方程组解法及应用
- 格式:doc
- 大小:301.84 KB
- 文档页数:22
二元一次方程组的解法及应用一、引言二元一次方程组是数学中常见的问题,其解法及应用在实际生活中有着重要的意义。
本文将介绍二元一次方程组的解法及其应用领域。
二、二元一次方程组的解法二元一次方程组是由两个未知数和两个方程所组成的方程组。
解决这种方程组的问题需要运用代数的方法进行计算。
1. 消元法消元法是解决二元一次方程组最常用的方法之一。
该方法的主要思想是通过消去一个未知数,将方程组转化为只有一个未知数的方程。
举例来说,假设我们有以下的二元一次方程组:方程一:2x + 3y = 7方程二:3x - 2y = 4我们可以通过将方程一的两边同时乘以2,方程二的两边同时乘以3,然后将两个方程相加得到一个新的方程:11x = 22。
从中我们可以解得x=2。
将x的值带入其中一个方程,比如方程一,可以解得y=1。
2. 代入法代入法也是解决二元一次方程组的常用方法之一。
该方法的主要思想是通过将一个方程中的一个未知数表示为另一个方程中未知数的函数,然后将其代入到另一个方程中进行求解。
举例来说,假设我们有以下的二元一次方程组:方程一:2x + 3y = 7方程二:3x - 2y = 4我们可以通过将方程一求解出y的表达式:y = (7 - 2x) / 3,然后将其代入到方程二中,得到一个新的方程:3x - 2(7 - 2x) / 3 = 4。
从中我们可以解得x=2。
将x的值代入其中一个方程,比如方程一,可以解得y=1。
三、二元一次方程组的应用二元一次方程组的解法在实际生活中有着广泛的应用,涉及到各个领域。
1. 经济学中的应用二元一次方程组可以用于经济学中的定量分析和决策制定。
例如,在市场经济中,供求关系是决定价格和数量的重要因素。
通过建立供求方程组,可以求解出市场均衡的价格和数量。
2. 工程学中的应用二元一次方程组可以用于工程学中的问题求解。
例如,在电路分析中,可以利用欧姆定律和基尔霍夫电流定律建立二元一次方程组,求解出电路中各个节点的电流。
矛盾方程组的解法及其分析应用
一、概述
二、矛盾方程组的解法
1、解析法:解析法是将矛盾方程组转化为数学形式,并运用数学分
析的方法来求解。
通常,解析法可靠性高,适用于解决不同的矛盾方程组
问题。
但是,当问题复杂或对计算精度要求较高时,解析法也很容易出错。
2、数值法:数值法是一种通过数学计算和比较,给定其中一个近似解,通过反复比较,收敛到精确解的方法。
在实际的应用中,数值法常常
因为它的效率高而受到重视,它也是最常用的解法之一
3、迭代法:迭代法是一种可以满足解空间中元素收敛的方法,即将
迭代过程的结果作为下一次的输入,反复迭代,直到收敛获得解。
迭代法
求解矛盾方程组时,可采用自适应的步长来改善计算的效率,从而达到更
好的收敛性。
三、矛盾方程组的应用
1、经济学:矛盾方程组在经济学中应用很广泛,主要用于模拟经济
系统的运行状况,为决策提供参考,以及控制经济系统的运行范围和限制。
七下数学--第八章 二元一次方程组要点一:二元一次方程组的解法 【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。
3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解 【典型例题】 一、选择题1、(2009·福州中考)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是 ( C )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩2、(2009·百色中考)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解, 则a b -的值为( B ).A .1B .-1C . 2D .33、(2009·内江中考)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( D )A .1B .3C .5D .24、(2009·日照中考)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x k y x 9,5的解也是二元一次方程632=+y x 的解,则k 的值为 (B. )(A )43- (B )43 (C )34 (D )34-5、(2009·绵阳中考)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( B ) A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2 D .⊗ = 2,⊕ = 26、(2009·青海中考)已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是(C )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩7、(2007·丽水中考)方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( B )(A )310x = (B ) 5x = (C )35x =- (D )5x =- 8、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1 (D )-1二、填空题9、(2009·定西中考)方程组25211x y x y -=-⎧⎨+=⎩,的解是 .34x y =⎧⎨=⎩,10、(2008·临沂中考)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为___1_____.11、(2009·呼和浩特中考)如果|21||25|0x y x y -++--=,则x y +的值为 6 三、解答题12、 (2009·湘西中考)解方程:2725x y x y -=⎧⎨+=⎩①②【解析】①+② 得 4x =12,即 x =3 代入① 有6-y =7,即 y =-1所以原方程的解是:⎩⎨⎧-==13y x13、(2007·青岛中考)解方程组:2536x y x y +=-=⎧⎨⎩,.【解析】25,3 6.x y x y +=-=⎧⎨⎩①×3,得 6x +3y =15. ③ ②+③,得 7x =21,x =3. 