椭圆知识点归纳总结和经典例题
- 格式:docx
- 大小:136.65 KB
- 文档页数:9
椭圆知识点总结及典型方法知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记ac a c e ==22。
知识点四:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系知识点五: 椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆。
椭圆 (一)椭圆及其性质1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1 F 2|)的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
(2)一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率2、椭圆的标准方程3、椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 4、离心率: 椭圆焦距与长轴长之比a c e =⇒2)(1a b e -= 10<<e 椭圆的准线方程: 左准线ca x l 21:-= 右准线c a x l 22:= (二)、椭圆的焦半径椭圆的焦半径公式:(左焦半径)01ex a r += (右焦半径)02ex a r -= 其中e 是离心率 焦点在y 轴上的椭圆的焦半径公式:⎩⎨⎧-=+=0201ey a MF ey a MF ( 21,F F 分别是椭圆的下上焦点)(三)、直线与椭圆问题(韦达定理的运用)1、弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-=2121x x k -+=2122124)(1x x x x k-++= 例1. 已知椭圆及直线y =x +m 。
(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线的方程。
2、已知弦AB 的中点,研究AB 的斜率和方程AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦,中点M 坐标为(x 0,y 0), 则AB 的斜率为-b 2x 0a 2y 0.运用点差法求AB 的斜率,设A (x 1,y 1),B (x 2,y 2).A 、B 都在椭圆上,∴⎩⎪⎨⎪⎧ x 1 2a 2+y 1 2b 2=1,x 22a 2+y 2 2b 2=1,两式相减得x 1 2-x 2 2a 2+y 1 2-y 2 2b 2=0,∴x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b 2=0, 即y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2=-b 2x 0a 2y 0.故k AB =-b 2x 0a 2y 0. 例、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3.椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
第二部分 圆锥曲线(一)---椭圆知识点一:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.注意:椭圆122=+b y a x ,122=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ac e ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。
知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
椭圆一.知识清单1.椭圆的两种定义:①平面内与两定点F1,F2的距离的和等于定长2a 2a F1 F2的动点P 的轨迹,即点集M={P||PF|+|PF |=2a , 2a> |F F |} ;(2a F1 F2时为线段 F1F2,2a F1F2无轨迹)。
此中两定1212点 F1, F2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和必定直线的距离的比是小于 1 的正常数的点的轨迹,即点集M={P|PF e, 0< e< 1 的常数。
( e1为抛物线; e1为双曲线)d(利用第二定义 , 能够实现椭圆上的动点到焦点的距离与到相应准线的距离相互转变,定点为焦点,定直线为准线) .2 标准方程:( 1)焦点在 x 轴上,中心在原点:x2y 21 (a>b>0);a2 b 2焦点 F (- c, 0), F( c,0)。
此中c a2b2(一个 Rt 三角形)12( 2)焦点在 y 轴上,中心在原点:y 2x 21(a>b>0);a2b2焦点 F1( 0,- c), F2( 0, c)。
此中c a 2 b 2注意:①在两种标准方程中,总有a> b> 0,c a 2b2而且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax2+By2=1 (A> 0,B> 0,A≠ B),当 A< B 时,椭圆的焦点在 x 轴上, A> B 时焦点在 y 轴上。
