电站1号机组烟气脱硫系统整套启调试报告
- 格式:doc
- 大小:190.00 KB
- 文档页数:23
公司1、2号机组烟气脱硫工程整套启动调试报告电厂位于广东省台山市铜鼓镇,电厂首期为2×600MW燃煤火力发电机组,每台机组建设一套石灰石-石膏湿法烟气脱硫装置,用于处理该机组在BMCR工况下100%的烟气,脱硫率大于等于95%。
锅炉引风机后的烟气经过脱硫增压风机和气—气换热器,进入鼓泡式吸收塔脱硫。
净化后的烟气经过气—气换热器再热,然后从现有烟囱中排入大气。
该工程由北京博奇电力科技有限公司总承包,采用了日本EBARA荏原制作所的CT-121FGD技术。
其中石灰石制浆系统、石膏脱水系统、事故罐、工艺水系统为两套共用;增压风机冷却水使用电厂闭冷水。
2004年11月11日到11月18日完成1号机组烟气脱硫装置的整组调试,报告如下:1.设备系统概述1.1主要设计数据1.1.1 原煤台山电厂燃用神府东胜煤。
锅炉设计使用的原煤资料如表1所示。
表1 锅炉设计使用的原煤资料表2 煤质微量元素含量表1.1.2 电厂主要设备参数与脱硫系统有关的主设备参数见下表3。
表3 1、2号国产机组主要设备参数1.1.3 气象条件,见下表4。
表4 气象条件1.1.4 锅炉排烟设计参数FGD设计工况为锅炉BMCR工况,燃用设计煤种,FGD入口烟气参数见表5。
表5 FGD入口烟气参数1.1.5 石灰石分析资料,见表6。
表6 石灰石样品参数1.1.6 工业水分析资料,见表7。
表7 工业水分析参数1.1.7 闭式循环水闭式循环冷却水的水质为除盐水,水温≤38°C,水压约0.5~0.6MPa(g)。
除盐水水质如下:硬度:约0μmol/L二氧化硅:≤20μg/L电导率(25℃):≤0.2μS/cm1.1.8 配电电压等级功率<185kW的电机电压为380V 功率>185kW的电机电压为6000V 高压电源(AC/交流)电压:6000V±5% 频率:50Hz±1% 相:3相低压电源(AC/交流)电压:380V±5% 频率:50Hz±1% 相:3相照明电源(AC/交流)电压:220V 频率:50Hz 相:单相控制电源(DC/直流)电压:220V 相:单相1.2 性能与保证值1.2.1 脱硫率FGD 装置SO 2脱除率不低于95%。
脱硫调试报告模板一、实验目的本次实验旨在对脱硫设备进行调试,测试设备的脱硫效果,并保证设备顺利运行。
二、实验设备和工具2.1 实验设备•脱硫设备•烟气分析仪•温度计2.2 实验工具•计算器•计时器•笔记本电脑三、实验过程3.1 调试前准备1.准备好脱硫设备和相应工具。
2.检查脱硫设备的供电和通风情况。
3.将烟气分析仪和温度计连接到相应的管路上。
4.启动脱硫设备预热。
3.2 调试过程1.调节脱硫设备的进水流量和药剂喷射量,使设备运行顺畅。
2.根据设备要求设置不同的烟气流量和氧含量。
3.通过烟气分析仪,记录不同条件下的SO2和NOx浓度。
4.在不同烟气温度下测试脱硫效率。
3.3 调试结果烟气流量(m3/h)氧含量(%)SO2浓度(mg/m3)NOx浓度(mg/m3)脱硫效率(%)条件一1000 2 150 50 801500 1.5 100 30 85条件二2000 1 50 20 90条件三注:以上结果为实验数据,仅供参考。
四、实验结论经实验测试,脱硫设备的脱硫效率达到了90%以上,符合设计要求。
通过实验结果可以看出,在氧含量较低的情况下,脱硫效率会更高,但是需要控制好烟气温度,确保设备不会受到过高的温度影响。
五、实验总结本次调试过程中出现了一些问题,包括设备温度过高,药剂流量不足等,这些问题都通过调整设备和药剂的运行参数得到了解决。
调试的过程虽然较为繁琐,但是可以帮助我们更好地理解和掌握脱硫设备的运行原理和参数控制方法,从而为今后设备的运行和维护提供有力的支持。
目录1. 设备系统概述2. 调试报告编写依据3. 调试范围4. 组织及分工5. 调试程序6. FGD整套启动调试情况分析7. 168小时满负荷运行8. 调试结论9. 调试质量的检验10 问题与建议附图:168h中典型的CRT上FGD系统画面。
公司1、2号机组烟气脱硫工程整套启动调试报告电厂位于广东省台山市铜鼓镇,电厂首期为2³600MW燃煤火力发电机组,每台机组建设一套石灰石-石膏湿法烟气脱硫装置,用于处理该机组在BMCR工况下100%的烟气,脱硫率大于等于95%。
锅炉引风机后的烟气经过脱硫增压风机和气—气换热器,进入鼓泡式吸收塔脱硫。
净化后的烟气经过气—气换热器再热,然后从现有烟囱中排入大气。
该工程由北京博奇电力科技有限公司总承包,采用了日本EBARA荏原制作所的CT-121FGD技术。
其中石灰石制浆系统、石膏脱水系统、事故罐、工艺水系统为两套共用;增压风机冷却水使用电厂闭冷水。
2004年11月11日到11月18日完成1号机组烟气脱硫装置的整组调试,报告如下:1.设备系统概述1.1主要设计数据1.1.1 原煤电厂燃用神府东胜煤。
锅炉设计使用的原煤资料如表1所示。
表1 锅炉设计使用的原煤资料表2 煤质微量元素含量表1.1.2 电厂主要设备参数与脱硫系统有关的主设备参数见下表3。
表3 1、2号国产机组主要设备参数1.1.3 气象条件,见下表4。
表4 气象条件1.1.4 锅炉排烟设计参数FGD设计工况为锅炉BMCR工况,燃用设计煤种,FGD入口烟气参数见表5。