把x =3代入①,得2×3+y =5,y =-1.14、如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?15、二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .16、方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组① ②2528x y x y +=⎧⎨-=⎩的解? 【配套练习】1.判断下列方程是不是二元一次方程4).1(22=+y x 222).2(x y x x =-+ 6).3(=-y xyy x =).4( 6).5(2=++z y x 811).6(=+yx2.在下列每个二元一次方程组的后面给出了x 与y 的一对值,判断这对值是不是前面方程组的解?(1)⎩⎨⎧=+=-)2(7032)1(53y x y x ⎩⎨⎧==12y x (2)⎩⎨⎧=+=-)2(1147)1(123y x y x ⎩⎨⎧==11y x3.判断(1)由两个二元一次方程组成方程组一定是二元一次方程组( )(2)方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 4.在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 5.任何一个二元一次方程都有( ) (A )一个解;(B )两个解; (C )三个解;(D )无数多个解;6. 关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2;(B )-1;(C )1;(D )-2;7. 与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =38. 下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x9. 已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =1410. 若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解(B )有唯一一个解 (C )有无数多个解(D )不能确定11. 若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )1212. .已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-413. 如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;14已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;15. 若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;16.若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;17.从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;18.解方程组(1)⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm (2))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(3)⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x (4)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(5)⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x (6)⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x19. m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。
考点04 一次方程(组)与其应用一元一次方程与二元一次方程组在初中数学中因为未知数的最高次数都是一次,且都是整式方程,所以常放在一起统称为“一次方程”,而在数学中考中,对于这两个方程的解法及其应用一直都有考察,其中对于两个方程的解法以及注意事项是必须掌握的,而在其应用上也是中考代数部分结合型较强的一类考点,需要考生在一轮复习中把该考点熟练掌握。
考向一·等式的基本性质考向二·一元一次方程的解法考向三·二元一次方程组的解法考向四·一次方程(组)的简单应用考向一:等式的基本性质等式的基本性质【易错警示】1.下列判断错误的是( )A .如果a =b ,那么a +c =b +c B .如果ac =bc ,那么a =b C .如果a =b ,那么ac =bcD .如果a =b ,那么=(c ≠0)2.已知3a =2b +5,下列等式不一定成立的是( )A .3ab =2b 2+5b B .3a +1=2b +6C .=+D .a =b +3.若,则x 与y 的等量关系是 (结果不含a ,b ).4.规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)= ,= ,(﹣2,﹣32)= .(2)令(2,6)=x ,(2,7)=y ,(2,42)=z ,试说明下列等式成立的理由:(2,6)+(2,7)=(2,42).5.(1)观察下面的点阵图与等式的关系,并填空:(2)通过猜想,写出第n 个点阵相对应的等式: .,那么考向二:一元一次方程的解法1.一元一次方程的概念:只含有1个未知数(元),未知数的最高次数是1次的整式方程叫做一元一次方程。
2.一元一次方程解法:上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;解方程时,一定要先认真观察方程的形式,再选择步骤和方法;去分母①不含分母的项也要乘以最小公倍数;②分子是多项式的一定要先用括号括起来去括号括号外是负因数时,一是要注意变号,二是要注意各项都不要漏乘公因数移项移项要变号步骤名 称方 法1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)2去括号去括号法则(可先分配再去括号)3移项把未知项移到议程的一边(左边),常数项移到另一边(右边)4合并同类项分别将未知项的系数相加、常数项相加5系数化为“1”在方程两边同时除以未知数的系数(即方程两边同时乘以未知数系数的倒数)*6检根x =a方法:把x =a 分别代入原方程的两边,分别计算出结果。