3 参数方程:焦点在 x 轴,x a cos(为参数)y b sin4 一般方程:Ax2By 21( A0,B 0)5. 性质:对于焦点在 x 轴上,中心在原点:x2y21( a> b> 0)有以下性质:a2b2坐标系下的性质:①范围: |x|≤a, |y|≤b;② 对称性:对称轴方程为x=0, y=0,对称中心为O(0, 0);③极点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b;( a 半长轴长,b半短轴长);④ 椭圆的准线方程:对于 x2y 21,左准线 l 1 : x a 2;右准线 l 2 : x a2a 2b 2c c对于 y 2x 21,下准线 l1 : y a 2;上准线 l 2 : y a 2a 2b 2c c焦点到准线的距离 pa 2 a 2 c 2b 2 cc(焦参数)cc椭圆的准线方程有两条,这两条准线在椭圆外面,与短轴平行,且对于短轴对称⑤ 焦半径公式: P ( x 0,y 0)为椭圆上任一点。
圆锥曲线与方程--椭圆知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程: 222ca b =-①焦点在x 轴上:12222=+by a x (a>b>0); 焦点F(±c,0)②焦点在y 轴上:12222=+bx a y (a >b >0);焦点F(0, ±c)注意:①在两种标准方程中,总有a>b>0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a>b>0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x≤b(2)椭圆12222=+bx a y (a>b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a,0),A 2(a,0),B 1(0,-b),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a,短轴长等于2b ,a和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22ca,即a c 称为椭圆的离心率,ﻫ记作e (10<<e ),22221()be a a==-ce 0=是圆;e 越接近于0 (e越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
圆锥曲线与方程椭 圆知识点一.椭圆及其标准方程1.椭圆的概念:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};那个地址两个定点F 1,F 2叫椭圆的核心,两核心间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程: 222c a b =-①核心在x 轴上:12222=+by a x (a >b >0); 核心F (±c ,0) ②核心在y 轴上:12222=+bx a y (a >b >0); 核心F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,而且椭圆的核心总在长轴上; ②两种标准方程可用一样形式表示:221x y m n+= 或 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性椭圆关于x 轴y 轴都是对称的,那个地址,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.极点(1)椭圆的极点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 别离叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 别离叫做椭圆的长半轴长和短半轴长。
4.离心率(1)咱们把椭圆的焦距与长轴长的比22c a ,即a c 称为椭圆的离心率, 记作e (10<<e ),22221()b e a a==-c e 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
知识点- •椭圆及其标准方程1 •椭圆的定义:平面内与两定点F i , F 2距离的和等于常数2a ■ F1F 2的点的轨迹叫做椭 圆,即点集 M={P| |PF i |+|PF 2|=2a ,2a > |F i F 2|=2c};这里两个定点F i , F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(2a TF1F 2时为线段F 1F 2, 2a c F 1F 2无轨迹) 2.标准方程: c = a - b2 2②两种标准方程可用一般形式表示:——=1或者mx 2+ny 2=1m n椭圆的简单几何性质: 1•范围横坐标-b <x W b,纵坐标-a <x <a2. 对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心2 2(2) 椭圆笃冷=1 (a >b >0)a b圆锥曲线与方程椭 圆(1)2 2椭圆廿右=1 (a > b > 0) 横坐标-a mwa ,纵坐标-b <x<b① 焦点在x 轴上:② 焦点在y 轴上:2 2x_ y_ 二b 2(a > b > 0)b 2(a > b > 0)焦点 F (土c , 0)注意:①在两种标准方程中 ,总有a >b >0,并且椭圆的焦点总在长轴上3. 顶点(1) 椭圆的顶点:A i (-a , 0), A2 (a, 0), B i (0, -b ), B2 (0, b)(2) 线段A1A2, B1B2分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭圆的长半轴长和短半轴长。
4. 离心率(1)我们把椭圆的焦距与长轴长的比2c,即-称为椭圆的离心率,2a a2 c b 2记作e ( 0 :e : 1) , e 2 = 1 一(—)・ a ae = 0是圆;e越接近于0 (e越小),椭圆就越接近于圆;e越接近于1 (e越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