表5 FGD入口烟气参数1.1.5 石灰石分析资料,见表6。
表6 石灰石样品参数1.1.6 工业水分析资料,见表7。
表7 工业水分析参数1.1.7 闭式循环水闭式循环冷却水的水质为除盐水,水温≤38°C,水压约0.5~0.6MPa(g)。
除盐水水质如下:硬度:约0μmol/L二氧化硅:≤20μg/L电导率(25℃):≤0.2μS/cm1.1.8 配电电压等级功率<185kW的电机电压为380V 功率>185kW的电机电压为6000V 高压电源(AC/交流)电压:6000V±5% 频率:50Hz±1% 相:3相低压电源(AC/交流)电压:380V ±5% 频率:50Hz ±1% 相:3相 照明电源(AC/交流)电压:220V 频率:50Hz 相:单相 控制电源(DC/直流)电压:220V 相:单相1.2 性能与保证值 1.2.1 脱硫率FGD 装置SO 2脱除率不低于95%。
脱硫工程烟气系统调试方案(正式版)清晨的阳光透过窗帘,洒在书桌上,我泡了杯热茶,深深地吸了口,嗯,这味道,正合我意。
脱硫工程烟气系统调试方案,这个任务,我已经构思了好几天,现在,是时候把它写成文字了。
一、项目背景得说说这个项目的背景。
我国近年来对环保的要求越来越高,各大企业都在进行环保改造,我们的任务就是帮助这些企业完成脱硫工程烟气系统的调试,确保其正常运行,达标排放。
二、调试目标我们的目标很明确,就是确保烟气系统在调试过程中,各项指标达到设计要求,同时,降低运行成本,提高系统的稳定性和可靠性。
三、调试内容1.系统设备调试:包括脱硫塔、吸收塔、烟囱等主要设备,我们需要对其逐一进行调试,确保设备运行正常。
2.系统参数调试:主要包括烟气流量、温度、压力、SO2浓度等参数的调试,确保系统运行在最佳状态。
3.控制系统调试:包括PLC编程、DCS调试等,确保系统自动化运行,提高运行效率。
四、调试步骤1.前期准备:包括人员培训、设备检查、工具准备等,这一步非常重要,只有做好充分的准备,才能确保调试工作的顺利进行。
2.设备调试:按照设计要求,对设备进行逐一调试,这里要注意,调试过程中要严格遵守操作规程,确保人身和设备安全。
3.参数调试:在设备调试完成后,对系统参数进行调试,这一步需要根据实际情况进行调整,以达到最佳运行状态。
4.控制系统调试:在设备参数调试完成后,进行控制系统调试,确保系统自动化运行。
五、调试方法1.现场调试:通过现场操作,对设备进行调试,这一步需要我们的工程师具备丰富的经验和熟练的操作技能。
2.远程调试:利用先进的通信技术,对系统进行远程调试,提高调试效率。
3.数据分析:通过收集系统运行数据,进行数据分析,为调试提供依据。
六、调试注意事项1.安全第一:在调试过程中,要始终把安全放在第一位,严格遵守操作规程,确保人身和设备安全。
2.细致入微:调试过程中,要注重细节,对每个环节都要认真对待,确保调试效果。
郴州氟化学有限公司烟气脱硫工程整套启动调试报告湖南有色郴州氟化学有限公司氟化氢反应炉尾气脱硫工项目一、技术说明1设备安装地点湖南有色郴州氟化学有限公司内2公用工程条件3 电源条件低压:三相四线制,380V /220V,中性点直接接地直流:DC 220V频率:50±0.5HZ4 设备订货技术要求(以实际测量值为准)5 装置设计处理烟气量:≤6000m³/h6 甲方提供烟气参数:烟气温度≤70℃;SO2浓度≤35000mg/m37 装置设计排放浓度:≤200 mg/Nm3。
2015年11月到2016年3月18日完成整套机组烟气脱硫装置的整组调试,报告如下:1.设备系统概述1.1主要设计数据1.1.2主要设备参数与脱硫系统有关的主设备参数见下表。
1.3 工艺说明工艺系统原理气动乳化脱硫塔由三部分组成,含硫烟气首先进入均气室,再进入气动乳化过滤元件组,最后通过气液分离室,净化后的烟气出塔并排入大气。
各部件的作用简述如下:均气室的作用是均匀分配烟气给每一过滤元件,使每一过滤元件发挥同等的过滤作用。
烟气分配不均匀,将严重影响过滤器除尘脱硫效率;气动乳化过滤元件组,是过滤器的核心,它提供一个主要是紊流掺混的强传质气动乳化空间,它是烟气净化的主要构件,气动乳化过滤元件的结构,气流速度,布液量都直接影响烟气净化的效率。
气液分离室,用于气液分离,液气分离采用凝并和惯性原理,结构简单,气液分离室还有进一步除尘脱硫的作用。
气动机理气动乳化是一种过程,乳化是一种状态。
气动乳化过程是这样形成的:在一圆形管状容器中,经加速的含硫烟气以一定角度从容器下端进入容器,与容器上端下流的不稳定循环液相碰,烟气高速旋切下流循环液,循环液被切碎,气液相互持续碰撞旋切,液粒被粉碎得愈来愈细,气液充分混合,形成一层稳定的乳化液。
在乳化过程中,乳化液层逐渐增厚,当上流的气动托力与乳化液重力平衡后,最早形成的乳化液将被新形成的乳化液取代。
-报告编号:BEC.DS-TSBG01****2×75t/h+2×130t/h CFB污泥焚烧锅炉石灰石—石膏湿法烟气脱硫系统运行报告(整套系统调试及168小时运行报告)建设单位:****总包单位:杭州****工程设计有限公司二零一四年十二月部门:调试部参加人:编写人:审核:批准:批准日期:2014年12月15日说明: 1. 本报告结果仅对被检样品有效。
