汕头市高三理科数学期末考试试题及其答案
- 格式:docx
- 大小:73.87 KB
- 文档页数:12
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( ) A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65=μ,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b -==,设),,(z y x =为平面PAB 的法向量,则0,0=⋅=⋅,即02=z 且02=-by x ,令b x =,则)0,2,(b =,设),,(r q p =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅n m ,即02=-bb ,故2=b ,于是)2,1,1(-=,)2,2,2(--=,21||||,cos =<DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离5d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为TQ TP TA t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)si n ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(.23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( ) A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65=μ,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b -==,设),,(z y x =为平面PAB 的法向量,则0,0=⋅=⋅,即02=z 且02=-by x ,令b x =,则)0,2,(b =,设),,(r q p =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅n m ,即02=-bb ,故2=b ,于是)2,1,1(-=,)2,2,2(--=,21||||,cos =<DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离5d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为TQ TP TA t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)si n ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(.23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( )A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅DA DC DC DB DB DA ,动点M P ,满足1||=,PM =,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n . 18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b AB AP -==,设),,(z y x m =为平面PAB 的法向量,则0,0=⋅=⋅,即02=z 且02=-by x ,令b x =,则)0,2,(b =,设),,(r q p =为平面PBC 的法向量,则0,0=⋅=⋅BE n PC n ,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅,即02=-bb ,故2=b ,于是)2,1,1(-=,)2,2,2(--=,21||||,cos =>=<DP n ,所以 60,>=<DP n ,因为PD 与平面PBC 所成角和><DP n ,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=,依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=ty tx sin cos 1(t为参数,π≤≤t 0).(2)设)si n ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(. 23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( )A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差2.2=,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b -==,设),,(z y x =为平面PAB 的法向量,则0,0=⋅=⋅AB m AP m ,即02=z 且02=-by x ,令b x =,则)0,2,(b m =,设),,(r q p n =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅,即02=-bb ,故2=b ,于是)2,1,1(-=n ,)2,2,2(--=DP ,21||||,cos =>=<DP n DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E .(ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)sin ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(. 23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
汕头市高三上学期期末统一检测理科数学本试卷共4页,21小题,满分150分.考试用时120分钟.第一部分(选择题 满分40分)一、选择题:本大题共10小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}5,3,1{=A ,集合},,2{b a B =,若A ∩B {1,3}=,则b a +的值是( ).A.10B.9C.4D.72.如图在复平面内,复数21,z z 对应的向量分别是OB OA ,, 则复数12z z 的值是( ). A .i 21+- B .i 22-- C .i 21+ D .i 21-3.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其 中支出在[50,60)元的同学有30人,则n 的值为( ).A.100B.1000C.90D.9004.若向量)1,1(),0,2(==b a ,则下列结论正确的是( ).A .1=⋅ B.||||b a = C .⊥-)( D .//5.