椭圆典型例题例1已知椭圆mx23y34 6m 0的一个焦点为(0, 2)求m的值.2 解:方程变形为—62— 1 .因为焦点在y轴上,所以2m 6,解得m 3 . 2m又c 2,所以2m 6 22, m 5适合.故m 5 .例2已知椭圆的中心在原点,且经过点P 3,0 , a 3b,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a和b (或a2和b2)的值,即可求得椭圆的标准方程.2解:当焦点在x轴上时,设其方程为笃a2圆的方程为-9由椭圆过点P3,0,知9202 1 .又a 3b ,联立解得a 281,b 29,故椭圆a b2 2 的方程为y X 1 .81 9例3 ABC 的底边BC 16,AC 和AB 两边上中线长之和为30,求此三角形重 心G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得GC GB 20 ,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求 A 的轨迹方程.由椭圆过点0 b 21 .又a 3b , 代入得b2 1,a 29,故椭y 2 1.当焦点在y 轴上时,设其方程为 2 2 yx 2,2ab(1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设 G 点 B 、C为焦点的椭圆,且解:坐标为x , y ,由GC GB 20,知G 点的轨迹是以 除去轴上两点.因a 10, c 8,有 b 6 , 2 故其方程为— 100 2 y 36 -y (2)设 Ax , y 2 ,则— 100 2 y 36 1y x x 由题意有 y3 椭圆(除去x 轴上两点). 3'代入①,得A 的轨迹方程为y2x900 2y324 1 y 0 ,其轨迹是例4已知P 点在以坐标轴为对称轴的椭圆上,点 P 到两焦点的距离分别为 土勺 3和晋,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 设两焦点为F ,、F 2,且PF ,于,PF 2竽.从椭圆定义知 2a si n PF 1I PF 2 2亦.即 a .从PR可求出 PF2I 知|PF 』垂直焦点所在的对称轴,所以在Rt PF 2 PF 1PF 1F 2cos — 6 口,从而b 2、、3a 2 c 210 3•••所求椭圆方程为3y 2 101或眩102例5已知椭圆方程冷 a2yb 2长轴端点为A ,A 2,焦点为£, P 是椭圆上一点, A-i PA 2 F 1PF 2.求:F 1PF 2的面积(用b 、由椭圆定义知:PR PF? 2a ②,则②2—①得PF i PF22b2 1 cos故S F.,PF21PF. PF2 sin21 2b2sin21 cos示)•1分析:求面积要结合余弦定理及定义求角的两邻边,从而利用S -absinC求2面积.解:如图,设P x, y ,由椭圆的对称性,不妨设P x, y,由椭圆的对称性,不妨设 P 在第一象限.由余弦定理知:2 2 2 2F I F2PF I PF2 2PF1 ・PF2 cos 4c45•①4求过点P1,丄且被P平分的弦所在直线的方程;2 25求斜率为2的平行弦的中点轨迹方程;解: 设弦两端点分别为M X i, y. , N x?, y2,线段MN的中点R x,2 X i2 X2X i y i 2y f 2,2y;2,x22X,y2y,①②③④①一②得x. x2 x. x2 2 y. y2 y.由题意知X. X2,则上式两端同除以X.y i y?X i X2 2 y i y? 0,X i X2将③④代入得X 2yh^ 0 .⑤x. x21代入⑤,得也汇2 x. x2y? 0X2,有i,故所求直线方程为:2例6已知椭圆=y2 1 2x 4y 3将⑥代入椭圆方程X22寸O I2得6y26y n 0,36 0符合题意,2x 4y 3 0为所求.(2)将匹上2代入⑤得所求轨迹方程为: 捲x2内部分)x 4y 0 .(椭圆(3)将里上口代入⑤得所求轨迹方程为:X i x2 x 2 圆内部分)x2 2y2 2x 2y 0.(椭例7已知椭圆4x2 y21及直线y x m .(1)当m为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为2卫,求直线的方程.5解:(1 )把直线方程y x m代入椭圆方程4x2 y21得4x2 x m 2 1 ,即5x22mx m2 1 0 2m 2 4 5 m21 216m220(2) 设直线与椭圆的两个交点的横坐标为X1 , X2,由(1 )得x. X2 2m T,x-|xm2 15根据弦长公式得:.1 1222m m215¥ .解得m0 .方5m ——2程为y x.斜解为-的直线交椭圆于A,B两点,求弦AB的长.过它对的左焦点F1作倾由直线方程与椭圆方程联立得:所以X1 x272. 3X1X36 8例8求中心在原点,对称轴为坐标轴,且经过A(..3, 2)和B( 23,1)两点的椭圆方程分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为mx2 ny21( m 0,n 0),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为mx2 ny2 1(m 0,n 0).由AC,3 , 2)和B(2..3,1) 两点在椭圆上可得m炯:n ( 2)2 1,即3m 4n 1,所以m - , n —故所求的椭圆方m ( 2..3)2n 121, 12m n3 15 52 2程为x_仝1.15 5例9已知长轴为12,短轴长为6,焦点在x轴上的椭圆,分析:可以利用弦长公式 AB V1 k2|x1x2| v(1 k2)[( x1x2)24x1x2]求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法 1)利用直线与椭圆相交的弦长公式求解.AB J1 k2|x1 X2 J(1 k2)[(X1 X2)24x1X2].因为 a 6 , b 3 ,所以c 3 3.因为焦点在x轴上,2 2所以椭圆方程为——1,左焦点F ( 3 •. 3 , 0),从而直线方程为y 3x9 .36 9 1313x2 72...3x 36 80 .设洛,X2为方程两根,4813••T 的斜率k i 4 , •••设直线AB 的方程为y4x n .由方程组2 13x 28nx 216n 248 0①。