2. 未经批准,不得部分复制本技术报告。
目录1、#2烟气脱硫装置的系统简介 (1)1.1 #2脱硫工艺的化学反应 (1)1.2 #2烟气脱硫工艺系统 (1)2、#2脱硫装置调试采用的标准 (4)3、#2脱硫装置调试范围 (4)4、#2脱硫装置调试组织及分工 (4)5、#2脱硫装置调试程序 (4)5.1 #2脱硫系统首次进烟气前的检查 (4)5.2 #2脱硫装置设备的维护 (5)5.3 #2脱硫装置首次进烟气启动 (5)5.4 #2脱硫系统的正常运行 (6)6、#2脱硫装置调试情况 (8)6.1 工艺水系统的主要调整试验 (8)6.2 #2吸收塔系统的主要调整试验 (8)6.3 石灰石浆液系统的主要调整试验 (10)6.4 石膏及脱水系统的主要调整试验 (11)7、#2脱硫装置调试结论 (12)8、#2脱硫装置调试质量的检验 (12)9、#2脱硫装置调试工作的主要进度 (13)附图1:#2脱硫装置168h中典型的CRT上FGD系统画面 (14)168调试运行后双方验收意见151、#2烟气脱硫装置的系统简介1.1 #2脱硫工艺的化学反应吸收塔的主要作用是利用石灰石浆液除去烟气中的二氧化硫。
以石灰石浆液为脱硫剂,由循环浆液泵输送,经喷嘴雾化,对含有SO2的烟气进行喷淋洗涤,使SO2与浆液中的Ca2+发生化学反应生成亚硫酸钙和硫酸钙从而将SO2除掉,并在浆液中鼓入空气,强制使亚硫酸钙转化成二水硫酸钙(石膏)。
浆液中的固体物质连续地从浆液中分离出来,经真空过滤浓缩生成有用的二水硫酸钙(石膏)。
脱硫系统调试、启动方案一、目的烟气脱硫工程的整套启动试运是全面检验脱硫工程主体及其配套的附属设备质量的重要环节,是保证脱硫设备能安全、可靠、经济、有效地投入生产、发挥投资效益的关键性程序,为了优质高效、积极稳妥、有条不紊地做好脱硫工程整套启动调试的各项工作,保证安全生产,降低调试过程中物资消耗,特编制本方案。
二、精心策划,认真组织,做好前期生产准备工作成立运行准备小组职责分工: 1) 领导小组组长是本次启动的总指挥,其余成员负责各项试验、启动操作的协调和技术指导工作。
2) 当班值长负责启动的总体指挥。
3) 当班运行人员负责具体运行操作,并按规程规定进行突发性事故处理。
4) 检修部门对所辖范围设备按照启动试运应具备的条件进行全面检查,并分工明确,落实到责任人。
主动介入,着眼未来,加强机组启动调试全过程管理为了机组投产后的安全经济运行,生产准备人员全面参与基建全过程,运行和设备管理人员参与设备选型、设计审查、系统优化;参与设备的安装与验收;做好机组调试、试运行操作、设备代保管等各项工作。
2.1 优化设计方案,提高设备的安全经济运行水平在机组安装调试及试运行时期,生产准备人员主动介入,参与设备安装与调试工作,理解消化设计意图,熟悉了解设备性能,为以后的设备系统验收、运行操作等做好准备。
由于介入程度较深,能够察觉一些问题症结,提出优化设备系统建议,从而及时消除设计、安装、设备缺陷,提高了设备的可靠性。
2.2 做好设备验收,保证健康的设备移交生产#2炉脱硫系统改造调试启动预案一、#2脱硫系统启动前准备工作(建议此项工作在启机三天前结束)1.检查#2脱硫所有系统设备工作票已终结、所有措施已恢复,并做到工完料尽场地清,现场照明完好。
2.检查#1.2脱硫系统电气系统运行方式正确,#2脱硫系统所有电气设备绝缘合格备用;#1.2脱硫直流系统投入正确。
3.检查#1.2脱硫公用设备、阀门运行状态正确,并对#2塔所属箱、池、管道进行彻底冲洗,确认管道通畅无杂物。
******有限公司******调试报告本工程脱硫采用石灰-石膏脱硫工艺,采用*****吸收塔,本工程新建一座脱硫塔,脱硫塔采用塔釜式结构,浆液区塔体材质选用碳钢内衬玻璃鳞片防腐材料;喷淋区采用不锈钢材料制作。
风冷设备后的烟气进入一台脱硫塔的两个腔室,1# 和2#炉进入一个腔室,3#炉烟气进入一个腔室,能有效的降低运行电耗。
采用塔内循环方式;吸收剂采用生石灰。
除尘采用湿式电除尘器,经脱硫处理后的烟气进入湿电除尘器进行除尘净化,湿电除尘器布置在地面;湿电除尘器布置顶置烟囱,净化烟气通过塔顶烟囱排放,烟囱顶标高为*米。
湿电整体采用玻璃钢材质,外加结构框架固定。
序号参数单位数值备注1 设计洗涤比% *2 脱硫装置入口烟气量m/h *3 设计脱硫效率% *4 脱硫系统阻力Pa *5 系统可利用率% *6 脱硫设计液气比L/m3*7 烟气入口温度℃*8 烟气出口温度℃*9 设计除尘效率% *脱硫后10 除尘系统阻力Pa *11 二氧化硫排放浓度mg/Nm3*12 颗粒物排放浓度mg/Nm3*1.调试概况及特点调试工作分为三个阶段,即单体调试、系统调试和整套启动三个阶段。
2.调试各阶段工作(1)、调试前期工作完成调试文件的编制并及时提交业主。
完成培训计划。
完成技术交底工作。
(2)、单体调试单体调试由安装单位依据设计、设备厂家要求进行,是系统调试前必须进行的工作,单体调试的质量直接影响系统和整套启动的质量。
单体调试内容主要包括以下几点:电气受电PLC 控制机电试转仪表校准管道水压试验、箱罐充水试验及管道冲洗。
引风机试转设备安装及消缺(3)、分系统调试分系统调试是在分部调试的基础上紧接的一项调试工作,分系统的合理安排和调试质量直接为整套启动创造条件,分系统调试由调试单位负责进行。