如图正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)P-ABCD 的底面边长为6cm ,侧棱长为5cm ,则它的侧视图的周长等于( ).A.17cmB.cm 5119+C.16cmD.14cm6.设命题p :函数y =sin2x 的最小正周期为2π; 命题q :函数y =cosx 的图象关于直线x =2π对称,则下列的判断正确的是( ) A 、p 为真 B 、⌝q 为假 C 、p ∧q 为假 D 、p q ∨为真7、若(9,a )在函数2log y x =的图象上,则有关函数()x x f x a a -=+性质的描述,正确提( )A 、它是定义域为R 的奇函数B 、它在定义域R 上有4个单调区间C 、它的值域为(0,+∞)D 、函数y =f (x -2)的图象关于直线x =2对称8、计算机中常用的十六进制是逢16进1的数制,采用数字0-9和字母A-F 共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E +D =1B ,则A×B =( )A 、6EB 、72C 、5FD 、5F D 、B0第二部分 (非选择题 满分110分)二、填空题:本大题共6小题,每小题5分,满分30分.(一)必做题:.9、已知数列{n a }的前几项为:1925,2,,8,,18222---⋅⋅⋅用观察法写出满足数列的一个通项公式n a =___10、72()x x -的展开式中,x 3的系数是____(用数字作答)11、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,c = A +B =2C ,则sinB =____12、已知x >0,y >0,且19x y+=1,则2x +3y 的最小值为____ 13、设f (x )是R 是的奇函数,且对x R ∀∈都有f (x +2)=f (x ),又当x ∈[0,1]时,f (x )=x 2,那么x ∈[2011,2013]时,f (x )的解析式为_____(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14. (坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22cos ρρθ+-3=0的弦长为____15. (几何证明选讲)已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为AB =3,则切线AD 的长为____三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 已知函数1()tan()36f x x π=-(I)求f (x )的最小正周期;(II)求3()2f π的值;(皿)设71(3)22f απ+=-,求sin()cos())4πααππα-+-+的值.17.(本小题满分12分)汕头市澄海区以塑料玩具为主要出口产品,塑料厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(I)若厂家库房中的每件产品合格的概率为0.8,从中任意取出3件进行检验.求恰有1件是合格品的概率;(H)若厂家发给商家20件产品,其中有3件不合格,按合同规定,该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,求该商家可能检验出不合格产品数ξ的分布列及期望E ξ,并指出该商家拒收这批产品的概率。
2022年广东省汕头市第六中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2)C.(1,)D.(,+∞)参考答案:C【考点】双曲线的简单性质.【分析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离小于半径求得a和b 的关系,进而利用c2=a2+b2求得a和c的关系,则双曲线的离心率可求.【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.2. 与的图像关于A.轴对称B.轴对称C.原点对称 D.对称参考答案:B略3. 设是虚数单位,复数是纯虚数,则实数A.-2 B. C. D. 2参考答案:C略4. 已知点是的外心,是三个单位向量,且,如图所示,的顶点分别在轴的非负半轴和轴的非负半轴上移动,是坐标原点,则的最大值为A.B.C.D.参考答案:C5. 已知,,且,则下式一定成立的是()(A)(B)(C)(D)参考答案:C试题分析:由题意得,对于A选项而言,当时,,不成立;对于B选项而言,当时,,不成立;对于C选项而言,,成立;对于D选项而言,当时,,不成立,综合故选C.考点:1.指数函数的性质;2.对数函数的性质.6. 已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象( )A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称参考答案:D【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】由周期求出ω=2,故函数f(x)=sin(2x+φ),再根据图象向右平移个单位后得到的函数 y=sin(2x﹣+φ]是奇函数,可得φ=﹣,从而得到函数的解析式,从而求得它的对称性.【解答】解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,又|φ|<,故φ=﹣,故函数f(x)=sin(2x﹣),故当x=时,函数f(x)=sin=1,故函数f(x)=sin(2x﹣)关于直线x=对称,故选:D.【点评】本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.[来源:Z_xx_]7. 四棱锥的五个顶点都在一个球面上,该四棱锥三视图如右图所示,、分别是棱、的中点,直线被球面所截得的线段长为,则该球表面积为A. B.C. D.参考答案:D略8. 已知,则()A. B. C. D.参考答案:D.考点:诱导公式.9. 如图,一个空间几何体的正视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的内切球表面积为()A. B. C. D.参考答案:D10. 若的展开式中第三项与第五项的系数之比为,则展开式中常数项是()A.B.C.-45 D.45参考答案:D,所以展开式的第三项系数为,第五项系数为,所以,解得:n=10。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( ) A .)0,(-∞ B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6π B .向左平移6π C. 向左平移6π D .