椭圆的基本知识1 •椭圆的定义:把平面内与两个定点 F 「F 2的距离之和等于常数(大于 F ,F 2)的点的轨迹叫做椭圆•这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距 (设为2c ).2.椭圆的标准方程:焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为 虑焦点位置,求出方程 3.求轨迹方程的方法:定义法、待定系数法、相关点法、直接法例1如图,已知一个圆的圆心为坐 标原点,半径为2.从这个圆上任意一点P 向x 轴作垂线的解:段PP ,求线段PP 中点M 的轨迹•关点法)设点Mx , y ), 点Rx o , y o ), 贝 y x =x o , y = 匹 得 x o =x , y o = 2y.2x o 2+ y o 2= 4,得 x 2+ (2 y ) 2= 4,即- y 21.所以点M 的轨迹是一个椭圆42 2 2 24.范围.x < a , y < b ,••• | x| < a , | y| < b . 椭圆位于直线x =± a 和y =± b 围成的矩形里.5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x = 0,得y =± b ,点Bi(0, — b )、R(0, b )是椭圆和y 轴的两个交点;令 y = 0,得x =± a ,点A ( —a ,0)、A(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A ( — a , 0)、A(a , 0)、B(0, — b )、B(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段AA 、BB 分别叫做椭圆的长轴和短轴 . 长轴的长等于2a .短轴的长等于2b . a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长.y| BH | = |BF 2| = | BH| = | BF 2| = a .在 Rt △ OBF 2中,|OF |2= | BaF 2| 2 — | 0团 2, AZ b即 c 2 = a 2 — b 2.x7.椭圆的几何性质:mx2+ny2=1(m>0 n>0)不必考2 2a b2 2a b椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐和召Hi¥厂1,J /1 .PjAJ4j对 关T r 轴・,、轴・燮标原点荊称荒于J 鞋*孑轴・坐肺腺点时称(K 点Ai ( —Un 0 ) a HI O) fihCOi —At tO-B — a J » A* a }(CXr-CI) a几点说明:(1)长轴:线段 AA ,长为2a ;短轴:线段B 1B 2,长为2b ;焦点在长轴上。
8.直线与椭圆:直线I : Ax By C 0 ( A 、B 不同时为0)22标系无关的本身固有性质, 如长、短轴长、焦距、离心率.对于第一类性质,y b 2(a b 0)2 的有关性质中横坐标 x和纵坐标y 互换,就可以得出 冷a 2b 21 (ab 0)的有关性质。
总结如下:(2) 对于离心率e ,因为 a>c>0,所以0<e<1,离心率反映了椭圆的扁平程度。
由于,所以e 越趋近于1, b 越趋近于0,椭圆越扁平;e 越趋近于0,b 越趋近于a ,椭圆越圆。
(3)观察下图,|0B 2|b,| OF 2 | c ,所以IB 2F 2I a ,所以椭圆的离心率 e = cos / OFR31x y椭圆C :二2 1 (a b 0)a b那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组, 通过方程组的解的个数来判断直线和椭圆交点的情况。
方法如下:A X By C 02 2x y “消去 y 得到关于 x 的一兀二次方程,化简后形式如下i2.21a b2mx nxp 0(m 0),n 2 4mp(1)当0时,方程组有两组解,故直线与椭圆有两个交点;(2) 当0时,方程组有一解,直线与椭圆有一个公共点(相切);(3)当0时,方程组无解,直线和椭圆没有公共点。
注:当直线与椭圆有两个公共点时,设其坐标为A(x i ,y i ), B(X 2, y 2),那么线段AB 的长度(即弦长)为|AB| ■. (X i X 2)2(y i y 2)2,设直线的斜率为k ,可得:|AB| .. (^ X 2)2[k(x i X 2)]2、1 k 2|x i X 2 |,然后我们可通过求出方程的根或用韦达 定理求出。
