量子力学第二章小结
- 格式:ppt
- 大小:338.50 KB
- 文档页数:21
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
量子力学第二章知识点基本概念波粒二象性量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。
这种既是粒子又是波动的性质被称为波粒二象性。
波函数波函数是量子力学中描述粒子状态的数学函数。
波函数的模的平方表示在某一位置发现粒子的概率密度。
叠加原理量子力学中,两个波函数的线性叠加仍然是一个有效的波函数。
这个原理被称为叠加原理。
量子态所有可能的状态(波函数)构成了量子力学中的量子态。
一个量子态可以通过线性叠加得到另一个量子态。
算符和测量算符算符是描述量子系统性质变化的数学操作。
在量子力学中,算符通常用来描述物理量的测量和演化。
算符的本征值和本征态对于一个算符,它的本征值是测量该物理量时可能得到的值;而本征态是对应于这些本征值的一组特定的波函数。
观测量和平均值观测量是指用来测量物理量的实际实验装置,而平均值则是对同一量子态进行多次测量得到的结果的平均值。
不确定性原理不确定性原理是量子力学的基本原理之一,它描述了在某些物理量的测量中,有些对应物理量无法同时精确确定的限制。
氢原子壳层和轨道氢原子中,电子围绕原子核运动的轨道被称为壳层。
氢原子的壳层用主量子数 n 来标记。
能级和能量氢原子中电子的能量是量子化的,称为能级。
能级由主量子数 n 决定,能级越高,能量越大。
轨道角动量氢原子中,电子的轨道运动导致了其具有轨道角动量。
轨道角动量用量子数 l 来标记。
磁量子数氢原子中,轨道角动量的分量在某一方向上的投影用磁量子数 m 来标记。
自旋和电子态自旋自旋是粒子固有的一种角动量,与粒子的旋转运动无关。
电子具有自旋角动量。
自旋量子数自旋量子数用 s 来标记,对于电子,其自旋量子数为 1/2。
自旋态自旋态是描述粒子自旋状态的波函数。
对于电子,自旋态可以是自旋向上的态,记作|↑⟩,也可以是自旋向下的态,记作|↓⟩。
自旋磁量子数自旋磁量子数用 m_s 来标记,对于电子,其自旋磁量子数可以是 1/2 或 -1/2。
总结本文介绍了量子力学第二章的知识点,包括波粒二象性、波函数、叠加原理、量子态、算符和测量、算符的本征值和本征态、观测量和平均值、不确定性原理、氢原子的壳层和轨道、能级和能量、轨道角动量、磁量子数、自旋和电子态等内容。
第二讲 绪论课的主要目的是让同学们了解结构化学的大概情况,并在学习方法和重视程度上有所准备。
下面讲些预备知识。
第二章 量子力学基础知识 关于经典物理学,我们早有基础,为什么有了经典物理后还要有量子力学呢?2.1 量子力学的提出2.1.1 经典物理学的困难 经典物理学包括牛顿力学以及在电磁光热等方面建立起的电学、磁学、电磁学、电动力学、光学和热力学等一些学科,这些学科早在19世纪就比较成熟了,到了19世纪末就建立了完整的体系,对于当时所有的宏观物理现象,都可以进行解释,甚至连哈雷彗星多少年可以回归一次,都可以精确地计算出来,所以当时有很多科学家尤其是物理学家认为:物理学的大厦已经建成了,后辈物理学家只要作一些修修补补的工作就行了,如焦耳劝普朗克改行,开尔文在20世纪新年献词中讲到"在清朗洁净的的物理太空中,还只剩下两朵乌云,一朵是麦克尔逊的实验,一朵是黑体辐射,到了20世纪初又发现了光电效应和氢原子光谱等难以用经典物理学解释的现象。
2.1.2 氢原子光谱与波尔学说 光谱:光之谱线,类歌谱。
当用电弧、电火花灼热物质时,即发射谱线 特征谱线 进行元素分析。
H原子光谱是线状光谱,无法用经典物理学来解释。
按经典物理学,H原子核外电子的运动为带电体的圆周运动,应不断有辐射能放出,即为连续光谱,另外应不断放出能量。
最终电子运动不足以克服核的吸引能而掉于核上,这均与实验事实不符合。
1913年丹麦年仅28岁的波尔提出了学说解释,1922年获得诺贝尔奖。
波尔学说的基本要点:(1) 电子于核外只能在某些特许的轨道上运动,且不吸放E(不吸放能量,能量不会降低,则电子不会掉在核上)。
(2)只有在不同的轨道间跃迁时才吸放能量,且有(E不连续,υ不连续,λ不连续 线性光谱) 此假说对H光谱得到了满意的解释。
对别的有误差,说明这种圆形轨道理论没有普遍意义,后来又提出了索莫菲椭圆形轨道理论,结果还是没有普遍意义,这就说明要很好地解决微观世界的问题,必须完全摆脱经典物理的束缚,去建立新的学说,而随后发展起来的量子力学就是这样一种学说。
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。
宇称算符:表示空间反演运算的算符。
宇称守恒:体系状态的宇称不随时间改变。