1.2大学物理(上)——质点动力学
- 格式:ppt
- 大小:1.30 MB
- 文档页数:47
质点动力学习题答案欧阳光明(2021.03.07)2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1.图2-1X 方向: 0=x F t v x 0=① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v由①、②式消去t ,得2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时间及上升的最大高度.解:⑴研究对象:m⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=y 分量:dtdVm KV mg =-- 即dt mKV mg dV 1-=+mg Ke KV mg K V t m K1)(10-+=⇒-①0=V 时,物体达到了最高点,可有0t 为)1ln(ln 000mgKV K mmg KV mg K m t +=+=② ∵dtdyV =∴Vdt dy =021()1K t m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦③ 0t t =时,max y y =,2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为mxg l,根据牛顿定律,有 图2-4通过变量替换有 m dvxg mv l dx =0,0x v ==,积分00l vm xg mvdv l =⎰⎰由上式可得链条刚离开桌面时的速度为v gl =2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =12g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有题2-5图联立,解得g a ='方向向下 (2)2m 对地加速度为22ga a a =-'=方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a+=' ∴g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少? 解:设物体沿+x 方向运动,25250501===⎰⎰tdt Fdt I N·S (1I 沿i方向)7521051052===⎰⎰tdt Fdt I N·S (2I 沿i方向)∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回.设跳回时速率不变,碰撞前后的速度方向和墙的法线夹角都为60α︒=,⑴求碰撞过程中小球受到的冲量?=I ⑵设碰撞时间为05.0=∆t s ,求碰撞过程中小球受到的平均冲力?F = 解:i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F=(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量 将ba t =代入,得(3)由动量定理可求得子弹的质量2-10 木块B 静止置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg ,B m =0.75kg ,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)它将受解:当小木块A 以初速度0v 向右开始运动时,到木板B 的摩擦阻力的作用,木板B 则在A 给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改变系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改变系统的总动量. 设经过t ∆时间,A 、B 具有相同的速度,根据质点系的动量定理0()k A B A F t m m v m v -∆=+-再对小木块A 单独予以考虑,A 受到B 给予的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=- 以及'1k A F m g μ= 解得0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+-图2-10代入数据得 2.5v =m/s t ∆=7.65s2-11一粒子弹水平地穿过并排静止放置在光滑水平面上的木块,如图2-11所示. 已知两木块的质量分别为1m 和2m ,子弹穿过两木块的时间各为1t ∆和2t ∆,设子弹在木块中所受的阻力为恒力F ,求子弹穿过后,两木块各以多大速度运动.解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块静止,由动量定理,于是有设子弹穿过第二木块后,第二木块速度变为2v ,对第二块木块,由动量定理有 解以上方程可得2-12一端均匀的软链铅直地挂着,链的下端刚好触到桌面. 如果把链的上端放开,证明在链下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那部分链条的重量.解:设开始下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在dt 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 根据动量定理,桌面给予dm 的冲量等于dm 的动量增量,即 所以2dxF vv dtρρ== 由自由落体的速度22v gx =得这是t 时刻桌面给予链的冲力. 根据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以图2-11所以3Nxgρ= 即链条作用于桌面上的压力3倍于落在桌面上那部分链条的重量. 2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船长为5m ,问当人从船头走到船尾时,船头移动的距离. 