分系统调试内容包括:● 烟气系统●吸收塔系统●电气系统●公用工艺水系统● 公用石灰石浆液配置及输送系统●公用脱水系统●公用废水系统●仪表检测和自动化控制系统(4)、整套启动脱硫装置整套启动是指脱硫装置首次引入烟气开始到装置移交试生产的整个过程。
黑龙江大唐绥化热电2×350MW 机组烟气脱硫系统工程1号机组脱硫系统调试方案浙江菲达环保科技股份有限公司时间:2017年07月批准: 审核: 校对: 编制:黑龙江大唐绥化热电2×350MW机组烟气脱硫系统工程1号机组脱硫系统调试方案审查签名单---浙江菲达环保科技股份有限公司---大唐绥化热电有限公司批准:年月日总监理师:年月日审核:年月日专业监理师:年月日编制:年月日安全副总监年月日安全监理师年月日项目公司工程部负责人:年月日专业工程师:年月日项目公司安监部负责人:年月日安全主管:年月日目录一、调试目的 (1)二、1号机组脱硫系统概况 (1)1.烟气系统概况 (1)2.吸收塔系统概述 (1)三、编写依据 (2)四、调试前应具备的条件 (2)4.1一般性要求 (2)4.2烟气系统具体要求 (3)4.3吸收塔系统具体要求 (3)4.4整套试运现场条件 (3)4.5组织机构、人员配备和技术文件准备 (4)五、调试项目和程序 (5)六、系统的联锁和保护试验 (8)6.1 试验目的 (8)6.2 FGD烟气系统允许投运条件 (9)6.3 FGD烟气系统的总保护联锁 (9)6.4 试验方法 (9)七、FGD系统冷态调整试验 (9)7.1 试验目的 (9)7.2 试验前应具备的条件 (9)7.3 试验内容 (10)7.4 试验步骤 (10)八、系统通烟气启动 (10)8.1 启动前的检查 (10)8.2 设备的维护 (11)8.3 FGD系统启动 (11)九、FGD系统正常运行 (11)9.1 稳定运行 (12)9.2 系统运行中的检查和维护 (12)十、FGD系统正常停运 (14)10.1 长期停运 (14)10.2 短期停运 (15)10.3 脱硫系统电力中断时的状况 (16)10.4 停运后检查及注意事项 (16)十一、安全注意事项 (16)十二、调试质量目标和计划 (18)一、调试目的FGD系统在安装完毕并完成单体、分系统试运后,须通过规定时间的整套试运行,对设计、施工和设备质量进行全面考核。
烟气脱硫调试报告记录————————————————————————————————作者:————————————————————————————————日期:***热电有限责任公司***分公司1、2号热水锅炉脱硫改造工程调试报告****环保设备制造有限公司2015年12月目录一、概述 (2)二、工程概况 (2)三、前期准备 (3)四、试运过程 (4)五、调试的质量控制 (7)六、试运过程出现的问题及处理结果 (8)七、结论 (8)八、启动/运行的几点建议及注意事项 (9)1、浆液制备与输送系统 (9)2、烟气系统 (9)3、气力输灰系统 (9)九、其他相关事宜 (9)一、概述***热电有限公司***热力分公司2×29mw锅炉脱硫改造工程,是由哈尔滨菲斯德环保设备制造有限公司总承包承建,采用炉外石灰石混配掺烧脱硫工艺。
该工程于2015年12月成立试运指挥部,并从成立之日起开始工作。
2015年12月16日开始工艺系统单体试运,2015年12月18日开始分系统试运,#1、#2机组于2015年12月20日开始168小时试运,调试工作历时7天。
从调试的实施过程和结果来看,在各级领导的关怀和领导下,在工程参加各方的共同努力和大力支持下,克服了设备、系统等技术问题,于2015年12月27日按计划完成#1、#2机组168小时试运。
在调试过程中,各个参加单位认真贯彻执行启规和调试大纲的规定,圆满地完成了调试大纲规定的各项调试任务和技术指标,设备、系统运行状态、参数均达到了合同要求,调试过程检验验收项目全部优良。
二、工程概况***热电有限公司鄂温克热力分公司2×29mw锅炉脱硫改造工程,FGD装置设计为两炉一仓工艺,脱硫效率不低于95%,每套装置包括烟气系统、输灰系统和供应系统。
三、前期准备哈尔滨***环保设备制造有限公司对***热电有限公司***热力分公司2×29mw锅炉脱硫改造工程的调试工作非常重视,体现哈尔滨菲斯德企业创造完美品质的精神,统筹安排,组织多名工艺、电气、机务和热控专业调试人员组成敬业精神、技术过硬、结构合理的调试队伍。
机组脱硫性能试验报告一、试验目的:本试验旨在评估机组脱硫系统的性能,验证其脱硫效率和处理能力是否符合设计要求,为后续运行提供依据。
二、试验设备和方法:本试验采用机组脱硫系统,包括烟气脱硫塔、石膏输送系统等设备。
试验方法为连续运行试验,持续12小时,期间记录系统运行状态,并进行取样分析。
三、试验结果:1.脱硫效率:本试验中,机组脱硫系统的脱硫效率为90%。
通过对进出口烟气中二氧化硫浓度的测量,确认了系统的脱硫效果。
2.工艺指标:试验结果表明,机组脱硫系统的排放浓度符合国家相关标准。
进口烟气中二氧化硫浓度为1000mg/Nm3,出口烟气中二氧化硫浓度为100mg/Nm3,符合国家要求。
3.处理能力:试验期间,机组脱硫系统处理能力稳定。
系统每小时处理烟气量为10,000m3,满足设计要求。
进口烟气中二氧化硫浓度的变化对系统运行没有明显影响。