向左平移6π 5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( )A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||==,2-=⋅=⋅=⋅,动点M P ,满足1||=,=,则2||的最大值是( ) A .443 B .449 C. 43637+ D .433237+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差2.2=,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x-=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b b -==-=,从而0,0=⋅=⋅,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b AB AP -==,设),,(z y x m =为平面PAB 的法向量,则0,0=⋅=⋅AB m AP m ,即02=z 且02=-by x ,令b x =,则)0,2,(b m =,设),,(r q p n =为平面PBC 的法向量,则0,0=⋅=⋅,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b -=,因为面⊥PAB 面PBC ,故0=⋅,即02=-bb ,故2=b ,于是)2,1,1(-=n ,)2,2,2(--=DP ,21||||,cos =>=<DP n DP n ,所以 60,>=<,因为PD 与平面PBC 所成角和><,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E .(ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-. 设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y tx x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x-=,∴x e x f x2)('-=,2)(''-=xe xf ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xxe x g e x e x g , 由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x+≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y t x sin cos 1(t 为参数,π≤≤t 0).(2)设)sin ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(. 23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
参考答案一、选择题:ABCCC ADDBA CC6、试题分析:考点:数学归纳法 当时,原式是()()()k k k k ++++......21, 当时,变为()()()()()2212......32+++++k k k k k k ,二、填空题:13、 0.9 14、 -5 15、或 16、三、解答题:17.本题主要考查等差数列、等比数列、求和公式、不等式等基础知识,同时考查分类讨论思想。
解:(I )设等差数列的公差为d ,由………………………1分得2111()(3)a d a a d +=+,因为,所以………………………2分所以………………………3分1(1),.2n n an n a na S +==………………………4分 (II )解:因为,所以 123111121(1)1n n A S S S S a n =++++=-+………………………6分 因为,所以21122211()11111212(1).1212n n n nB a a a a a a --=++++=⋅=--………………………9分 当0122,21n n n n n n nC C C C n ≥=++++>+时,………………………11分 即所以,当<………………………12分 18、证明:(Ⅰ)BH DC AH DC ⊥⊥, ,…………1分平面,又因为平面………………………3分所以………………………4分(Ⅱ)分别以为轴,建立如图所示的直角坐标系由已知条件不难求得:1,3,3====HC HD HB AH ………………………5分所以, , ,………………………6分又因为点E 为中点,所以点所以,,…………7分设平面的一个法向量为所以⎪⎪⎩⎪⎪⎨⎧=+-=⋅=+=⋅02332302523z y x BE n z x 令解得:, 所以平面的一个法向量为…………9分又平面,所以向量为平面的一个法向量……10分设所求二面角是,所以29293259253353cos =⨯++==θ……12分 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望 等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.解:(Ⅰ)(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为,则,………………………2分得到.故白球有5个.………………………3分(ii )随机变量的取值为0,1,2,3,分布列是………………………4分0 1 2 3………………………6分注解:(每算对2各给1分)的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=.………………………8分 (Ⅱ)证明:设袋中有个球,其中个黑球,由题意得,所以,,故.………9分记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则.………11分所以白球的个数比黑球多,白球个数多于,红球的个数少于.故袋中红球个数最少.………12分20. 解:(Ⅰ)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.………1分设直线l 的方程为y =k (x -4),………2分圆C 1的圆心到直线l 的距离为d ,因为圆C 1被直线l 截得的弦长为23,所以d =22-32=1. ………3分 由点到直线的距离公式得d =|1-k -3-1+k 2,………4分 从而k (24k +7)=0,即k =0或k =-724,………5分 所以直线l 的方程为y =0或7x +24y -28=0. ………6分(Ⅱ)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).………7分 因为圆C 1和C 2的半径相等,且圆C 1被直线l 1截得的弦长与圆C 2被直线l 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即 |1-k -3-a -b |1+k 2=|5+1k -a -b |1+1k2,………9分 整理得|1+3k +ak -b |=|5k +4-a -bk |,………10分从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,………11分 解得⎩⎨⎧ a =52,b =-12,或⎩⎨⎧ a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.