解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得 其中v ,V 分别为人和小船相对于静水的速度, 可得m -MV =v 人相对于船的速度为'M mM+=-=v v V v 设人在t 时间内走完船长l ,则有在这段时间内,人相对于地面走了0tx vdt =⎰所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的木块静止在光滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,并陷在木块内与木块一起运动.求: (1)子弹相对木块静止后,木块的速度和动量; (2)子弹相对木块静止后,子弹的动量;(3) 在这个过程中,子弹施于木块的冲量.解:子弹相对木块静止后,其共同速度设为u ,子弹和木块组成系统动量守恒(1)0()mv m M u =+ 所以0mv u m M=+(2)子弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,子弹施于木块的冲量为2-15质量均为M 的两辆小车沿着一直线停在光滑的地面上,质量为m的人自一辆车跳入另一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.解:质量为m 的人,以相对于地面的速度v 从车A 跳到车B ,此时车A 得到速度1u ,由于车是在光滑的地面上,沿水平方向不受外力,因此,由动量守恒得人到达车B 时,共同得速度为2u ,由动量守恒得人再由车B 以相对于地面的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共同速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M ='12mu v M m=+ 所以车B 和车A 得速率之比为2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 到达最高点时,该人将手中的物体以水平向后的相对速度u抛出,问跳远成绩因此增加多少?解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对地面这个惯性参考系从最高点到落地,人做平抛运动所需时间0sin v t gϕ= 跳远距离增加为2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 个人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u . 问在下述两种情况下,平板车的末速度是多少?(1)N 个人同时跳离;(2)一个人、一个人的跳离. 所得结果是否相同.解:取平板车和N 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车静止,则有()0Mv Nm v u +-= 所以N 个人同时跑步跳车时,车速为(2)若一个人、一个人地跳车,情况就不同了. 第一个跳车时,由动量守恒定律可得第二个人跳车时,有以此类推,第N 个人跳车时,有所以1111()2NN n muv mu M m M m M Nm M nm ==++⋅⋅⋅=++++∑因为1112M m M m M Nm>>⋅⋅⋅>+++ 故N v v >2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示。
习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
第8章质点动力学
[例8-1]桥式起重机跑车吊挂一质量为m的重物,沿水平横梁作
ν
匀速运动,速度为,重物中心至悬挂点距离为l。
突然刹车,
重物因惯性绕悬挂点O向前摆动,求钢丝绳的最大拉力。
解:1)以重物为研究对象2)受力分析mg
F T
a n a t 3)运动分析4)牛顿第二定律
ϕ
sin mg ma t −=ϕ
cos mg F ma T n −=∑=t
t F ma ∑=n
n F ma 5)补充方程
ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=
mg
F T
a n a t ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=0<dt
dv 重物减速
=ϕ0
max v v =max
T T , 0F F ==时ϕ)
1(20
max
T gl
v
mg F +=
a n
F N
a t
a n
ma
mg
F N
a t a n
mg
O
解释非惯性系一些物理现象
飞机急速爬高时
飞行员的黑晕现象
爬升时:a > 5g
惯性参考系——地球
非惯性参考系——飞机
动点——血流质点
牵连惯性力向下,从心脏流向头部的血流受阻,造成大脑缺血,形成黑晕现象。
飞行员的黑晕与红视现象
在北半球的弹道偏右;在南半球的弹道偏左
a
C
F
IC。
第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+==ρρ, j ia m F ˆ12ˆ24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a ρρρ2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F ρρρ2ω-==, ∴作用于质点的合力总指向原点。
2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1 N 1 m 1g TaFN 2 m 2gTaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
大学物理2-1第二章(质点动力学)习题答案习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tv m ma f d d ==即 tv mkv d d ==-所以t m k v v d d -=对等式两边积分 ⎰⎰-=t v v tm k v v 0d d 0得t mk v v -=0ln因此t mke v v -=0(2)由牛顿第二定律xvmv t x x v m t v m ma f d d d d d d d d ==== 即 xvmvkv d d =- 所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得t vm ma f F mg d d ==-- 即tvmma kv F mg d d ==-- 整理得mtkv F mg v d d =--对上式两边积分 ⎰⎰=--t v mt kv F mg v00d d 得mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kF mg v 1mgFf2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