线性方程组的解法与实际应用线性方程组是数学中的基本概念之一,广泛应用于各个领域,包括物理学、经济学、工程学等。
本文将探讨线性方程组的解法以及其在实际应用中的重要性。
一、线性方程组的解法线性方程组是由一系列线性方程组成的方程组。
一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b₁a₁x₁ + a₂x₂ + ... + aₙxₙ = b₂...a₁x₁ + a₂x₂ + ... + aₙxₙ = bₙ其中,a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数。
解线性方程组的方法有很多种,常见的有高斯消元法、矩阵法和克莱姆法则。
下面将分别介绍这三种方法。
1. 高斯消元法高斯消元法是一种基本的线性方程组解法,它通过消元和回代的方式求解未知数的值。
首先,将线性方程组写成增广矩阵的形式,然后利用初等行变换将矩阵化为上三角矩阵,最后通过回代求解得到未知数的值。
2. 矩阵法矩阵法是一种简洁高效的线性方程组解法。
将线性方程组的系数矩阵和常数矩阵进行运算,得到增广矩阵。
然后利用矩阵的性质进行求解,如行列式的计算、逆矩阵的求解等。
最后得到未知数的值。
3. 克莱姆法则克莱姆法则是一种利用行列式求解线性方程组的方法。
根据克莱姆法则,线性方程组的解可以通过系数矩阵的行列式和常数矩阵的行列式之间的关系求得。
具体操作是将系数矩阵的每一列替换为常数矩阵,然后求解行列式的值,最后得到未知数的值。
二、线性方程组的实际应用线性方程组在实际应用中扮演着重要的角色,下面将介绍一些典型的应用场景。
1. 物理学中的应用线性方程组在物理学中有广泛的应用。
例如,牛顿第二定律可以用线性方程组表示。
当我们需要求解物体在受力作用下的加速度、速度和位移时,可以通过解线性方程组得到这些物理量的值。
2. 经济学中的应用经济学中的供求关系、成本与收益等问题也可以用线性方程组进行建模和求解。
例如,当我们需要确定某种商品的市场均衡价格和数量时,可以通过解线性方程组得到这些值。
方程组的解法及其应用方程组是代数学中的一个重要概念,它描述的是一组方程,其中每个方程都由一些变量及其对应的常数组成。
解一个方程组就是求出一组满足所有方程的变量值,这组值被称为方程组的解。
一般来说,解方程组的方法可以分为几种,最常用的包括代入法、消元法和矩阵法。
代入法是最简单的一种方法,它的基本思路是将其中一个未知量用另一个未知量的表达式替代,从而将方程组中的未知量数量减少一个。
举个例子,对于下面这组方程组:$$\begin{cases}2x + y = 5\\x - y = 1\end{cases}$$我们可以通过代入法求出它的解。
具体来说,我们可以将其中一个未知量($y$)用另一个未知量($x$)的表达式替代,得到:$$\begin{cases}2x + (x - 1) = 5\\x - (x - 1) = 1\end{cases}$$然后通过解这个新的方程组,可以得到$x = 2$和$y = 1$,从而得出原方程组的解为$(2,1)$。
代入法的优点是简单易懂,但是当方程组比较复杂时计算量会变得很大。
消元法是另一种解方程组的常用方法。
它的核心思想是通过一系列变换将方程组化为简单形式,从而可以很容易地求解。
最常用的消元法是高斯消元法,它的步骤如下:1. 将方程组写成增广矩阵的形式,即将系数矩阵和常数列合并在一起。
对于上面那组方程,可以写为:$$\left[\begin{array}{cc|c}2&1&5\\1&-1&1\end{array}\right]$$2. 对增广矩阵进行变换,目标是将其化为上三角矩阵。
这里的变换包括将某一行乘以一个常数、将某一行加到另一行上、交换两行等等。
具体来说,我们可以先将第二行乘以2,得到:$$\left[\begin{array}{cc|c}2&1&5\\2&-2&2\end{array}\right]$$然后将第二行减去第一行,并将结果放到第二行上:$$\left[\begin{array}{cc|c}2&1&5\\0&-3&-3\end{array}\right]$$这样,我们得到了一个上三角矩阵,其右下角的元素就是方程组的解之一($-1$)。
数学二元一次方程组解法讲解和实例分析的完整教案:大家好!今天来给大家讲解一下数学中的二元一次方程组解法,并且使用实例展示这个解法的具体应用情况。
一、二元一次方程组的概念二元一次方程组是指由两个含有两个未知数的线性方程所组成的方程组。
一般形式为:$$\begin{cases} ax+by=c \\ dx+ey=f \end{cases}$$其中,a、b、c、d、e、f都是已知数,x、y是未知数。
解方程组就是求出x和y的值,使得这两个方程组成立。
二、二元一次方程组的解法1、代数法采用代数方法解二元一次方程组,我们可以先通过其中一个方程将其中一个未知数表示成另一个未知数的函数。
将这个函数式代入另一个方程中,就会得到只含有一个未知数的一元一次方程,从而可以解出这个未知数的值。
接着,将求解出的值代入函数式中,可以得到另一个未知数的值。
二元一次方程组的代数解法具有操作简单、过程规范等特点。
我们可以通过实例来解释这个方法的正确性。
例1:用代数法解下列方程组:$$\begin{cases} 3x+5y=12 \\ 4x+2y=10 \end{cases}$$解:由第二个方程式得:$$y=\frac{10-4x}{2}=5-2x$$于是,方程组变成为:$$\begin{cases} 3x+5(5-2x)=12 \\ \\ 4x+2y=10\end{cases}$$将y=5-2x带入第一个方程式,可以消去y,得到:$$x=1$$将x=1代入y=5-2x,可以得到:$$y=3$$所以,这个方程组的解是(1,3)。
2、消元法消元法也是解二元一次方程组的一种方法。
它的核心思想是将两个含有两个未知数的方程中的一个未知数系数相等再作差,通过消元得到一个一元一次方程。
最后代入到其中一个方程,解出另一个未知数。
消元法解方程组的步骤如下:1)将其中一个方程两边同乘以一个数,使得两个未知数的系数相等或相反(决定于方便操作,一般情况下选择系数小的未知数)2)将两个方程加起来,消去某个未知数,从而得到另一个未知数的值3)代入其中一个方程式中,求出另一个未知数的值通过实例来解释这个方法的正确性。
