图像分割之Snake模型汇总
- 格式:pptx
- 大小:340.62 KB
- 文档页数:11
Snake模型算法的基本思想数学模型及工作原理Snake模型是由Kass竽人首次提出的算法,广泛地W用于计算机视觉及图像处理屮的各个领域,如边缘检测、图像分割、运动跟踪等,持别应用于图像中感兴趣目标轮廓的提取。
Snake模型引入高层知识,在处理局部间断的边缘时,提取效果比传统轮廓提取方法要好。
1 Snake模型的基本思想Snake模型乂称为主动轮廓线模型(active eontoiir model),其星本思想是依据图像信息进行曲线(曲面)演化,使其最终找到目标物体的边界。
这种方法将分割问题转化为最优化问题,利用闭合曲线(或曲而)形变的特定规彳匚定义度量闭合曲线(曲而)形变的能呈函数,通过最小化能呈换数使曲线(曲而)逐渐逼近图像中目标物体的边缘CSnake模型能量函数的设计原则是:有利属性要能导致能量缩小。
有利属性包括曲线(曲而)连续、平滑、与高梯度区域的接近以及其他一些具体的先验知识。
这样,活劝轮廓在取值范围内移动时,就能在能量函数的指导下收敛到局部边界,而且能保持曲线(曲而)的连续和平滑-Snake模型是在曲线(曲面)本身的内力和图像数据的外部约束力作用下的移动的变形轮廓。
作用在Snake模型上的力依据轮廓所在的位置及其形状决定如何在空间局部的变化。
内力和外力的作用是不同的: 内力起平滑约束作用,外力则引导Snake模型向图像特征移动。
2基于Snake模型的轮廓提取方法对于传统的轮廓提取方法,首先要进行基本的边缘检测,然后进行边缘连接、一值化Z后,继而进行轮廓跟踪处理。
在边缘检测时,易受局部噪声影响而产生虚假边缘,或考是不连续的间断边缘,无法保证分割或者提取的结果就是连续光滑的闭合轮廓;此外,基于底层信息的轮廓跟踪,一方而对一•值化过程的依赖性比较人;另一方而,对于间断的边缘,使用上述简单方法将会跟踪失败。
这些都是传统计算机视觉屮分层处理模型所无法解决的问题。
Snake模型为解决轮廓提取任务提供了新的思维方法。
Snake 模型的学习一、Snake 模型的理论概念介绍1.基本思想:它以构成一定形状的一些控制点为模板(轮廓线),通过模板自身的弹性形变,与图像局部特征相匹配达到调和,即某种能量函数极小化,完成图像的分割。
再通过对模板的进一步分析而实现图像的理解和识别。
蛇模型是在曲线本身的内力和图像数据的外部约束力的作用下的移动变形轮廓线。
作用在蛇模型上的力依据轮廓的形状和位置决定在局部空间的移动。
内力起到平滑约束作用,外力引导曲线向图像轮廓所在位置移动。
2.构造Snake模型的目的:调和上层知识和底层图像特征这一对矛盾,Snake模型的轮廓线承载了上层知识(人们对物体的认识主要来源于外形轮廓),而轮廓线与图像的匹配又融合了底层特征。
这两项分别表示Snake模型中能量函数的内部力和图像力。
3.Snake模型的初始轮廓的选择:由于snake模型对初始位置比较敏感,因此要求初始轮廓尽可能的靠近真实轮廓,而当图像比较模糊或者目标比较复杂或者其他物体靠近时,其初始轮廓更不易确定。
现在的初始轮廓选择的方法:a.人工勾勒图像的边缘b.序列图像差分边界c. 基于序列图像的前一帧图像边界进行预测d.基于传统图像分割结果进行边界选取。
二、基本的Snake模型Kass 等提出的原始Snake模型由一组控制点组成v ( s ) = [x ( s ), y ( s ) ] s ∈[0,1] (1)这些点以首尾以直线相连构成轮廓线,x(s)、y(s) 分别表示每个控制点在图像中的坐标位置,s(s是归一化的曲线长度)是以傅里叶变换形式描述边界的自变量,在Snake控制点上定义能量函数第一项称为弹性能量,是v的一阶导数的模,第二项称为弯曲能量,是v的二阶导数的模,第三项为外部能量(外部力),αβ分别是控制Snake模型的弹性和刚性。
Snake模型对轮廓的灵活性依赖于这两个系数。
在基本Snake模型中,一般只取控制点或连线所在位置的图像局部特征,例如梯度也称图像力。
文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。
活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。
鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。
最后指出了图像分割的算法还有一些进一步优化的研究发展方向。
关键词:图像分割,参数活动轮廓模型,几何活动轮廓模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。
图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。
水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。
一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。
2、整体性。
能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。
3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。
Snake模型背景及应用Snake模型称为动态轮廓模型(Active Contour Model)是Kass与1987年提出的,它对于在噪声和对比度不敏感,能将目标从复杂背景中分割出来,并能有效的跟踪目标的形变和非刚体的复杂运动而被广泛用于图像分割和物体跟踪等图像处理领域。
Snake主要原理是先提供待分割图像的一个初始轮廓的位置,并对其定义个能量函数,是轮廓沿能量降低的方向靠近。
当能量函数达到最小的时候,提供的初始轮廓收敛到图形中目标的真实轮廓。
Snake能量函数是有内部能量函数和外部能量函数组成,内部能量控制轮廓的平滑性和连续性,外部能量由图像能量和约束能量组成,控制轮廓向着实际轮廓收敛,其中约束能量可根据具体的对象形态定义,使得snake具有很大的灵活性。
Snake模型发展10多年来,许多学者对于经典的snake模型做了改进,提出各种改进的snake 模型,其中梯度矢量流(Gradient Vector Flow,GVF)模型扩大了经典snake的外力作用范围,加强了对目标凹轮廓边缘的吸引力,提高了传统的snake模型。
Snake模型主要研究的方面:1.表示内部能量的曲线演化2.外力3.能量最小化Snake模型初始轮廓的选择由于snake模型对于初始位置比较敏感,因此要求初始轮廓尽可能的靠近真实轮廓,而当图像边缘模糊,目标比较复杂或与其他的物体靠的比较近时,其初始轮廓更不易确定。
现有的初始轮廓确定的方法有以下几种:1.人工勾勒图像的边缘 2.序列图像差分边界 3.基于序列图像的前一帧图像边界的预测 4.基于传统图像分割结果进行边界选取分水岭算法分水岭算法是由S.Beucher F.Meyer最早引入图像分割领域,它的基本思想是来源于测地学上的侧线重构,其内容是把图像看做是测地学上的拓扑地貌。
进行分水岭模型计算的比较经典的算法是L Vincent提出的,在该算法中首先是对每个像素的灰度级进行从低到高排序,然后用等级对垒模拟淹没,初始时,等级队列中为淹没的初始点,在从低到高实现淹没的过程中,对每一个局部极小值在H阶高度的影响域采用先进先出(FIFO)结构进行判断及标注,直到最后一个值被淹没,从而正确划分各个区域。