椭圆典型例题例i 已知椭圆mx 23y 26m 0的一个焦点为(0, 2)求m 的值.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或a 2和b 2)的值,即可求得椭圆的标准方程.当焦点在y 轴上时,设其方程为分析:把椭圆的方程化为标准方程,由c 2,根据关系a 2 b 2 c 2可求出m 的值.解:方程变形为2丄 I .因为焦点在y 轴上,所以2m 6,解得m 3 .2m又c 2,所以2m 622, m 5适合.故m 5.例2已知椭圆的中心在原点,且经过点P 3,0 , a 3b ,求椭圆的标准方程.解: 当焦点在X 轴上时,设其方程为 2 2 x y2,2ab由椭圆过点 P 3,0,知弓21 .又aa 2b 22X21.y9i a b 0 .3b ,代入得b 2 i , a 29,故椭圆的方程为2 2可求出 PF 1F 2 —, 2c PF 1 cos —6 62 5,从而b 26 3 10 3两点).例4已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.9 02 2由椭圆过点P 3,0,知笃21 •又a 3b ,联立解得a2 81 , b 29,故椭圆的方程为a b2 y 81 2 x 1 • 9 例3 ABC 的底边BC 16, AC 和AB 两边上中线长之和为 30,求此三角形重心 G 的轨迹和顶点 A 的轨迹. 分析:(1)由已知可得 GC GB 20,再利用椭圆定义求解. (2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求 A 的轨迹方程.解:(1 )以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设 G 点坐标为 x, y ,由 GC GB 20,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因 a 10 , c 8,有故其方程为x 2100 2 y 36(2)设 A x, y 2 ,则— 100 2 y 36 由题意有 x 3'代入①,得A 的轨迹方程为 y 900 324 3,其轨迹是椭圆 (除去x 轴上,过P 点作焦解:设两焦点为F 1、F 2,且PF 1竽,PF 2口 .从椭圆定义知32a PF 1 PF 2 2( 5 .即从PF 1 PF 2知PF 2垂直焦点所在的对称轴,所以在 RtPF 2F 1 中, sin PF | F 2PF 2例6已知动圆P 过定点A 3,0 ,且在定圆B : x 3 2y 264的内部与其相内切,轨迹方程.分析:关键是根据题意,列出点 P 满足的关系式.解:如图所示,设动圆 P 和定圆B 内切于点M .动点P 到两定点, 即定点A 3,0和定圆圆心B 3,0距离之和恰好等于定圆半径,即PA PB PM | |PB BM 8 ••点P 的轨迹是以 A , B 为两焦点,__________ 2 2半长轴为4,半短轴长为b . 42 32■, 7的椭圆的方程:-—1 .16 7说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求 轨迹方程的一种重要思想方法.•••所求椭圆方程为2小2x 3y 51010例5已知椭圆方程b 21 a b 0,长轴端点为A , , A 2,焦点为F i , F 2, P 是椭圆上一点, A 1PA 2 , F 1PF 2 分析:求面积要结合余弦定理及定义求角 •求:F 1PF 2的面积(用a 、b 、表示).的两邻边,从而利用S 丄absin C 求面积.2解:如图,设P x , y ,由椭圆的对称性, 不妨设P x , y ,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知:由椭圆定义知:F 1PF 2F 1F 2 |PF 1IPF 1 |PF 22a1-|PF 1 |PF 2 sinPF 22PF 」• PF 2 2cos 4c .①②,则②2—①得21 2b2 sin21 cosPF 1 PF 2b 2 ta n22b 2 1 cos2例7已知椭圆—y2 121 1(1) 求过点P丄,丄且被P平分的弦所在直线的方程;2 2(2) 求斜率为2的平行弦的中点轨迹方程;(3) 过A 2,1引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点 P 、Q , O 为原点,且有直线 OP 、OQ 斜率满足k O pk oQ求线段PQ 中点M 的轨迹方程.解:设弦两端点分别为 M 论,y 1 ,N X 2, y ,线段MN 的中点R x , y ,贝V2 X 12y 2 2, ① ①-②得X 1 X 2 X 1 X 22y 1 y 2 y 1 y ? 2X 2 2y f 2, ② 由题意知X1X 2,则上式两端同除以 X 1 x 2,有X 1 X 2 2x,③X 1 X 2 2 y 1 y 20,*y 2 2y,④X-I x 2分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法. 0 •⑤将③④代入得X 2y —准X 1 x 21 (1)将 x 2,y 2代入⑤,得y1 y2 x 1 x 2 1丄,故所求直线方程为:22x 4y 3 0.⑥将⑥代入椭圆方程 x 2 2y 22 得 6y 2 6y 3614 6 40符合题意,2x 4y 3 0 为所求. (2) 将 X-I x 2 2代入⑤得所求轨迹方程为: x 4y 0 .(椭圆内部分)(3) 将X 1 X 2y 1代入⑤得所求轨迹方程为: 2 2y 22x2y 0 .(椭圆内部分)(4) 由①+②得⑦,将③④平方并整理得x 2x ; x ; 4x 2将⑧⑨代入⑦得:2経,⑧,2y i y ; 4y 2 2y°2,4x 2 2x 1x 24y 22y 1y 22,1再将%丫23X 1X 2代入⑩式得:2x 2X 1X 2 4y 22 ^X 1X 22此即为所求轨迹方程.当然,此题除了设弦端坐标的方法, 还可用其它方法解决.例8已知椭圆4x 2 y 2 1及直线y x m .(1 )当m 为何值时,直线与椭圆有公共点?。