线性方程组的解法及应用线性方程组是数学中常见的问题,其解法和应用十分广泛。
本文将介绍线性方程组的几种常见解法,并探讨了其在实际应用中的意义和重要性。
一、高斯消元法高斯消元法是解决线性方程组的常见方法之一。
其基本思想是通过一系列的行变换,将线性方程组转化为上三角矩阵或对角矩阵的形式,进而求解未知数。
通过逐行消元和回代过程,可以求得方程组的解。
高斯消元法是一种时间复杂度较低的求解线性方程组的方法,适用于各种规模的问题。
二、矩阵求逆法矩阵求逆法是另一种常见的求解线性方程组的方法。
根据矩阵的定义和性质,可以通过求解系数矩阵的逆矩阵,进而求得线性方程组的解。
这种方法较为简便,尤其适用于方程组的系数矩阵可逆的情况。
然而,由于求逆矩阵的计算复杂度较高,这种方法在处理大规模问题时可能变得不切实际。
三、克莱姆法则克莱姆法则是一种通过行列式的性质求解线性方程组的方法。
根据法则的定义,通过计算系数矩阵和常数矩阵的各个子行列式,可以得到线性方程组的解。
克莱姆法则具有简单的结构和直观的操作步骤,但其计算量较大,仅适用于小规模问题。
以上是几种常见的线性方程组解法,每种方法都有其适用的场景和特点。
在实际应用中,我们根据问题的特点和数据的规模,选择合适的解法以提高计算效率和准确性。
线性方程组求解的应用涉及到众多学科和领域,下面我们将探讨其中几个重要的应用。
四、物理学中的应用线性方程组在物理学中有着广泛的应用。
以力学为例,在分析力学问题中,往往需要通过线性方程组求解物体的运动状态和力的分布。
通过建立合适的力平衡方程和动力学方程,可以将问题转化为线性方程组,并求解得到物体的位移、速度和加速度等关键信息。
这对于理解物体的运动规律和进行工程设计具有重要意义。
五、经济学中的应用线性方程组在经济学中也有广泛的应用。
以宏观经济学为例,经济学家通常会建立一系列的数学模型,通过线性方程组描述经济系统中的供求关系、市场机制和宏观调控等。
通过求解线性方程组,可以得到不同经济指标之间的关系,帮助政策制定者做出科学的决策,推动经济稳定和发展。
线性方程组的解法及其应用摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.本文综述了几种不同类型的线性方程组的解法,如消元法、克拉默法则、广义逆矩阵法、直接三角形法、平方根法、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,广义逆矩阵方法,具有表达式清晰,使用范围广的特点.另外,这些方法利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合.关键词:线性方程组解法广义逆矩阵应用实例1. 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.本文主要介绍线性方程组的广义逆矩阵法、追赶法、平方根法等求解方法,为求解线性方程组提供一个平台.文章也给出线性方程组在其他领域中的应用实例,揭示了各学科之间的内通性.首先,我们讨论一般线性方程组.这里所指的一般线性方程组形式为11112211211222221122,,.n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()i()i 式中(1,2,,)i x i n =代表未知量,(1,2,,;1,2,,)ij a i s j n ==称为方程组的系数,(1,2,,)j b j n =称为常数项.线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s b b b ====.令111212122212n n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 12s b b B b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则()i 可用矩阵乘法表示为AX B =,,,.m n n m A C X C B C ⨯∈∈∈2. 线性方程组的解法2.1 消元法在初等代数里,我们已经学过用代入消元法和加减消元法解简单的二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.但对于那些高元的线性方程组来说,消元法是比较繁琐的,不易使用.例 1 解线性方程组123123123123324,32511,23,237.x x x x x x x x x x x x +-=⎧⎪+-=⎪⎨++=⎪⎪-++=-⎩ 解 分别将第一个方程的(-3)倍,(-2)倍和2倍加到第二、三、四个方程上,整理得123232323324,71,555,7 1.x x x x x x x x x +-=⎧⎪-+=-⎪⎨-+=-⎪⎪-=⎩将此方程组第二个方程加到第四个方程上,使该方程两边全为零,并将第三个方程的两边乘以15-,得1232323324,71,1.x x x x x x x +-=⎧⎪-+=-⎨⎪-=⎩再将第三个方程的7倍加到第二个方程上,消去第二个方程中的未知量2x ,整理得123233324,1,6 6.x x x x x x +-=⎧⎪-=⎨⎪-=⎩最后解得123(,,)(2,0,1)T T x x x =--.正如消元法是我们接触比较早的,被我们所熟悉的一种方法,在此只给出三元线性方程组的解法,三元以上的方程组的具体理论、性质和解题过程详见参考文献[1]. 2.2 应用克莱姆法则对于未知个数与方程个数相等的情形,我们有定理1[1] 如果含有n 个方程的n 元线性方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()ii的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式111212122212det 0n n n n nna a a a a a A a a a =≠,那么线性方程组()ii 有唯一解:det (1,2,,),det j j B x j n A==其中det j B 是把矩阵中第j 列换成线性方程组的常数项12,,,n b b b 所成的矩阵的行列式,即111,111,11222,122,121,1,1det,1,2,,.j j n j j n j n n j n n j nna ab a a a a b a a B j n a a b a a -+-+-+==此外,还可以叙述为,如果含有n 个未知数、n 个方程的线性方程组Ax b =的系数矩阵的行列式det 0A ≠,则线性方程组Ax b =一定有解,且解是唯一的. 