第一章质点运动学国际基本物理量:长度(m),质量(kg),时间(s),电流(A),热力学温度(K),物质的量(mol),发光强度(cd)量纲:某一物理量借助有关定义或定律用基本量表示时,表达式中各基本量的指数。
例:F=ma, 则F导出单位为kg*m/(s^-2),力对质量,长度量纲为1,对时间量纲为-2。
§1.2质点运动描述位矢函数:r=r(t)或r={x(t),y(t),z(t)}其中r=xi+yj+zk ,︱r︳=√[x^2+y^2+z^2]消去t即可得轨迹方程速度:V=dr/dt=(Vx)i+(Vy)j+(Vz)k︱V︳=√[(Vx)^2+(Vy)^2+(Vz)^2]加速度:a=dv/dt=(Ax)i+(Ay)j+(Az)k︱a︳=√[(Ax)^2+(Ay)^2+(Az)^2]自然坐标系Eτ为切向量,EN为法向量V=(ds/dt)* Eτ=︱V︳*Eτa=(Aτ)+(AN)=(dv/dt)* Eτ+(v^2/ρ)*EN 其中ρ为该点的转弯半径︱a︳=√[(dv/dt)^2+(v^2/ρ)^2]加速度与切向夹角α=artan(AN/ Aτ)圆周运动角速度:ω=dθ/dt角加速度:β=dω/dt=(d^2θ)/(dt^2)有V=Rω, Aτ=Rβ, AN=Rω^2V=ω×R,求导得a=(Aτ)+(AN)=β×R+ω×v第二章质点动力学牛顿第一定律:惯性和力牛顿第二定律:P=mv,F=dP/dt=d(mv)/dt=m(dv/dt)=ma牛顿第三定律:F1=F2惯性力:F+Fo=MA’其中Fo=-MAo,Ao为所选参考系相对地面的加速度,A’为目标物体在所选参考系中的加速度功:dA=Fcosαdr ,A=∫F*dr功率:P=dA/dt=F*(dr/dt)=F*v保守力做功:只与初末位置有关平动功能原理:除重力外其他力作功等于平动机械能改变量机械能守恒:保守力做功情况下物体动能与势能相互转换而总合不变动能定理:∫F*ds=ΔEk动量定理:∫F*dt=ΔP动量守恒:F=0(F为合外力),则P1=P2=C(常矢量)质心:质点系中所有质点位矢乘上以该位置质点质量为权重的加权平均值第三章刚体力学转动定律:M=Jβ,与牛二(F=ma)类比,M为合外力矩,J为转动惯量,相当于m,β为角加速度,相当于a其中,J=∫r^2*dm回转半径:r=√(J/m)平行轴定理:若质量为m的刚体对过其质心c的某一转轴的转动惯量为Jc,则可知此刚体对于平行于该轴、和该轴相距为d的另一转轴的转动惯量J为:J=Jc+md^2刚体转动动能:Ek=(Jω^2)/2 类比平动动能:Jóm, ωóv刚体重力势能:Ep=mgh力矩的功:dA=M*dθ A=∫M*dθ功率:P=dA/dt= M*dθ/dt=M*ω刚体转动动能定理:A=∫M*dθ=∫Jωdω=[J(ω2)^2-J(ω1)^2]/2其中M为合外力矩注意类比平动转动功能原理:∫M*dθ=mg(H2-H1)+ [J(ω2)^2-J(ω1)^2]/2 其中M为除重力距外其他力矩之和刚体机械能守恒:mgH+ (Jω^2)/2=C(常量)角动量:L= Jω类比P=mv角动量定理:∫M*dt=L2-L1=ΔL 类比∫F*dt=ΔP角动量守恒:L= Jω=C,转动过程中合外力矩为零适用第六章电荷与电场库仑定律:F=(kq1q2)/r^2 其中k=1/(4πεo)真空中的介电常数:εo电场强度:E=F/q(试验)=kq(产生电场的电荷)/r^2场强叠加:dE= k(dq)/r^2 E=k∫[(dq)/r^2]体电荷密度:ρ=(dq)/(dV)面电荷密度:σ=(dq)/(dS)线电荷密度:λ=(dq)/(dL)电偶极距:Pe=ql,其中l为-q指向+q的径矢电偶极子中垂线上某点场强:E=Pe/(4πεoR^3)=kPe/R^3其中R为该点距中垂线中点距离无限长的均匀带电棒在距其距离为a处的点的场强为Ey=2kλ/a,其中λ为线电荷密度半无限长的均匀带电棒在距其距离为a处的点的场强为E=[(√2)*kλ]/a,其中λ为线电荷密度,方向为x轴,y轴角平分线方向均匀带电圆环轴线上任一点场强为:E=kQx/[(x^2+a^2)^(3/2)]其中Q为圆环带电量,a为圆环半径,x为该点到环心的距离均匀带电圆盘轴线上任一点的场强为:E=σ[1-x/√(R^2+x^2)]/(2εo)其中x为该点到圆盘中心距离,R圆盘半径,σ为面电荷密度无限大均匀带电板附近场强:E=σ/(2εo)电通量:dφ=E*dS 场强E也可表示为E= dφ/ d(S⊥)φ=∫E*dS,若S为闭合曲面,则φ=∮E*dS真空中的高斯定理:φ=∮E*dS=(∑q)/ εo一般取对称高斯面则面上场强E=(∑q)/( εoS)半径为R的均匀带电球壳的空间场强分布:r>R时,E=kq/(r^2)r<R时,E=0半径为R的均匀带电球体的空间场强分布:r≥R时,E=kq/(r^2)r<R时,E=krq/(R^3)无限长均匀带电直线空间场强分布:E=2kλ/r 其中r为该点到直线距离半径为R的无限长均匀带电圆柱面空间场强分布:r>R时,E=2kλ/rr<R时,E=0无限大均匀带电薄平板空间场强分布:E=σ/(2εo)一对电荷密度等值异号的无限大均匀带电薄平板空间场强分布:E=σ/εo静电场环路定理:dA=QoEdlcosθQo为试验电荷A=∫dA=kQoQ∫(1/r^2)*dr=kQoQ[(1/Ra)-(1/Rb)]其中Ra为目标电荷到试验电荷运动起点的距离,Rb为目标电荷到试验电荷运动终点的距离电势:U=∫E*dl电势差:Uab=Qo(Ua-Ub) Ua为起点电势,Ub为终点电势单个点电荷的电势分布:U=kq/r (r≠0) 其中r为该点到点电荷距离半径为R均匀带电球面电势分布:r>R时,U=kq/rr≤R时,U=kq/R半径为R的均匀带电(q)细圆环轴线上电势分布:U=kq/[√(R^2+x^2)] 其中x为该点距圆环中心距离当x>>R时,既点无限远,U=kq/x当x=0时,U=kq/R等势面:(1)与电场线正交(2)电场线方向为电势降落方向(3)电场越强处等势面越密,电场越弱处等势面越疏。