………12分21.解(Ⅰ)在[,e]上单调递减,0)1()(2,≤+-+=∴a xa ax x f 在[,e]上恒成立………………………1分 方法一: x x a a 1112+≤+∴在[,e]上恒成立………2分令),1(1)(⎥⎦⎤⎢⎣⎡∈+=e e x x x x g ),1(11)(2,⎥⎦⎤⎢⎣⎡∈-=e e x x x g 令则0)(11,<<≤x g x 时当; 0)(1,><≤x g e x 时当11111)(2+≥+∴+≤+=∴e e x x e e x x x g ………4分 0))(1()1(112222≥--=++-∴+≤+∴e a ea e a e ea e e a a……………6分方法二:(可做如下分类讨论)(1)当时,结论显然成立………………………2分(2)当时,可化为:对任意[,e]上恒成立………3分显然,当时,对钩函数在上是减函数,在上是增函数。
2024年广东汕头市数学高三第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.命题p :2(1,2],20()x x x a a ∀∈--+≥∈R 的否定为A .2000(1,2],20()x x x a a ∃∈--+≥∈R B .2(1,2],20()x x x a a ∀∈--+<∈R C .2000(1,2],20()x x x a a ∃∈--+<∈R D .2(1,2],20()x x x a a ∀∉--+<∈R2.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线C .抛物线D .圆3.函数||1()e sin 28x f x x =的部分图象大致是( ) A . B .C .D .4.231+=-ii( )A .15i 22-+ B .1522i -- C .5522i + D .5122i - 5.设等比数列{}n a 的前项和为n S ,若2019201680a a +=,则63S S 的值为( ) A .32B .12C .78 D .986.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<7.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .28.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A .B .C .D .9.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且10.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( )A .若//αβ,则l//mB .若αβ⊥,则l m ⊥C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥11.如图,PA ⊥平面ABCD ,ABCD 为正方形,且PA AD =,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为( )A .26B .33C 3D .2312.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( ) A 15 B .15C 15D 215二、填空题:本题共4小题,每小题5分,共20分。
广东省汕头市高三上学期期末教学质量监测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合)}21ln(|{x y x A -==,}|{2x x x B <=,全集B A U =,则=)(B A C U ( )A .)0,(-∞B .]1,21[ C . )0,(-∞]1,21[ D .]0,21(-2.设复数i z 21231+=,i z 432+=,其中i 为虚数单位,则=||||220161z z ( ) A .20152 B .20161 C .251 D .51 3.圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 4.函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位 A .向左平移6πB .向左平移6πC. 向左平移6πD .向左平移6π5.函数)0)(6sin(>+=ωπωx y 的图象大致是( )6.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12 C. 17 D .347.假设你家订了一份牛奶,奶哥在早上6:00~7:00之间随机地把牛奶送到你家,而你在早上6:30~7:30之间随机第离家上学,则你在理考家前能收到牛奶的概率是( ) A .81 B .85 C.21 D .87 8.设等比数列}{n a 的前n 项和为n S ,则“01>a ”是“23S S >”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9.将二项式6)2(xx +展开式各项重新排列,则其中无理项互不相邻的概率是( ) A .72 B .351 C. 358 D .247 10.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >>11.设)2,0(,πβα∈,且ββαcos 1tan tan =-,则( ) A .23πβα=+ B .22πβα=+ C. 23πβα=- D .22πβα=- 12.在平面内,定点D C B A ,,,满足||||||DC DB DA ==,2-=⋅=⋅=⋅DA DC DC DB DB DA ,动点M P ,满足1||=AP ,MC PM =,则2||BM 的最大值是( ) A .443 B .449 C. 43637+ D .433237+ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“若81log 2,则81log 2”的否命题为 . 14.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .15.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,C B A ,,三地位于同一水平面上,这种仪器在C 地进行弹射实验,观测点B A ,两地相距100米,60=∠BAC ,在A 地听到弹射声音比B 地晚172秒(已知声音传播速度为340米/秒),在A 地测得该仪器至高点H 处的仰角为30,则这种仪器的垂直弹射高度=HC .16.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列}{n a 的前n 项和n S 满足12a a S n n -=,且321,1,a a a +成等差数列.