医学图像分割综述
- 格式:doc
- 大小:17.00 KB
- 文档页数:4
医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。
随着影像医学的发展,图像分割在医学应用中具有重要意义。
本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。
关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai-XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Witht hedevelopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fr omtheperspectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssignificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation, significance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。
医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。
摘要图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。
在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。
在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。
关键词:图像分割;边界;区域;水平集;马尔科夫AbstractImage segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.Keywords: Image segmentation; Border; Area;Level-set;Markov第1章引言1.1 图像分割的背景和重要作用图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的应用领域,而理解图像的第一步就是图像的分割。
医学影像分割技术综述近年来,随着医疗技术的快速发展,医学影像在日常诊疗中的应用越来越广泛。
然而,医学影像的处理和解读仍然是一个挑战性很大的问题,因为医学影像中存在许多复杂的细节和结构,需要人们运用先进的技术来对其进行分析和处理。
在这一背景下,医学影像分割技术应运而生,成为了医学影像处理中不可或缺的一个重要环节。
医学影像分割是指将医学影像中的不同组织、器官或病变区域进行分离和提取的过程,是医学影像处理中的核心任务之一。
其应用范围非常广泛,常常被用于肿瘤、心血管疾病、神经系统疾病、骨骼疾病等方面的临床诊断中。
医学影像分割技术的发展历程可以分为以下几个阶段:一、基于阈值的分割方法基于阈值的分割方法是最早被应用于医学影像分割领域的方法之一。
该方法基于灰度值的分布特征对图像进行二值化,将图像分为物体和背景两部分,并通过逐步调整阈值的方式提取出相关区域。
然而,该方法只适用于灰度值分布比较单一的图像,无法对复杂的医学影像进行准确的分割。
二、基于区域生长的分割方法基于区域生长的分割方法是一种基于图像拓扑结构的分割方法。
该方法首先选定一些种子点,然后根据图像相邻像素的灰度值信息和欧几里得距离等特征将图像分成若干个区域。
该方法可以对复杂的医学影像进行分割,但在医学影像中由于存在许多纹理和噪声,因此该方法在实际应用中的分割效果并不理想。
三、基于边缘检测的分割方法基于边缘检测的分割方法是一种通过检测图像轮廓的方式来进行分割的方法。
该方法通过刻画图像中不同物体的边缘特征,将相邻的像素点组成的区域进行合并,最终完成整个图像的分割。
该方法对图像中边缘细节的提取比较准确,但在医学影像分析中由于存在许多噪音和纹理,因此该方法的分割效果有限。
四、基于图像复杂模型的分割方法基于图像复杂模型的分割方法是一种使用数学模型对图像进行建模的方法。
该方法通过对图像的外部和内部特征进行建模,将图像分成若干个区域,并在分割过程中考虑到图像的物理意义和先验知识等因素。
图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。
本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。
图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。
图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。
例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。
根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。
1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。
基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。
2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。
这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。
3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。
这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。
4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。
常用的模型包括参数化模型和非参数化模型两类。
这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。
5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。
这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。
近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。
基于深度学习的医学影像分割技术研究综述近年来,深度学习技术的快速发展为医学影像分割领域带来了新的机遇和挑战。
医学影像分割技术在疾病诊断、手术规划和治疗方案设计等方面起着重要作用。
本文将对基于深度学习的医学影像分割技术进行综述,包括其原理、方法和应用领域。
一、深度学习在医学影像分割中的应用深度学习是一种基于神经网络的机器学习方法,通过多层次的网络结构实现对复杂模式的学习和表征。
在医学影像分割中,深度学习可应用于病灶分割、器官分割和组织分割等任务。
其优势在于能够自动学习特征表示并对图像进行端到端的分割,减少了人为设计特征的需求。