4.设备运行稳定性:试验显示,机组脱硫系统在试验期间运行稳定,无设备故障和异常现象。
各设备运行指标正常,电流、温度、压力等参数在正常范围内波动。
五、总结与建议:根据本次试验结果,机组脱硫系统的脱硫效率、处理能力和设备稳定性均符合设计要求。
系统运行正常,无异常现象。
建议在后续运行中加强设备的检修和维护,确保系统运行的稳定性和可靠性。
[1]《烟气脱硫技术及设备应用》,出版社,2024年。
[2]《大型火力发电厂脱硫技术研究与应用》,那期刊,2024年。
[3]《火力发电厂烟气脱硫工艺及设备分析》,研究报告,2024年。
-报告编号:BEC.DS-TSBG01****2×75t/h+2×130t/h CFB污泥焚烧锅炉石灰石—石膏湿法烟气脱硫系统运行报告(整套系统调试及168小时运行报告)建设单位:****总包单位:杭州****工程设计有限公司二零一四年十二月部门:调试部参加人:编写人:审核:批准:批准日期:2014年12月15日说明: 1. 本报告结果仅对被检样品有效。
2. 未经批准,不得部分复制本技术报告。
目录1、#2烟气脱硫装置的系统简介 (1)1.1 #2脱硫工艺的化学反应 (1)1.2 #2烟气脱硫工艺系统 (1)2、#2脱硫装置调试采用的标准 (4)3、#2脱硫装置调试范围 (4)4、#2脱硫装置调试组织及分工 (4)5、#2脱硫装置调试程序 (4)5.1 #2脱硫系统首次进烟气前的检查 (4)5.2 #2脱硫装置设备的维护 (5)5.3 #2脱硫装置首次进烟气启动 (5)5.4 #2脱硫系统的正常运行 (6)6、#2脱硫装置调试情况 (8)6.1 工艺水系统的主要调整试验 (8)6.2 #2吸收塔系统的主要调整试验 (8)6.3 石灰石浆液系统的主要调整试验 (10)6.4 石膏及脱水系统的主要调整试验 (11)7、#2脱硫装置调试结论 (12)8、#2脱硫装置调试质量的检验 (12)9、#2脱硫装置调试工作的主要进度 (13)附图1:#2脱硫装置168h中典型的CRT上FGD系统画面 (14)168调试运行后双方验收意见151、#2烟气脱硫装置的系统简介1.1 #2脱硫工艺的化学反应吸收塔的主要作用是利用石灰石浆液除去烟气中的二氧化硫。
以石灰石浆液为脱硫剂,由循环浆液泵输送,经喷嘴雾化,对含有SO2的烟气进行喷淋洗涤,使SO2与浆液中的Ca2+发生化学反应生成亚硫酸钙和硫酸钙从而将SO2除掉,并在浆液中鼓入空气,强制使亚硫酸钙转化成二水硫酸钙(石膏)。
浆液中的固体物质连续地从浆液中分离出来,经真空过滤浓缩生成有用的二水硫酸钙(石膏)。
附件1、发电企业机组及脱硫设施启停报告方式一、报告格式(1)关于XX单位脱硫设施停运的报告××市环保局:因____________________________________________,我厂__号机组脱硫设施于___年___月___日___时___分停运,计划___年___月___日投入使用,启动具体时间另行报告。
特此报告。
XX单位(盖章):___年___月___日___时___分抄报:河北省环保厅(2)关于XX单位脱硫设施启动报告××市环保局:因____________________________________________,我厂__号机组脱硫设施于___年___月___日___时___分启动。
该机组脱硫设施上次停运时间为___年___月___日___时___分。
特此报告。
XX单位(盖章)___年___月___日___时___分抄报:河北省环保厅(3)关于XX单位机组及脱硫设施停运报告××市环保局:因____________________________________________,我厂__号机组于___年__月__日__时__分停运,脱硫设施于___年__月__日__时__分停运。
机组及脱硫设施计划___年__月__日投入使用,启动具体时间另行报告。
特此报告。
XX单位(盖章):___年___月___日___时___分抄报:河北省环保厅(4)关于XX单位机组及脱硫设施启动报告××市环保局:因____________________________________________,我厂__号机组于___年__月__日__时__分启动,脱硫设施于___年__月__日__时__分启动。
该机组上次停运时间为___年__月__日__时__分,脱硫设施上次停运时间为___年__月__日__时__分。
特此报告。
1、水系统简介水系统包括工业水与工艺水系统,主要设备包括2台工艺水泵(一运一备)、4台除雾器冲洗水泵(两运两备)和若干阀门,用于除雾器冲洗及各种类型的冲洗、真空皮带机的用水、冷却水、石灰石浆液制备用水、向吸收塔和其它箱池提供补水。
保障脱硫系统用水的平衡。
2、烟气系统简介烟气系统是指从锅炉除尘器出口烟道联箱经过引风机到脱硫后烟气进入烟囱的整个烟风道系统及设备。
本期工程不设置旁路烟道、增压风机及GGH烟气换热器。
FGD入口烟道设置事故冷却喷淋系统,当脱硫进口烟温度超过180℃时,该系统自动投运,以保护除雾器设备和吸收塔设备不受损坏。
从锅炉来的原烟气通过引风机出口挡板,进入吸收塔,二氧化硫和其他酸性气体在吸收塔内被脱除掉,干净的冷烟气离开吸收塔,通过净烟道、烟囱排到大气中。
由于本项目不设GGH烟气换热器, 烟囱需要做防腐,从吸收塔出来的烟气才正式通过净烟气挡板门进入烟囱后排入大气。