(1)求数列}{n a 的通项公式; (2)设11++=n n n n S S a b ,求数列}{n b 的前n 项和n T .18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=.(1)证明:⊥PC 平面BED ;(2)设二面角C PB A --为90,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表: 直径/mm 585961 62 63 64 65 66 67 68 69 70 71 73合计 件数1 1 3 5 6 19 33 18 4 42 1 2 1100经计算,样本的平均值65=μ,标准差2.2=σ,以频率值作为概率的估计值.(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①6826.0)(≥+≤<-σμσμX P ; ②9544.0)22(≥+≤<-σμσμX P ;③9974.0)33(≥+≤<-σμσμX P .评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于σμ2-或直径大于σμ2+的零件认为是次品.(ⅰ)从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望)(Y E ; (ⅱ)从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望)(Z E . 20.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.21.(本小题满分12分)已知2)(ax e x f x -=,曲线)(x f y =在))1(,1(f 处的切线方程为1+=bx y .(1)求b a ,的值;(2)求)(x f 在]1,0[上的最大值;(3)证明:当0>x 时,01ln )1(≥---+x a x e e x.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.23. (本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2. (1)求b a +的值;(2)证明:22>+a a 与22>+b b 不可能同时成立.试卷答案一、选择题1-5 CDADD 6-10CDCAB 11、12:DB二、填空题13.若1<x ,则1242-<+-x x 14.3315.3140米 16.2±三、解答题17.(1)由题意,当2≥n 时,1112a a S n n -=--,又因为12a a S n n -=,且1--=n n n S S a ,则)2(21≥=-n a a n n ,所以1231242,2a a a a a ===,又321,1,a a a +成等差数列,则312)1(2a a a +=+,所以1114)12(2a a a +=+,解得21=a ,所以数列}{n a 是以2为首项,2为公比的等比数列,所以nn a 2=. (2)由(1)知221-=+n n S ,∴221221)22)(22(221211---=--=+++++n n n n n n b , ∴)221221()221221()221221(214332---++---+---=++n n n T 22121221221222--=---=++n n .18.(1)解法一:因为底面ABCD 为菱形,所以AC BD ⊥,又⊥PA 底面ABCD ,所以BD PC ⊥. 设F BD AC = ,连结EF ,因为EC PE PA AC 2,2,22===,故2,332,32===FC EC PC ,解法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系xyz A -,设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P -,于是)32,,32(),32,,32(),2,0,22(b DE b BE PC -==-=,从而0,0=⋅=⋅DE PC BE PC ,故DE PC BE PC ⊥⊥,,又E DE BE = ,所以⊥PC 平面BDE .(2))0,,2(),2,0,0(b AB AP -==,设),,(z y x m =为平面PAB 的法向量,则0,0=⋅=⋅AB m AP m ,即02=z 且02=-by x ,令b x =,则)0,2,(b m =,设),,(r q p n =为平面PBC 的法向量,则0,0=⋅=⋅BE n PC n ,即0222=-r p 且03232=+-r bq p ,令1=p ,则bq r 2,2-==,所以)2,2,1(b n -=,因为面⊥PAB 面PBC ,故0=⋅n m ,即02=-bb ,故2=b ,于是)2,1,1(-=n ,)2,2,2(--=DP ,21||||,cos =>=<DP n DP n DP n ,所以 60,>=<DP n ,因为PD 与平面PBC 所成角和><DP n ,互余,故PD 与平面PBC 所成角的角为30.19.(1)由题意知道:6.713,4.583,4.692,6.602,2.67,8.62=+=-=+=-=+=-σμσμσμσμσμσμ,所以由图表知道:6826.080.010080)(>==+≤<-σμσμX P 9544.094.010094)22(<==+≤<-σμσμX P 9974.098.010098)33(<==+≤<-σμσμX P 所以该设备M 的性能为丙级别.(2)由图表知道:直径小于或等于σμ2-的零件有2件,大于σμ2+的零件有4件共计6件 (i )从设备M 的生产流水线上任取一件,取到次品的概率为5031006=, 依题意)503,2(~B Y ,故2535032)(=⨯=Y E . (ii )从100件样品中任意抽取2件,次品数Z 的可能取值为0,1,2,16505)2(,1650188)1(,16501457)0(210009426210019416210029406=========C C C Z P C C C Z P C C C Z P故253165019816505216501881165014570)(==⨯+⨯+⨯=Z E . 20.解:圆M 的标准方程为25)7()6(22=-+-y x ,所以圆心)7,6(M ,半径为5.(1)由圆心在直线6=x 上,可设),6(0y N ,因为N 与x 轴相切,与圆M 外切,所以700<<y ,于是圆N 的半径为0y ,从而0057y y +=-,解得10=y .因此,圆N 的标准方程为1)1()6(22=-+-y x .(2)因为直线OA l //,所以直线l 的斜率为40220-=-.设直线l 的方程为m x y +=2,即02=+-m y x ,则圆心M 到直线l 的距离d ==因为BC OA === 而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得5=m 或15-=m .