量子力学第二章小结
- 格式:ppt
- 大小:338.50 KB
- 文档页数:21
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
量子力学第二章知识点基本概念波粒二象性量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。
这种既是粒子又是波动的性质被称为波粒二象性。
波函数波函数是量子力学中描述粒子状态的数学函数。
波函数的模的平方表示在某一位置发现粒子的概率密度。
叠加原理量子力学中,两个波函数的线性叠加仍然是一个有效的波函数。
这个原理被称为叠加原理。
量子态所有可能的状态(波函数)构成了量子力学中的量子态。
一个量子态可以通过线性叠加得到另一个量子态。
算符和测量算符算符是描述量子系统性质变化的数学操作。
在量子力学中,算符通常用来描述物理量的测量和演化。
算符的本征值和本征态对于一个算符,它的本征值是测量该物理量时可能得到的值;而本征态是对应于这些本征值的一组特定的波函数。
观测量和平均值观测量是指用来测量物理量的实际实验装置,而平均值则是对同一量子态进行多次测量得到的结果的平均值。
不确定性原理不确定性原理是量子力学的基本原理之一,它描述了在某些物理量的测量中,有些对应物理量无法同时精确确定的限制。
氢原子壳层和轨道氢原子中,电子围绕原子核运动的轨道被称为壳层。
氢原子的壳层用主量子数 n 来标记。
能级和能量氢原子中电子的能量是量子化的,称为能级。
能级由主量子数 n 决定,能级越高,能量越大。
轨道角动量氢原子中,电子的轨道运动导致了其具有轨道角动量。
轨道角动量用量子数 l 来标记。
磁量子数氢原子中,轨道角动量的分量在某一方向上的投影用磁量子数 m 来标记。
自旋和电子态自旋自旋是粒子固有的一种角动量,与粒子的旋转运动无关。
电子具有自旋角动量。
自旋量子数自旋量子数用 s 来标记,对于电子,其自旋量子数为 1/2。
自旋态自旋态是描述粒子自旋状态的波函数。
对于电子,自旋态可以是自旋向上的态,记作|↑⟩,也可以是自旋向下的态,记作|↓⟩。
自旋磁量子数自旋磁量子数用 m_s 来标记,对于电子,其自旋磁量子数可以是 1/2 或 -1/2。
总结本文介绍了量子力学第二章的知识点,包括波粒二象性、波函数、叠加原理、量子态、算符和测量、算符的本征值和本征态、观测量和平均值、不确定性原理、氢原子的壳层和轨道、能级和能量、轨道角动量、磁量子数、自旋和电子态等内容。
第二讲 绪论课的主要目的是让同学们了解结构化学的大概情况,并在学习方法和重视程度上有所准备。
下面讲些预备知识。
第二章 量子力学基础知识 关于经典物理学,我们早有基础,为什么有了经典物理后还要有量子力学呢?2.1 量子力学的提出2.1.1 经典物理学的困难 经典物理学包括牛顿力学以及在电磁光热等方面建立起的电学、磁学、电磁学、电动力学、光学和热力学等一些学科,这些学科早在19世纪就比较成熟了,到了19世纪末就建立了完整的体系,对于当时所有的宏观物理现象,都可以进行解释,甚至连哈雷彗星多少年可以回归一次,都可以精确地计算出来,所以当时有很多科学家尤其是物理学家认为:物理学的大厦已经建成了,后辈物理学家只要作一些修修补补的工作就行了,如焦耳劝普朗克改行,开尔文在20世纪新年献词中讲到"在清朗洁净的的物理太空中,还只剩下两朵乌云,一朵是麦克尔逊的实验,一朵是黑体辐射,到了20世纪初又发现了光电效应和氢原子光谱等难以用经典物理学解释的现象。
2.1.2 氢原子光谱与波尔学说 光谱:光之谱线,类歌谱。
当用电弧、电火花灼热物质时,即发射谱线 特征谱线 进行元素分析。
H原子光谱是线状光谱,无法用经典物理学来解释。
按经典物理学,H原子核外电子的运动为带电体的圆周运动,应不断有辐射能放出,即为连续光谱,另外应不断放出能量。
最终电子运动不足以克服核的吸引能而掉于核上,这均与实验事实不符合。
1913年丹麦年仅28岁的波尔提出了学说解释,1922年获得诺贝尔奖。
波尔学说的基本要点:(1) 电子于核外只能在某些特许的轨道上运动,且不吸放E(不吸放能量,能量不会降低,则电子不会掉在核上)。
(2)只有在不同的轨道间跃迁时才吸放能量,且有(E不连续,υ不连续,λ不连续 线性光谱) 此假说对H光谱得到了满意的解释。
对别的有误差,说明这种圆形轨道理论没有普遍意义,后来又提出了索莫菲椭圆形轨道理论,结果还是没有普遍意义,这就说明要很好地解决微观世界的问题,必须完全摆脱经典物理的束缚,去建立新的学说,而随后发展起来的量子力学就是这样一种学说。
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。
宇称算符:表示空间反演运算的算符。
宇称守恒:体系状态的宇称不随时间改变。
大学物理量子力学总结大学物理量子力学总结篇一:大学物理下必考15量子物理知识点总结15.1 量子物理学的诞生—普朗克量子假设一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2hν, …分立值,其中n = 1,2,3…,h =6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时,辐射和吸收的能量是hν的整数倍。
15.2 光电效应爱因斯坦光量子理论一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时,光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
1 mvm2?eU2二、爱因斯坦光子假说和光电效应方程1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子;频率为v 的每一个光子所具有的能量为??h?, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv,如果hv 大于该金属的电子逸出功A,这个电子就能从金属中逸出,并且有 1上式为爱因斯坦光电效应方程,式中mvm2为光电子的最大初动能。
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰. 已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m 2i )(m 2i J e )r ( )t (f )r ()t r (**Et iEt i**Et iEt i**Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见tJ 与无关。
2.2 由下列定态波函数计算几率流密度:ikrikrer er -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψrJ 1 与同向。
表示向外传播的球面波。
r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m 2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ 可见,rJ 与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikxex =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。
其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。