二、基于深度学习的医学影像分割方法1. 卷积神经网络(CNN)方法卷积神经网络是一种常用的深度学习模型,其在医学影像分割中取得了显著的成果。
卷积神经网络通过多层卷积和池化操作提取图像特征,并通过全连接层实现像素级别的分类。
常见的卷积神经网络包括U-Net、SegNet和FCN等。
2. 循环神经网络(RNN)方法循环神经网络是一种适用于序列数据处理的深度学习模型,在时间序列上具有记忆能力。
在医学影像分割中,循环神经网络常用于处理序列标注问题,如心脏血管分割和肿瘤边界检测等。
3. 生成对抗网络(GAN)方法生成对抗网络是一种由生成网络和判别网络组成的深度学习模型,通过对抗训练实现数据生成和分割任务。
在医学影像分割中,生成对抗网络可用于生成真实的分割结果,提高分割的准确性和鲁棒性。
三、基于深度学习的医学影像分割应用领域1. 病灶分割基于深度学习的医学影像分割技术在病灶分割中具有广泛的应用。
通过对肿瘤、结节等病灶进行准确的分割,可以帮助医生进行疾病诊断、治疗规划和疗效评估等。
2. 器官分割深度学习方法在器官分割中也具有重要作用。
对于心脏、脑部和肝脏等器官,通过深度学习的分割技术可以提取出其形状、位置和体积等重要信息,为医生提供更准确的诊断和手术规划支持。
3. 组织分割医学影像中的组织分割是一项具有挑战性的任务。
多层次医学图像配准与分割技术综述一、引言医学图像处理是医学领域中具有重要价值的核心技术之一。
在医学诊断、手术规划、治疗效果评估等方面,医学图像配准与分割技术已被广泛应用。
随着医学图像采集技术和存储设备的不断发展,逐渐形成了多层次医学图像数据,使得多层次医学图像配准与分割技术的研究成为医学图像处理领域的重要方向。
本综述将介绍多层次医学图像配准与分割技术的研究现状和发展趋势。
二、多层次医学图像配准技术1. 刚性配准技术对于同一患者所得到的多个医学图像,在进行医疗诊断分析时需要将不同图像上的相应结构对齐,这就需要配准技术。
刚性配准属于传统的医学图像配准方法。
刚性包括平移、旋转、缩放三个自由度,即3*3矩阵,可以保持原有图像图像的形状不变。
常用的刚性配准方法有基于特征点的配准、基于灰度直方图的配准和基于归一化互相关系数的配准等。
2. 非刚性配准技术随着科技的发展,非刚性配准技术的研究得到了极大的发展。
相比于刚性配准,非刚性配准有更高的自由度,能够更好的解决医学图像形变出现的问题。
非刚性配准技术涵盖了形变模型配准、基于图像弹性力学的配准和基于变形网格模型的配准等。
三、多层次医学图像分割技术多层次医学图像分割技术是指将医学图像划分成一系列像素或区域的过程,其中,每个像素或区域可以被赋予一个特定的标记。
精确的分割结果对于医学图像的诊断和治疗非常重要。
常用的多层次医学图像分割技术有如下几种:1. 基于像素的分割技术基于像素的方法最早应用于医学图像分割。
这种方法通过计算每个像素与周围像素的差异性,将像素划分为不同的类别,从而实现图像的分割。
像素为基础的方法有阈值分割、区域生长、边界检测等。
2. 基于边缘的分割技术基于边缘的分割方法也很早被应用于医学图像处理领域。
这种方法通过分析图像中的边缘信息,将边缘与背景之间判别出来。
它不但可以处理二维图像,而且还可以处理三维体积数据。
基于边缘的方法包括边缘检测、轮廓检测和基于水平卷积的分割方法等。
关于医学图像分割的综述Review of Medical Image Segmentation郭敬*秦茂玲赵文莉GUO Jing QIN Mao-ling ZHAO Wen-lidoi:10.3969/j.issn.1672-9528.2010.05.16Abstract Medical image segmentation medical image processing is the most basic and most important tech-nology of medical image processing.The aim is to segment image space into some interesting areas.Medical im-age segmentation determines the development of other related technologies of medical image processing.Based on a lot of reading at home and abroad recent literature,a rather complete survey on medical image segmentation methods is given in this article.Keywords Medical image segmentation Image segmentation evaluation*山东师范大学信息科学与工程学院,山东省分布式计算机软件新技术重点实验室山东济南250014在医学图像处理中,医学图像分割主要以各种细胞、组织与器官的图像来作为处理的对象或内容[1]。
由于医学图像的成像原理和组织本身的特性差异,医学图像与普通图像比较,具有模糊、不均匀性等特点,这使得医学图像更加困难。
因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。
龙源期刊网
医学图像分割综述
作者:王益东
来源:《健康必读(上旬刊)》2018年第04期
【摘要】医学图像分割是指在医学图像中,利用计算机视觉技术,根据区域内像素的相似特性(纹理等)以及区域间的不同特性,将图像中感兴趣的区域(ROI)提取出来,获取有关人体组织器官的有效信息,反馈给医生以及学者作为诊断依据。
随着计算机技术的日新月异和医疗设备的快速发展,医疗图像分割技术在影像医学中的作用日益增大。
本文首先介绍了医学图像分割的背景及其应用。
接着,详细分析了相关图像分割算法。
最后,总结了医疗图像分割技术在目前面临的困难与挑战,并提出了展望。
【关键词】医学影像;图像分割
【中图分类号】TP391.41 【文献标识码】A 【文章编号】1672-3783(2018)04-0281-01
1 引言
近几年来,随着计算机视觉技术和磁共振成像技术(MRI)、正电子放射层析成像技术(PET)、计算机断层成像(CT)、单光子辐射断层摄像(SPECT)、超声(Ultrasound)等医学影像设备的飞速发展,医学图像分割技术在影像医学中所发挥的作用越来越大。
医学图像分割技术则是把医学图像分割成若干个具有不同特性的区域,区域内保持一定的相似性,区域间有一定的相异性,从而提取出感兴趣的部分。
医学图像分割在临床诊断中发挥着重要作用,如:
(1)生物医学图像分析:解剖结构的测量、心脏运动跟踪等。
(2)组织、器官定量分析:通过对人体器官或是病变器官容积的定量检测,为医生的临床诊断提供依据。
(3)医学图像3D重建:用于外科手术的仿真、药物治疗的评估等。
目前,医学图像分割技术的发展仍然面临一些困境,主要原因在于医学图像的多样性、复杂性及其采集的困难性。
由于人体器官位置的特殊性,医学图像采集较为困难,图形容易受到组织运动等问题的影响,所采集的医学图像相交于普通图像而言,噪声较大。
并且人体间存在个体差异,不同人体的组织和器官差异较大。
因此,针对医学图像对图像分割技术进行研究,显得尤为重要。
2 医学图像分割算法。