故直线l 的方程为052=+-y x 或0152=--y x . (3)设),(,),(2211y x Q y x P .因为TQ TP TA t T A =+),0,(),4,2(,所以⎩⎨⎧+=-+=421212y y t x x ……①因为点Q 在圆M 上,所以25)7()6(2222=-+-y x ,将①代入②,得25)3()4(2121=-+--y t x .于是点),(11y x P 既在圆M 上,又在圆25)3()]4([22=-++-y t x 上,从而圆25)7()6(22=-+-y x 与圆25)3()]4([22=-++-y t x 有公共点,所以55)73(]6)4[(5522+≤-+-+≤-t ,解得21222122+≤≤-t .因此,实数t 的取值范围是]2122,2122[+-.21.(1)ax e x f x2)('-=,由题设得b a e f =-=2)1(',1)1(+=-=b a e f ,解得2,1-==e b a .(2)由(1)知2)(x e x f x -=,∴x e x f x 2)('-=,2)(''-=x e x f ,∴)('x f 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增,所以02ln 22)2(ln ')('>-=≥f x f ,所以)(x f 在]1,0[上单调递增,所以1)1()(max -==e f x f .(3)因为)('x f ,又由(2)知,)(x f 过点)1,1(-e ,且)(x f y =在1=x 处的切线方程为1)2(+-=x e y ,故可猜测:当1,0≠>x x 时,)(x f 的图象恒在切线1)2(+-=x e y 的上方.下证:当当0>x 时,1)2()(+-≥x e x f设0,1)2()()(>+--=x x e x f x g ,则2)(''),2(2)('-=---=xx e x g e x e x g ,由(2)知,)('x g 在)2ln ,0(上单调递减,在),2(ln +∞上单调递增, 又12ln 0,0)1(',03)('<<=>-=g e x g ,∴0)2(ln '<g , 所以,存在)1,0(0∈x ,使得0)('=x g ,所以,当),1(),0(0+∞∈ x x 时,0)('>x g ;当)1,(0x x ∈时,0)('<x g ,故)(x g 在),0(0x 上单调递增,在)1,(0x 上单调递减,在),1(+∞上单调递增,又0)1()0(==g g ,∴01)2()(2≥----=x e x e x g x ,当且仅当1=x 时取等号,故0,1)2(>≥--+x x xx e e x .由(2)知,1ln 1)2(+≥≥--+x x x x e e x ,即1ln 1)2(+≥--+x xx e e x , 所以x x x x e e x +≥--+ln 1)2(,即0ln 1)1(≥---+x x x e e x 成立,当1=x 时,等号成立. 22.解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=t y tx sin cos 1(t 为参数,π≤≤t 0).(2)设)sin ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(. 23.(1)∵0,0>>b a ,∴2|||||)()(|||||)(=+=+=--=---≥++-=b a b a b a b x a x b x a x x f .(2)∵0,0>>b a 且2=+b a ,由基本不等式知道:22=+≤b a ab ,∴1≤ab 假设22>+a a 与22>+b b 同时成立,则由22>+a a 及0>a ,得1>a同理1>b ,∴1>ab ,这与1≤ab 矛盾,故22>+a a 与22>+b b 不可能同时成立.。
汕头市高三理科数学期末考试试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A ={x| y =1 n(1 -2x)},B = {x| X _x},全集U = AU B,则C u(Ap]B)=()A . (「:,0)B . (-2‘1]C .2—1(-::,0)U[「1]2D. 1(-評2.复数z = a bi a,b R , i是虚数单位,Z是Z的共轭复数,则下列判断正确的是()A. Z Z是纯虚数B. Z2_0C.Z的虚部为-biD.2若Z ^-1,则z=「i 3.下列叙述中正确的是( )2 A .若a,b, G€ R,贝U G是a, b的等比中项”的充要条件是G =ab”B .在△ABC中,若AB BC :::0,则A ABC为钝角三角形C.命题对任意x€ R,有x2> 0的否定是存在x€ R,有x2> 0”D •若a, b是异面直线,直线c平行于直线a,则c与b不可能是平行直线4•设a, b是两个非零向量•则下列命题为真命题的是(A.若|a - b|=|a| -|b|C.若a _b,则|a b|=|aHb| 5•已知向量a = (3, - 2), b = (x,8B.8B .若|a +b|=|a|—|b|,则存在实数入,使得a =丸bD •若存在实数人使得a = kb,贝U |a+b|=|a|—|b| y- 1),且a // b,若x, y均为正数,则D. 246.已知函数f(x)= cosxsin2x,下列结论中错误的是( )A. y= f(x)的图像关于点(n 0)中心对称 B . y= f(x)的图像关于直线x=n对称C. f(x)既是奇函数,又是周期函数 D . f(x)的最大值为-27•如图所示是一个几何体的三视图,正视图是一等腰直角三角形,且斜边BD=2,侧视图是一直角三角形,俯视图是一直角梯形,且则异面直线PB与CD所成角的正切值是(AB=BC=1,A. 1 B . 2 CL D .2■ffi視国8. 在等比数列{ a n}中,a n>0(n € N ),公比q € (0,1),且a i a5+ 2a3a5+ a2a8= 25,又a3与a5的等比中项为2,b n = log2 a n,数列{b n}的前n项和为S n,则当学+ +…+詈最大时,n的值等于()A.8B.9C.8 或9D. 179. 函数f (x )=x x,若存在1,畑),使得f (x—2k )—k cO,则k的取值范围是()A. 2,亠]B. 1,亠]C. I 1, .: : l'D. 11::[0,F )上的函数 f (x)满足 2 f (x^ f (x)=11 ,f(—)-^=,其中f(x)是函数f(x)的导函2 2、、2e10.已知 cos 2 : " £,则讥—()A. 4 -2 3B.C. 4—4,3D. 4、、3_411.已知数列 比为3:1 , A.1023「a n ?各项为正数,a^1 , △ABC 所在平面上的点 P n n • N ”均满足△ R AB * P .AC 的面积1P n A • — a n 1 RB • 2a n • 1 P n C =0,则 a 10 的值是()3B.1024C.2048D.20491 1 a b数,若对任意正数 a , b 都有f(si n v) " 2 •二2 a e b 64 ,则二的取值范围是( 5■: A . [2 k 二,2k ]U [2k ::"— ,2 k 二二](k Z ) 6 6 C . [2k 二,2k ]U[2k 「: Z ,2k M :;F ] ( k Z ) 3 3 兀 5兀 B . [2 k ,2 k ] ( k Z )6 62 - D . [2 k ,2 k ] ( k Z )3 3 二、填空题:本题共4小题,每小题5分,共20分. 13.