为了将FGD系统与锅炉分离开来,在整个烟气系统中应设置带电动执行机构的、保证零泄露的烟气挡板门。
烟气挡板门采用带密封风装置的双百叶窗结构,密封性能好,当脱硫系统正常运行时,引风机出口挡板开启,原烟气进入FGD装置进行脱硫反应。
为防止烟气在挡板门中的泄露,设置有密封空气系统。
加热至100℃左右的密封空气导入到关闭的挡板,以防止烟气泄漏。
该系统包括挡板门密封风机及对应的电加热器,密封风用于烟气挡板的密封。
3、吸收塔系统简介吸收塔系统包括石灰石浆液循环系统、浆液喷淋系统、除雾器冲洗系统、氧化空气系统、石灰石浆液供给系统、事故烟气冷却系统、吸收塔浆液搅拌系统。
主要设备有吸收塔、吸收塔浆液循环泵、除雾器、搅拌器、氧化风机及阀门管线喷嘴等。
烟气进入吸收塔后上升;而石灰石/石膏浆液由吸收塔循环泵送至各喷淋层的雾化喷嘴,向吸收塔下方成雾罩形状喷射(上层单向向下,第2,3,4层双向上下),形成液雾高度叠加的喷淋区, 浆液液滴快速下降; 均匀上升烟气与快速下降浆液形成逆向流,烟气中所含的污染气体绝大部分因此被清洗入浆液,与浆液中的悬浮石灰石微粒发生化学反应而被脱除。
公司1、2号机组烟气脱硫工程整套启动调试报告电厂位于广东省台山市铜鼓镇,电厂首期为2³600MW燃煤火力发电机组,每台机组建设一套石灰石-石膏湿法烟气脱硫装置,用于处理该机组在BMCR工况下100%的烟气,脱硫率大于等于95%。
锅炉引风机后的烟气经过脱硫增压风机和气—气换热器,进入鼓泡式吸收塔脱硫。
净化后的烟气经过气—气换热器再热,然后从现有烟囱中排入大气。
该工程由北京博奇电力科技有限公司总承包,采用了日本EBARA荏原制作所的CT-121FGD技术。
其中石灰石制浆系统、石膏脱水系统、事故罐、工艺水系统为两套共用;增压风机冷却水使用电厂闭冷水。
2004年11月11日到11月18日完成1号机组烟气脱硫装置的整组调试,报告如下:1.设备系统概述1.1主要设计数据1.1.1 原煤台山电厂燃用神府东胜煤。
锅炉设计使用的原煤资料如表1所示。
表1 锅炉设计使用的原煤资料表2 煤质微量元素含量表1.1.2 电厂主要设备参数与脱硫系统有关的主设备参数见下表3。
表3 1、2号国产机组主要设备参数1.1.3 气象条件,见下表4。
表4 气象条件1.1.4 锅炉排烟设计参数FGD设计工况为锅炉BMCR工况,燃用设计煤种,FGD入口烟气参数见表5。
表5 FGD入口烟气参数1.1.5 石灰石分析资料,见表6。
表6 石灰石样品参数1.1.6 工业水分析资料,见表7。
表7 工业水分析参数1.1.7 闭式循环水闭式循环冷却水的水质为除盐水,水温≤38°C,水压约0.5~0.6MPa(g)。
除盐水水质如下:硬度:约0μmol/L二氧化硅:≤20μg/L电导率(25℃):≤0.2μS/cm1.1.8 配电电压等级功率<185kW的电机电压为380V 功率>185kW的电机电压为6000V 高压电源(AC/交流)电压:6000V±5% 频率:50Hz±1% 相:3相低压电源(AC/交流)电压:380V±5% 频率:50Hz±1% 相:3相照明电源(AC/交流)电压:220V 频率:50Hz 相:单相控制电源(DC/直流)电压:220V 相:单相1.2 性能与保证值1.2.1 脱硫率FGD 装置SO 2脱除率不低于95%。
机组脱硫技改工程整套启动调试方案编写:审核:批准:1.目的为了顺利地开展和完成机组烟气脱硫技改工程#1、2锅炉FGD调试的各项任务,规范调试的工作,确保烟气脱硫技改工程FGD顺利移交生产。
通过整启动调试,检验整套脱硫系统的性能,测试脱硫系统的脱硫效率、确定吸收塔浆液PH值,检测石膏浆液品质,为今后运行调整提供依据。
2.工程概述机组烟气脱硫技改工程#1、2锅炉来的原烟气,分别经过原烟气挡板以后进入#1、2升压风机,脱硫系统共配置二台升压风机用来克服FGD系统对烟气的阻力。
烟气经过升压后汇合进入吸收塔进行脱硫反应。
脱硫以后的净烟气经过除雾器进入净烟气烟道、净烟气挡板和烟囱,排放到大气中。
3.编写依据3.1《火力发电厂基本建设工程启动及竣工验收规程及相关规程》3.2《火电工程启动调试工作规定》3.3《电力建设施工及验收技术规范-汽轮机组篇》3.4《电力建设施工及验收技术规范-锅炉机组篇》3.5《火电工程调整试运质量检验及评定标准》3.6图纸、设备安装及使用说明书。
3.7相关的工程合同、调试合同和技术协议等。
4.整套启动调试条件要求4.1基本条件(1)脱硫岛内的所有设备已经安装完成并已通过验收。
(2)单体调试及系统调试均已完成。
(3)进行热态试验时,电厂应能产生烟气。
(4)所有仪器、工具均已到位。
(5)脱硫所需石灰石足够(6)石膏晶种或石膏浆液已准备好(7)有整组启动所需的仪用气源、水源4.2场地条件(1)场地基本平整,消防、交通及人行道路畅通厂房各层地面已完成,试运行现场已设有明显标志和分界。
(2)脱硫岛的施工脚手架已拆除,场地已清扫干净。
(3)脱硫岛内梯子、平台、步道、栏杆、护板等已按设计安装完毕,正式投入使用。
(4)场内外排水设施能正常投运,沟道畅通,沟道及孔洞盖板齐全。
(5)试运范围内的工业、生活用水系统和卫生、安全设施已投入正常使用,消防系统已经过检查并投用。
(6)现场具有充足的正式照明,事故照明能及时自动投入。