例2 解线性方程组12342341242342344,3,31,73 3.x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨++=⎪⎪-++=-⎩ 解 由已知可得系数行列式12341234123401110111111det 16013015352073173148A ---------====≠----,因此线性方程组有唯一解.又因124234143431110311det 128,det 48,1301110137310331B B -------==-==-341244123401310113det 96,det 0.1311130107310733B B ------====--故线性方程组的解为1234(,,,)(8,3,6,0)T T x x x x =-.克莱姆法则主要给出了解与系数的明显关系,但只能应用于系数矩阵的行列式不为零的线性方程组,并且它进行计算是不方便的. 2.5 直接三角分解法[5]设有线性方程组11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩或写成矩阵形式Ax b =,其中111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.若A 为非奇异矩阵,且有分解式A LU =,其中U 为上三角矩阵,L 为单位下三角矩阵,即11121212221,1111n n n n n nn u u u l u u A LU l l u -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 则线性方程组Ax b =的求解等价于 解以下两个三角方程组:(1)Ly b =,求y ; (2)Ux y =,求x .直接三角形分解法求解线性方程组,基本步骤如下: 第一步: 11,(1,2,,),i i u a i n == 1111,(2,3,,)i i l a u i n ==,计算U 的第r 行,L 的第r 列元素,2,3,,r n =.第二步: 11,(,1,,)r ri ri rk ki k u a l u i r r n -==-=+∑.第三步: 11,(1,,;)r ir ir ik kr rr k l a l u u i r n r n -==(-)=+≠∑.求解Ly b =,Ux y =的计算公式如下:第四步: ()1111,,2,3,.i i i ik k k y b y b l y i n -==⎧⎪⎨=-=⎪⎩∑第五步: 1,(),(1,2,,1).n n nn n i i ik k ii k i x y u x y u x u i n n =+=⎧⎪⎨=-=--⎪⎩∑例5 求解线性方程组1231212321,42,227.x x x x x x x x ++=⎧⎪+=-⎨⎪-++=⎩解 由直接三角分解法第二、三步可得211100211410210012221131004A LU ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦. 于是线性方程组变为LUx b =,求解线性方程组(1,2,7)T Ly =-,得(1,4,4)T y =--;求解线性方程组(1,4,4)T Ux =--,得(1,2,1)T x =-.2.6 平方根法[7]在许多应用中,欲求解的线性方程组的系数矩阵是对称正定的.所谓平方根法,就是利用对称正定矩阵的三角分解而得到的求解具有对称正定矩阵的线性方程组的一中有效方法,目前在计算机上广泛应用平方根法解此类方程组.定理6[12] 若A 的各阶顺序主子式非零,则A 可以分解为A LDU =,其中L 是单位下三角矩阵,U 是单位上三角矩阵,D 是对角矩阵,且这种分解是唯一的.定理7[12] 设A 为对称正定矩阵,则存在三角分解T A LL =,其中L 是非奇异下三角形矩阵,且当限定L 的对角线元素为正时,这种分解是唯一的.应用对称正定矩阵的平方根法,可以解具有对称正定系数矩阵的线性方程组Ax b =,具体算法如下:1) 对j =1,2,,n ,计算11221()j jj jj jkk l a l -==-∑,11j ij ij ik jk k l a l l -==-∑(1,,)i j n =+.2) 求解线性方程组Ax b =等价于解两个三角方程组,.TLy b L x y =⎧⎨=⎩ 计算11()i i i ik k ii k y b l y l -==-∑,(i =1,2,,n ), 1()ni i ki kii k i x b lx l =+=-∑,(i n =,1n -,,2,1),即可.例6 求解线性方程组12341161 4.25 2.750.5.1 2.75 3.5 1.25x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 解 设1111213121222232313233334111 4.25 2.751 2.75 3.5l l l l l l l l l l l l -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法得1121223132332,0.5,2,0.5, 1.5, 1.l l l l l l ==-====解下三角方程组123260.520.50.5 1.51 1.25y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得1233,0.5,1,y y y ===-再由123230.520.50.5 1.511Tx x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 得线性方程组的解为123(,,)(2,1,1)T T x x x =-.可以用消元法解此方程组,但发现此方程组的系数矩阵为正定矩阵,运用平方根法解这个方程组比较容易,而且理论分析指出,解对称正定方程组的平方根法是一个稳定的算法,其在工程计算中使用比较广泛. 