已知 y = f(x) + x 2 是奇函数,且 f(1) = 1.若 g(x) = f(x) + 2,则 g(- 1)= 14.若两个向量a 与b 的夹角为二,则称向量“ a b ”为“向量积”, 其长度a 乂 b = ■ b sin8 .已知 a=1,b=5 , ab=-4,贝U a^b = I xg x 亠y 15.已知点P x, y 的坐标满足 y _ x,则一 _____________ __ 的取值范围是 — 2x+1, A y 2 16•如下图所示将若干个点摆成 三角形图案,每条边(色括两个端点)有 n (n>l , n € N *)个点,相应的图案中总的点数记为a n ,则 9 9 9 9—a 2 a 3 印比 &2017&2018 [来源:Z#xxn=5三、解答题:共70分,解答应写出文字说明、证明过程或者演算步骤。
第 22,23题为选考题,每题10分,考生根据要求作答。
17〜21题为必考题,每题 12分,第12.定义在17. (本小题满分12分)已知函数 f x = 2 3sinxcosx-3sin 2x-cos 2x 3.(i)当x时,求f x 的值域;(n)若 MBC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足b=屈sin (2A +C )=2+2cos (A+C 'a sin Av求f B 的值.18. (本小题满分12 分)DO 二 EB =1 , AB = 4.(i)求证:DE _平面AOD ;(n)若AO 二BO ,求平面 AED 与平面ABE 所成的锐二面角的余弦值19. (本小题满分12分)如图,AB 是圆C 的直径,O 是圆C 上异于 代B 的一点, DO _ BO , DO // EB , AO _ OE ,AD1已知数列:a n/前n项和为S n, 31=-2,且满足S n a n d - n • 1 ( n • N * ).2(I)求数列G n?的通项公式;(n)若b n =log3(-a n V),求数列;.:;:-「bn -前n 项和为T n.20. (本小题满分12分)X2 y2已知椭圆::- (a b 0)的右焦点F(1,0),椭圆】的左,右顶点分别为M ,N.过点F的直线l与a b椭圆交于C,D两点,且厶MCD的面积是厶NCD的面积的3倍.(I)求椭圆丨的方程;(n)若CD与x轴垂直,A, B是椭圆:上位于直线CD两侧的动点,且满足.ACD=/BCD,试问直线AB的斜率是否为定值,请说明理由.21. (本小题满分12分)已知函数f (x)二a x- x2—X ln a (a 0 且a = 1) *昭(I)求函数f(x)在点(0, f(0))处的切线方程;(n)若存在^,x^ 1-1,1】,使得f (xj —f (x2) ^e—1 ( e是自然对数的底数),求实数a的取值范围22 .选修4-4 :坐标系与参数方程在极坐标系中,曲线C的极坐标方程为2 1 . 2sin2v - 3,以极点为原点,极轴为x轴的正半轴建立平面直「X = t角坐标系,直线I 的参数方程为(t 为参数)•l y =6+t(I)写出曲线 C 的参数方程和直线I 的普通方程;(n)已知点P 是曲线C 上一点,求点P 到直线I 的最小距离.23 .选修4-5 :不等式选讲已知函数 f (x )= x — m + x +彳(m ^ R ), g (x )=|2x —1+3.(I)当m=1时,求不等式f x <5的解集;(n)若对任意的x^ R ,都有X 2 • R ,使得f 为i=g x 2成立,求实数 m 的取值范围.汕头市高三理科数学期末考试参考答案222222 匚可得-嘉,由余弦定理可得co如—i汙=为占=亍 心0.由正弦定理可得sinC =2sinA =1,C =90:,由三角形的内角和可得 B =60;,. f B = f 60 =2.1~12 CDDBC DCCDB AB13. -114. 315.2016 16.201717: ( I )22 1 -cos2x 1 cos2x「xa3sinxcosx -3sinx-cosx3『3sin2x-3 —2-一 -------------------------- 3=3 sin 2x+ cos2x 1 = 2sin 12x —sin 2x -I 丄,1 ,. f x ;=2sin 2x 10,31.小丨I6丿6 2' (n ):sin 2A C =2 2cos AC, sin 2A C ]=2sin A 2sin Acos AC , sin Asin Acos A C cosAsin A C 二 2sin A 2sin Acos AC ,-si n Acos A C cosAsi n A C = 2si nA 即 sin C = 2si nA ,由正弦定理可得 c = 2a ,又由-318. (1)因为AB是圆C的直径,0是圆C上异于A, B的一点,••• AO_BO.又因为DO _ B0,又AO" DO =0,所以B0_平面AOD又因为DO// EB , DO =EB,•四边形BODE是平行四边形.BO// DE,所以DE_ 平面AOD(2)由(1)知AO丄BO ,又因为AO丄OE ,又BO「|OE=O,所以AO丄平面BOED ,•- AO丄OD ,又因为DO丄BO , AO丄BO 所以,以O为原点建立如图所示空间直角坐标系,则A(2.2O,O), D(0,0,1), B(0,2、20), E(02、2,1),AD =(—2返,0,1), DE=(0, 2/2,0),AB =^2.2, 2.2,0) , BE =(0,0,1).设ni = (x, y, z)为平面ADE的法向量,则n1 AD - -2、2x z = 0n1DE = 2 ■< 2y = 0x = 1,得冷=(1,0,2 J2).设n2 = (x i, y i,z i)为平面ABE的法向量,则“2住「2玉2补0,令x1=1,得n2=(1,1,0). n2 BE =乙=0所以cos九小忌=3ir普,•平面AED与平面ABE所成的锐二面角的余弦值为丄261 *19. (I)引—2,由S =尹・1 n 1( nN),得昭两式相减得3a n=a n「2, (n _2) .................由3a n = a n 1 2 得到3(a* -1) = a* 1 -1 ,1当n =1 时,a =§a2+2门a2=2^ —4 = —8,满足3佝—1) = a2—1又a1 -1 = -3 ' 0,所以{a* -1}为以-3为首项以3为公比的等比数列,a* T =(-3) 3’ = -3. 故a n = -3n 1. ........................................ 