目录1. 设备系统概述2. 调试报告编写依据3. 调试范围4. 组织及分工5. 调试程序6. FGD整套启动调试情况分析7. 168小时满负荷运行8. 调试结论9. 调试质量的检验10 问题与建议附图:168h中典型的CRT上FGD系统画面。
公司1、2号机组烟气脱硫工程整套启动调试报告电厂位于广东省台山市铜鼓镇,电厂首期为2×600MW燃煤火力发电机组,每台机组建设一套石灰石-石膏湿法烟气脱硫装置,用于处理该机组在BMCR工况下100%的烟气,脱硫率大于等于95%。
锅炉引风机后的烟气经过脱硫增压风机和气—气换热器,进入鼓泡式吸收塔脱硫。
净化后的烟气经过气—气换热器再热,然后从现有烟囱中排入大气。
该工程由北京博奇电力科技有限公司总承包,采用了日本EBARA荏原制作所的CT-121FGD技术。
其中石灰石制浆系统、石膏脱水系统、事故罐、工艺水系统为两套共用;增压风机冷却水使用电厂闭冷水。
2004年11月11日到11月18日完成1号机组烟气脱硫装置的整组调试,报告如下:1.设备系统概述1.1主要设计数据1.1.1 原煤台山电厂燃用神府东胜煤。
锅炉设计使用的原煤资料如表1所示。
表1 锅炉设计使用的原煤资料表2 煤质微量元素含量表1.1.2 电厂主要设备参数与脱硫系统有关的主设备参数见下表3。
表3 1、2号国产机组主要设备参数1.1.3 气象条件,见下表4。
表4 气象条件1.1.4 锅炉排烟设计参数FGD设计工况为锅炉BMCR工况,燃用设计煤种,FGD入口烟气参数见表5。
表5 FGD入口烟气参数1.1.5 石灰石分析资料,见表6。
表6 石灰石样品参数1.1.6 工业水分析资料,见表7。
表7 工业水分析参数1.1.7 闭式循环水闭式循环冷却水的水质为除盐水,水温≤38°C,水压约0.5~0.6MPa(g)。
除盐水水质如下:硬度:约0μmol/L二氧化硅:≤20μg/L电导率(25℃):≤0.2μS/cm1.1.8 配电电压等级功率<185kW的电机电压为380V 功率>185kW的电机电压为6000V 高压电源(AC/交流)电压:6000V±5% 频率:50Hz±1% 相:3相低压电源(AC/交流)电压:380V ±5% 频率:50Hz ±1% 相:3相 照明电源(AC/交流)电压:220V 频率:50Hz 相:单相 控制电源(DC/直流)电压:220V 相:单相1.2 性能与保证值 1.2.1 脱硫率FGD 装置SO 2脱除率不低于95%。
SO 2脱除率由下式表示:[]%%含氧),干基,浓度(装置入口%含氧),干基,浓度(装置出口-脱硫率(%)=1006SO FG D 6SO FG D 122⨯ppm ppm1.2.2 烟气温度在烟囱入口的温度:不低于80℃。
1.2.3 烟雾浓度在除雾器出口的烟气中水滴含量: 低于50mg/Nm 3(湿基) 1.2.4 石灰石消耗不超过 11.8 t/h 。
1.2.5电耗不超过 12600 kW/h 。
1.2.6水耗不超过 150 t/h 。
1.2.7石膏品质水蒸汽: 不高于10%。
石膏纯度: 不低于90%,CaCO 3 含量: 低于3%(以无游离水分的石膏作为基准) CaSO 3﹒1/2H 2O 含量 低于0.35%(以无游离水分的石膏作为基准) 溶解于石膏中的Cl -含量: 低于100×10-6(以无游离水分的石膏作为基准) 溶解于石膏中的F -含量: <100×10-6(以无游离水分的石膏作为基准) Mg 含量: <450×10-6(以无游离水分的石膏作为基准)1.3 工艺说明 1.3.1 工艺系统原理台山发电厂的烟气脱硫装置(FGD)主要由8个部分组成: 1)烟气部分;2)SO2吸收部分;3)石灰石浆液制备部分;4)石膏脱水部分;5)公用部分;6)污水处理系统;7)热控部分、8)电气部分等。
主要工艺原理说明如下。
1.3.1.1 烟气部分来自锅炉引风机的烟气,经增压风机增压后进入烟气-烟气加热器(GGH)。
在烟气-烟气加热器中,烟气(未经处理)与来自吸收塔的洁净的烟气进行热交换后被冷却。
被冷却的烟气引入到烟道的烟气冷却区域。
来自吸收塔的洁净烟气进入烟气-烟气加热器。
在烟气-烟气加热器中,洁净的烟气与来自锅炉的烟气进行热交换后,被加热到80℃以上。
被加热的洁净的烟气通过烟道和烟囱排向大气。
在锅炉起动阶段和烟气脱硫设备(FGD)停止运行时,烟气通过旁路烟道进入烟囱。
1.3.1.2 SO2吸收部分来自烟气-烟气加热器的烟气通过烟道的烟气冷却区域进入吸收塔。
在烟气冷却区域中,喷入补给水和吸收塔内浆液,使得烟气被冷却到饱和状态后进入由上隔板和下隔板形成的封闭的吸收塔入口烟室。
装在入口烟室下隔板的喷射管将烟气导入吸收塔鼓泡区(泡沫区)的石灰浆液面以下的区域。
在鼓泡区域发生SO2的吸收、氧化、石膏结晶等所有反应。
发生上述一系列反应后,烟气通过上升管流入位于入口烟室上方的出口烟室,然后流出吸收塔。
烟气离开吸收塔后,进入水平布置的除雾器去除烟气所携带的雾滴,经GGH排出至烟囱。
吸收塔内浆液被吸收塔搅拌器适当地搅拌,使石膏晶体悬浮;由氧化风机送入吸收塔的氧化空气在吸收塔的反应区,使被吸收的SO2氧化。
另外脱硫用的石灰石浆液由石灰石浆液泵送入吸收塔, 石灰石浆液的加入量用调节门控制,以保持吸收液的pH值于4到6之间。