2.7 追赶法[5]在许多实际问题中,都会要求解系数矩阵为对角占优的三对角方程组11112222211111iiii i n n n n n nn n n x k b c x k a b c a b c x k a b c x k a b x k -----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 简记作 Ax k =, 其中A 满足下列对角占优条件:(1) 110b c >>;(2) i i i b a c ≥+, i a ,i c 0≠(i =2,3, ,1n -);(3) 0n n b c >>.由系数矩阵A 的特点,可以将A 分解为两个三角矩阵的乘积,即A LU =,其中L 为下三角矩阵,U 为单位上三角矩阵.求解线性方程组Ax k =等价于解两个三角方程组Ly k =与Ux y =,先后求y 与x ,从而得到以下解三角方程组的追赶法公式:第一步:计算的递推公式111c b β=,1()i i i i i c b a ββ-=-,(2i =,3,,1)n -;第二步:解Ly k =:111y k b =,11()()i i i i i i i y k a y b a β--=--,(2,3,,)i n =;第三步:解Ux y =:n n x y =,1i i i i x y x β+=-,(1,2,,2,1)i n n =--.例7 求解三对角线性方程组123421001131020111200210x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.解 设有三角分解111122222233333344441111b c p q a b c a p q a b c a p q a b a p ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法易得111,,1,2,3.,2,3,4.i i i ii i i p b q c p i p b a q i -=⎧⎪==⎨⎪=-=⎩ 将已知系数矩阵的元素代人上式有11223342,12,52,25,35,53,73.p q p q p q p ==⎧⎪==⎪⎨==⎪⎪=⎩ 解线性方程组112233441121220p y p y p y p y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得123412,35,73, 2.y y y y ====再解线性方程组111222333441111x y q x y q x y q x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得原线性方程组的为1234(,,,)(0,1,1,2)T T x x x x =-.追赶法是以LU 分解为基础的求解方法,因此它的不足之处是当某个0=k u 时,就不能进行.但是当方程组的系数矩阵A 中有很多零元素时,利用三对角方程组系数矩阵的稀疏性,使零元素不参加运算,可以类似于追赶法来简化计算过程,从而极大地节省了计算量和存储量.这也是追赶法的最大特点.3. 应用举例3.1 线性方程组在解析几何中的应用例8 已知平面上三条不同直线的方程分别为1L :230ax by c ++=,2L :230bx cy a ++=,3L :230cx ay b ++=,试证:这三条直线交于一点的充分必要条件为0a b c ++=.证 必要性 设三直线1L ,2L ,3L 交于一点,则线性方程组232323ax by cbx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩ ()iii有惟一解,故系数矩阵222a b A b c c a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵232323a b c A b c a c a b --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的秩均为2,于是0A -=,即22223236()()23a bcA bc a a b c a b c ab ac bc ca b--=-=++++----=0,所以0a b c ++=.充分性 由0a b c ++=,则从必要性的证明可知,0A -=,故()3r A -<.由于22222132()2[()]2[()]0224a b ac b a a b b a b b b c =-=-++=-++≠, 故()()2r A r A -==.因此线性方程组()iii 有惟一解,即三直线1L ,2L ,3L 交于一点. 3.2 线性方程组在产品生产量中的应用例9 设有一个经济系统包括3个部门,在某一个生产周期内各部门间的消耗及最终产品如表所示:求各部门的总产品.解 设i x 表示第i 部门的总产品.由已知可以得到线性方程组()I A x y -=,其中0.250.10.1()0.20.20.10.10.10.2ij A a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,0.750.10.10.20.80.10.10.10.8I A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦,(245,90,175)T y =. 利用矩阵的初等变换可以求得1126181810()34118198912017116I A -⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦, 所以线性方程组()I A x y -=的解为消耗系数 消耗部门 生产部门123最终产品1 0.25 0.1 0.1 2452 0.2 0.2 0.1 90 30.10.10.21751126181824540010()3411819902508912017116175300x I A y -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 4. 结束语本文针对不同的线性方程组给出了一些计算方法,及线性方程组的应用实例.根据线性方程组自身所具有的特点,可以选择相应合适的方法,而对于那些特殊类型的线性方程组的解法,有待进一步的讨论与研究.参考文献:[1] 北京大学数学系几何与代数教研室前代数小组编. 高等代数[M].3版.北京:高等教育出版社,2003.105-112.[2] 白梅花. 