; (Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在()1+∞,上存在极小值.20.(本小题满分13分)对于无穷数列{}n a 、{}n b ,若{}{}()1212max min k k k b a a a a a a k N *=-∈,,,,,,,则称{}n b 是{}n a 的“收缩数列”. 其中,{}12max k a a a ,,,,{}12min k a a a ,,,分别表示12k a a a ,,,中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若()()1211122n n n n n n S S S a b +-+++=+()n N *∈,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(文科)答案及评分标准 2017.1一、选择题共8小题,每小题5分,共40分。
海淀区高三年级第一学期期末练习数学(理科) 2018.1第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1A. B. C.2)在极坐标系A. B. C. D.(3A.4B.5C.6D.7(4的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5A. B. C. D.(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为A. B. C. D.(7)某三棱锥的三视图如图所示,则下列说法中:②三棱锥的四个面全是直角三角形所有正确的说法是A. ①B. ①②C. ②③D. ①③(8..的是A.4个B.4个C. 4个D. 4个第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9的渐近线的距离是 .(10)已知公差为1100项和为 .(11(12)各项系数的和与各项二项式系数的和之比为64:1,(13)长度的最小值为 .(14的取值范围是;的取值范围为 .三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分).(16)(本小题13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。
为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小.......,速度越快.,单位是MIPS)(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.(17)(本小题14分)如题1.将2.(图中未画出)的体积大小,并说明理由.(18)(本小题13分).(19)(本小题14分).(只需写出结论)(20)(本小题13分),,,.7项;(Ⅲ)求证:条件。