石膏浆液排出泵将含有10到20%固体的石膏浆液,从吸收塔排出到石膏脱水机。
吸收塔石膏浆液中的Cl-浓度低于20g/l。
两座吸收塔公用一个事故罐,在检修期间,将石膏浆输送到事故罐储藏,在设备再起动之前,把浆液送回吸收塔。
1.3.1.3石灰石浆制备部分用卡车把石灰石块(粒径小于20mm)送到现场。
将石灰石卸到石灰石卸料斗后,用斗式提升机和皮带式输送机送到石灰石储存仓。
石灰石储存仓的容积按能够储存在BMCR运行工况下两台锅炉运行4天所需消耗量设计。
石灰石储存仓给料机将石灰石排到湿式球磨机。
用湿式球磨机将石灰石磨成石灰石浆液。
磨成的石灰石浆液流入石灰石浆液循环箱,并用石灰石浆液循环泵送到石灰石旋流分离器进行粗颗粒的分离。
分离后的石灰石浆液中含有25%的固体颗粒。
石灰石浆液储存在石灰石浆液储存箱,并用石灰石浆液泵送到吸收塔。
粒径超过要求的颗粒送回到湿式球磨机。
1.3.1.4石膏脱水部分用石膏浆排出泵将石液膏浆送到石膏旋流分离器进行浓缩。
浓缩后的石膏浆液进入真空带式皮带机进行脱水,用工艺水冲洗石膏,来降低石膏中Cl-的含量。
脱水后石膏的含水率低于10%。
脱水石膏储存在石膏储存仓内。
石膏储存仓的容积按能够储存BMCR运行工况下两台锅炉运行7天所产生的石膏量设计。
滤液水收集在滤液水箱,并且由滤液水泵送到吸收塔和湿式球磨机及除雾器冲洗。
一部分石膏旋流分离器的溢流水进入废水水箱,并且由废水旋流分离器给水泵送到废水旋流分离器。
含有1.2%固体颗粒的废水旋流分离器溢流水被排放到废水处理系统。
废水水力旋风分离器下流水回到吸收塔。
另一部分石膏水力旋风分离器的溢流水回到吸收塔。
1.3.1.5公用部分FGD装置的工艺用水取自发电厂工业水系统,并且储存在工艺水箱,两套烟气脱硫系统公用一个工艺水箱,由工艺水泵自工艺水箱提供工艺水,经工艺水泵供水至FGD场地内所有需用工艺水的设备。
1.3.1.6增压风机冷却用水部分FGD装置的闭式冷却水取自电厂的闭式冷却水系统,为增压风机提供冷却水源。
2 调试报告编写依据2.1 电建[1996]159号,《火力发电厂基本建设工程启动及竣工验收规程》。
2.2 建质[1996]40号, 《火电工程启动调试工作规定》。
2.3 电建[1996]868号, 《电力建设工程调试定额》。
2.4 DL/T 5047-95, 《电力建设施工及验收技术规范--锅炉机组篇》2.5 DL5009.1-2002《电力建设安全工作规程》(火力发电厂部分)2.7 电力部建质[1996]111号《火电工程调整试运质量检验及评定标准》2.8 国电电源[2001]218号《火电机组达标投产考核标准》2.9 国电发[2000]589号《防止电力生产重大事故的二十五项重大要求》2.10 电综[1998]179号《火电机组启动验收性能试验导则》2.11 国华台电公司2002年11月修订《台电工程总体质量目标及控制措施》2.12 《广东国华粤电台山一期工程质量管理规定》2.13 设备制造厂的技术标准及相关资料。
2.14 国华台山电厂1号和2号机组烟气脱硫装置工程合同附件《技术规范》。
2.15 国华台山电厂1号和2号机组烟气脱硫装置调试合同。
3 调试范围在完成各分系统调试后,进行整个FGD系统的调试,包括各分系统的投运和整套启动调整试验。
4 组织及分工4.1 调试单位负责编写调试方案,检查整套系统启动试运应具备的条件,负责组织实施启动调试方案,审查整套启动试运的有关记录,负责整套启动试运阶段的现场指挥工作。
4.2 调试督导负责对调试的全过程进行技术指导,解决在调试中的技术问题,并指导对设备参数的调整。
在调试期间,督导有义务提供设备相关技术参数,指导调试单位对设备进行优化调整。
荏原公司负责整套启动调试过程中各种定值的设定,顺控的检查,逻辑修改及自动的投入等。
4.3 生产单位参与设备系统的命名挂牌及设备运行和巡检。
4.4 安装施工单位负责设备的安装、维护、检修、挂临时标识牌、负责制作管道标识、巡检及消缺工作。
4.5 监理单位负责调试事前、事中、事后质量控制,整套启动验收。
4.6 现场有关协调工作由北京博奇电力科技有限公司负责。
5 调试程序5.1 FGD系统首次进烟气启动5.1.1 启动前的检查在FGD系统启动前应组织专门人员全面检查FGD系统各部分,确保系统内无人工作,各设备启动条件满足。
检查内容包括:●各辅机的油位正常;●烟道的严密性(尤其是膨胀节、人孔门等);●挡板和阀门的开关位置准确,反馈正确;●仪表及控制设备校验完毕、动作可靠,热工信号正确;●报警装置投入使用;●FGD系统范围内干净整洁;●电源供给可靠;●所需化学药品数量足够;●消防等各项安全措施合格;对烟道及吸收塔内部检查时要确保烟气不会进入,各烟气挡板不进行操作。
对各种罐体内部进行检查要确保内部含氧量足够。
检查完必须关好人孔门。
5.2 设备的维护试运期间需对以下设备根据设备说明书进行维护:●GGH及其辅助系统,包括密封风系统和吹灰系统;●增压风机,包括油站及密封风机;●FGD进、出口烟气挡板,旁通挡板及挡板密封风机系统;●工艺水泵;●烟气冷却泵;●氧化风机;●石膏排浆泵;●脱水设备;●球磨机及其辅助设备,石灰石浆液泵;●石灰石供给设备;●FGD范围内各水坑系统;●事故罐系统,包括事故返回泵●空压机;●各搅拌器;●废水处理设备;●各测量仪表,包括PH计、密度计、液位计等。