线性方程组若干应用实例举例[J].科技资讯,2011,(27):200-201.[3] 康道坤,陈劲. 广义逆下线性方程组的解结构及其推广[J].大理学院学报,2011,10(4):7-9. [4] 卢刚.线性代数[M]. 北京:高等教育出版社,2002.64-72.[5] 李庆扬,王能超,易大义. 数值分析[M].4版.武汉:华中科技大学出版社,2006.177-185. [6] 苏育才,姜翠波,张跃辉. 矩阵理论[M].北京:科学出版社,2006.200-206. [7] 首都师范大学数学系组编. 数值分析[M].北京:科学出版社,2000.28-32.[8] 徐仲,张凯院,陆全,等. 矩阵论简明教程[M].2版.北京:科学出版社,2005.141-147. [9] 谢寿才,陈渊. 大学数学[M].北京:科学出版社,2010.37-40.[10] 徐仲,张凯院,陆全. 矩阵论[M].西安:西北工业大学出版社,2002.228-245.[11] 尹钊,钟卫民,赵丽君. 线性方程组的广义逆矩阵解法[J].哈尔滨师范大学自然科学学 报,1999,15(5):21-22. [12] 张明淳. 工程矩阵理论[M].1版.南京:东南大学出版社,1995.172-173.[13] 赵树嫄. 线性代数(经济应用数学基础)[M].4版.北京:中国人民大学出版社,2008.150-157.。
一.解答题(共40小题)1.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.2.已知关于x,y的方程组的解满足x+y=2k.(1)求k的值;(2)试判断该方程组的解是否也是方程组的解.3.已知和都是方程ax+y=b的解,求a与b的值.4.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.5.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?6.甲、乙两人共同解方程组,由于甲看错了方程中的a,得到方程组的解为,乙看错了方程中的b,得到方程组的解,试计算a2010+的值.7.已知甲、乙二人解关于x、y的方程组,甲正确地解出,而乙把c抄错了,结果解得,求a、b、c的值.8.已知方程组与的解相同,试求a+b的值.9.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为,乙看错了方程组中的b,得到的解为.(1)求正确的a,b的值;(2)求原方程组的解.10.已知二元一次方程组的解是,求4a﹣3b的值.11.若关于x、y的二元一次方程组的解满足x﹣y=4,求m的值.12.已知方程组,甲看错了方程①中的a,得到方程组的解是;乙看错了方程②中的b,得到方程组的解.若按正确的a,b计算,求原方程组的解.13.已知方程组的解能使等式4x﹣6y=2成立,求m的值.14.已知关于x,y的二元一次方程组的解满足x与y之和为2,求a的值.15.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.16.解方程组.17.解二元一次方程组:.18.解方程组.19.解方程组.20.解方程组:.21.解方程组:.22.解方程组.23.解方程组:.24.解方程组.25.解方程组:.26.解方程组:.27.附加题:已知y=x2+px+q,当x=1时,y的值为2;当x=﹣2时,y的值为2,求当x=﹣3时,y的值.28.解方程组:.29.解下列方程组:(1)(2).30.解方程:.31.解方程组:.32.解方程组(1)(2).33.解下列方程组(1);(2).34.解下列方程组:(1)(2).35.解方程组:①②.36.解方程组(1)(2).37.解下列方程组:(1)(2).38.解方程组(1)(2).39.解下列方程(组):(1)﹣=1(2).40.解下列方程组:(1)(2).一.解答题(共40小题)1.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.【解答】解:(1),②﹣①得:y=3,把y=3代入①得:x=﹣2,则方程组的解为;(2)把代入方程得:﹣2a+3b=2,即2a﹣3b=﹣2,则原式=﹣2(2a﹣3b)=4.2.已知关于x,y的方程组的解满足x+y=2k.(1)求k的值;(2)试判断该方程组的解是否也是方程组的解.【解答】解:(1),解得:,代入x+y=2k得:=2k,解得:k=﹣1;(2),解得:,∴x+y=8,由x+y=2k得x+y=﹣2,∴该方程组的解不是方程组的解.3.已知和都是方程ax+y=b的解,求a与b的值.【解答】解:∵和都是方程ax+y=b的解,∴,解得:.4.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.【解答】解:根据题意,得解得:5.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?【解答】解:存在,四组.∵原方程可变形为﹣mx=7,∴当m=1时,x=﹣7;m=﹣1时,x=7;m=7时,x=﹣1;m=﹣7时,x=1.6.甲、乙两人共同解方程组,由于甲看错了方程中的a,得到方程组的解为,乙看错了方程中的b,得到方程组的解,试计算a2010+的值.【解答】解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则原式=1﹣1=0.7.已知甲、乙二人解关于x、y的方程组,甲正确地解出,而乙把c抄错了,结果解得,求a、b、c的值.【解答】解:由题意得,解得.8.已知方程组与的解相同,试求a+b的值.【解答】解:依题意可有,解得,所以,有,解得,因此a+b=3﹣=.9.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为,乙看错了方程组中的b,得到的解为.(1)求正确的a,b的值;(2)求原方程组的解.【解答】解:(1)由题意得:,解得:;(2)把代入方程组得:,解得:.10.已知二元一次方程组的解是,求4a﹣3b的值.【解答】解:把代入得:,解得:,4a﹣3b=4×+3×=19.11.若关于x、y的二元一次方程组的解满足x﹣y=4,求m的值.【解答】解:∵x、y的二元一次方程组为,∴3x﹣3y=3m+6,∵x﹣y=4,∴3m+6=12,∴m=2.12.已知方程组,甲看错了方程①中的a,得到方程组的解是;乙看错了方程②中的b,得到方程组的解.