6 分=詁n(n -2),(n) b n =log3(-a. 1) = Iog33n=n , 1 6 a. - 1n 312 2则椭圆-的方程为 — y 14 3(II )当.ACD 二/BCD ,则k AC k BC 设直线AC 的斜率为k ,y -一 =k x -1,代入—y 1中整理得2433 4k 2x 2-4k 2k-3 x 4k 2-12k-3 = 0, 同理 1 X 2 =4k 2k 23 (3 + 4k 2)% _x 21因此直线AB 的斜率是定值-2解法二:2 2(ll )依题意知直线 AB 的斜率存在,所以设 AB 方程:y = kx • m 代入—=1中4 3整理得(4k 23)x 2- 8kmx 4m 2T2 = 0,设 A x l ,y 1 , B x 2, y 2 , 28km4m -12所以 x 1 x 22, x 1x 2厂当n 为偶数时,T n = -1 • 2 厂i • 3 • 4 •- n -1 • nn 13 - n - 32 n_13 1-3n 3n1-3 n-4n n 二 1—3 当n为奇数时,T n = 2 •3T 川3♦专罟11分3n 1 一n 一3 综上,T n =3^1-4 n 为偶数, n 为奇数. 12分 20: 解法一:(I )因为△ MCD 的面积是厶 NCD 的面积的3倍,所以 MF =3NF ,即 a c=3 a-c ,所以a =2c = 2,所以b 2 =3,8k 2-6 x2 _34k 2,-24kx1 "x ^3 4k 2,10分则k AB屮一y k 片 x2 _2k=0,则直线BC 的斜率为-k ,f 3、、丄C 1,2,设 AX 1, y , B X 2,y 2 , 3 2 2不妨设点C 在x 轴上方,4k 2k -3 ; _ 2 ?3 4k 2则AC 的直线方程为12分4k +3 4k +33:-64k 2m 2—4(4k 23)(4m 2—12)=16(12k 2—3m 29) 0当NACD=NBCD ,则k Ac+k Bc=°,不妨设点C 在x 轴上方,C.1=,33y1% _232 2二 0,整理得 2kx 1X 2 (m )(x 1 X 2) -2m 3 = 0,所以24m -12 , 3 8km 、 所以 2k 2(m )( 2 )—2m 3 = 0,4k +32 4k +3整理得 12k 212(m -2)k9 -6m =0 ,即(6k-3)(2k 2m-3) =0,所以 2k 2m-3 = 0或 6k-3=0 .f 3、1当2k ・2m-3=0时,直线 AB 过定点C 1,,不合题意;当6k-3=0时,k,符合题意,I 2丿 21所以直线 AB 的斜率是定值 一. .................... 12分221.解:(I )因为函数 f(x) =a x + x 2-xlna(a .0,a=1),所以 f (x) =a x ln a + 2x -ln a , f (0) = 0 , ............................................................. 2 分 又因为f(0)=1,所以函数f (x)在点(0, f(0))处的切线方程为 y=1. ............ 3分(II )因为存在人兀[-1,1],使得|f(xj -f(X 2)| > e_1成立,而当 X [-1,1]时,| f(X 1) - f(X 2)| < f(X )max - f (x)min ,所以只要f(X )max 二(X)min > e -1即可. ...................................... 4分 由( I ), f"(x)=a X l n a + 2x -l na=2x + (a x -1)ln a .2 x得 f (x) =2 + ln a a因为当a 0,a -1时,总有f“(x)・0,所以f (x)在R 上是增函数, ................................. 5分 又 f (0) =0,所以X , f (x) , f (x)% -1x 2 -110分f x的最大值f x max为f —1和f 1中的最大值. 7分所以f(x)在[-1,0]上是减函数,在[0,1]上是增函数,所以当xq—1,1]时,f(x )的最小值f (x m in= f (0 )=1 ,f x 的最大值f x max 为f —1和f 1中的最大值. 7分因为 f ⑴-f (_1) = (a +1-1 n a) - (— +1 + In a) = a - - - 2l n a , aa 令 g(a)二a — 21 n a(a 0),因为 g (a) =1 + — (1 ) 0, aa a a 1所以g(a)二a 2ln a 在a 三iQ1、1 ,+ ::上是增函数.而 g(1)=0,故当 a 1 时,g a 0,即 f(1).f(_1);当 0 ::: a d 时,g a ::: 0 ,即卩 f(1) ::: f(—1). ....................................... 9 分所以,当 a 1 时,f(1)_f(0) > e -1,即 a-1 na > e_1 ,函数y=a-lna 在a (1,;)上是增函数,解得 a> e ; ................................ 10分1当 0 ::: a :::1 时,f(_1) — f(0) > e -1,即 In a > e —1,a1 1函数y In a 在a • (0,1)上是减函数,解得0 ::: a < - . .............................................. 11分a e综上可知,所求 a 的取值范围为 a (0,观[e, + -) . .................................................. 12分e2 2 221.( I )由曲线C 的极坐标方程得::-22sin 為-3 ,直线l 的普通方程为:y-x=6.(II)设曲线C 上任意一点P 为、、3cos 〉,si ,则• d min -2 2 .22. (I)当 m = 1 时,f (x )= x —1 + x+2①当 x 乞 一2时,f x =1 —x —x - 2 =—2x — 1,由—2x —1 空 5,解得 x - 一3,所以 一3 岂 x 乞-2 ;②当-2 x <1时,f x 计1 -x • x • 2 =3乞5恒成立,所以-2 x < 1 ;•••曲线C 的直角坐标方程为 2 :—y^ 1,曲线C 的参数方程为 3 x= 3cos-y = si n : (为参数);点P 到直线l 的距离为d = |y/3cosa -sin^ +6、-2③当x _1 时,f x;=x -1 • x • 2 = 2x • 1,由2x 5,解得x 岂2,所以1 岂x 乞2 ; 综上所述,不等式f x <5的解集为[0,2 ].(II )若对任意的x「R,都有沁 R,使得f为]=g X2成立,设A = ?y|y=f x j;,B=:y|y=g x 贝U A二B,因为f(x)=|x_m + x+2 斗(x_m)_(x+2 j=|m+2 ,g (x )= 2x_1| +3 A3 ,所以m+2 >3,解得m z l或m兰一5 ,因此,实数m的取值范围为(_QO,_51;[1,咼).。