若按正确的a,b计算,求原方程组的解.【解答】解:将代入②得,﹣12+b=﹣2,b=10;将代入①,﹣5a+20=15,a=1.故原方程组为,解得.13.已知方程组的解能使等式4x﹣6y=2成立,求m的值.【解答】解:将2x+3y=7与4x﹣6y=2联立得:解得:x=2,y=1.把x=2,y=1代入5x﹣7y=m﹣1得:m﹣1=10﹣7,解得m=4.14.已知关于x,y的二元一次方程组的解满足x与y之和为2,求a的值.【解答】解:,①+②,得:5(x+y)=2a+2即2a+2=2×5,解得:a=4.15.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.【解答】解:由题意得:,解得:,代入,解得:,则(2a﹣b)2=[2×﹣(﹣)]2=4.16.解方程组.【解答】解:,由①得:x=3+y③,把③代入②得:3(3+y)﹣8y=14,所以y=﹣1.把y=﹣1代入③得:x=2,∴原方程组的解为.17.解二元一次方程组:.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.18.解方程组.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.19.解方程组.【解答】解:,由①得y=4﹣2x ③,把③代入②得x+2(4﹣2x)=5,解得x=1,把x=1代入③,得y=2,方程组的解为.20.解方程组:.【解答】解:方程组整理得:,①+②得:5x=10,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.21.解方程组:.【解答】解:,①+②得:3x=15,解得:x=5,把x=5代入②得:y=﹣1,则方程组的解为.22.解方程组.【解答】解:,把①代入②得:3x+2(x﹣1)=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为.23.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.24.解方程组.【解答】解:方程组化简,得,把②代入①,得﹣2x+3(﹣8+2x)=4,解得x=7,把x=7代入②,得y=﹣8+2×7=6,方程组的解是.25.解方程组:.【解答】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为26.解方程组:.【解答】解:,①×2+②×3得:5y=﹣15,解得:y=﹣3,把y=﹣3代入①得:x=﹣1,则方程组的解为.27.附加题:已知y=x2+px+q,当x=1时,y的值为2;当x=﹣2时,y的值为2,求当x=﹣3时,y的值.【解答】解:由x=1时,y=2,x=﹣2时,y=2,分别代入到y=x2+px+q中,得,即,解之得.所以y=x2+px+q就化为y=x2+x,当x=﹣3时,y=x2+x=(﹣3)2﹣3=6.28.解方程组:.【解答】解:,①×5﹣②×3得:﹣38y=﹣76,y=2,代入①得:3x﹣8=10,x=6.则原方程组的解为.29.解下列方程组:(1)(2).【解答】解:(1),①×3﹣②×2得:y=2,把y=2代入①得:x=3,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.30.解方程:.【解答】解:①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①×4+②得:14x=7,解得:x=,把x=代入①得:y=﹣1,则方程组的解为.32.解方程组(1)(2).【解答】解:(1)①×2+②得:7x=21,即x=3,把x=3代入①得:y=﹣2,则方程组的解为;(2)方程组整理得:,②﹣①×2得:11y=11,即y=1,把y=1代入①得:x=5,则方程组的解为.33.解下列方程组(1);(2).【解答】解:(1)原方程组可化简为,①×2+②得11x=22,解得x=2,把x=2代入①,得8﹣y=5,解得y=3,原方程组的解为;(2)原方程组化简为,②×2﹣①×3,得55y=220,解得y=4把y=4代入①,得2x﹣68=24,解得x=46原方程组的解为.34.解下列方程组:(1)(2).【解答】解:(1),把①代入②得x﹣2(5﹣x)=2,解得:x=4,把x=4代入①得:y=1,则原方程组的解为;(2),由①得6x﹣9y=9③,由②得6x﹣4y=14④,③﹣④得﹣9y+4y=9﹣14,解得:y=1,把y=1代入①得:2x﹣3=3,解得:x=1,则方程组的解为.35.解方程组:①②.【解答】解:①,把②代入①得:2y﹣2﹣y=8,解得:y=10,把y=10代入②得:x=9,则方程组的解为;②,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.36.解方程组(1)(2).【解答】解:(1),把①代入②得5x+2(3x﹣7)=8,解得x=2,把x=2代入①得y=6﹣7=﹣1.故方程组的解为;(2),方程可变形为,①+②×3得5x=﹣23,解得x=﹣,把x=﹣代入②得﹣+y=﹣9,解得y=﹣.故方程组的解为.37.解下列方程组:(1)(2).【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入②得:y=﹣,则方程组的解为;(2)方程组整理得:,①+②得:6x=12,解得:x=2,①﹣②得:﹣4y=4,解得:y=﹣1,则方程组的解为.38.解方程组(1)(2).【解答】解:(1),把①代入②得:9y﹣3+2y=19,解得:y=2,把y=2代入①得:x=5,则方程组的解为;(2)方程组整理得:,①+②得:3x=16,解得:x=,把x=代入①得:y=﹣,则方程组的解为.39.解下列方程(组):(1)﹣=1(2).【解答】解:(1)去分母得:3(x﹣3)﹣(2x+1)=6,去括号得:3x﹣9﹣2x﹣1=6,解得:x=16;(2)方程组整理得,①×2得:2x﹣4y=﹣2③,②﹣③得:3y=8,即y=,将y=代入①得:x=,则原方程组的解为.40.解下列方程组:(1)(2).【解答】解:(1),由①得:x=3y③,把③代入②得:7y=﹣7,解得:y=﹣1,把y=﹣1代入③得:x=﹣3,则方程组的解为;(2)方程组整理得:,①+②得:6x=18,解得:x=3,①﹣②得:4y=2,解得:y=,则方程组的解为.感谢您的阅读,祝您生活愉快。