高等数学电子教案1-1
- 格式:ppt
- 大小:2.61 MB
- 文档页数:29
高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
高等数学下电子教案一、引言1.1 课程简介本课程是高等数学下的电子教案,主要面向大学本科阶段的学生。
通过本课程的学习,学生将掌握高等数学的基本概念、方法和技巧,为后续专业课程的学习和科研工作打下坚实的基础。
1.2 教学目标(1)理解并掌握高等数学的基本概念和原理;(2)培养学生的逻辑思维能力和解决问题的能力;(3)提高学生的数学素养和科学研究的初步能力。
二、极限与连续2.1 极限的概念(1)极限的定义;(2)极限的性质;(3)极限的存在条件。
2.2 极限的计算(1)基础极限公式;(2)无穷小和无穷大的比较;(3)极限的运算法则。
2.3 连续性(1)连续性的定义;(2)连续函数的性质;(3)连续函数的判定定理。
三、导数与微分3.1 导数的概念(1)导数的定义;(2)导数的几何意义;(3)导数的物理意义。
3.2 导数的计算(1)基本导数公式;(2)导数的运算法则;(3)高阶导数。
3.3 微分(1)微分的定义;(2)微分的运算法则;(3)微分在近似计算中的应用。
四、积分与面积4.1 不定积分(1)不定积分的概念;(2)基本积分公式;(3)积分的换元法和分部法。
4.2 定积分(1)定积分的概念;(2)定积分的性质;4.3 面积计算(1)平面区域的面积计算;(2)曲线的面积计算;(3)旋转体的体积计算。
五、微分方程5.1 微分方程的基本概念(1)微分方程的定义;(2)微分方程的解法;(3)微分方程的应用。
5.2 线性微分方程(1)线性微分方程的定义;(2)线性微分方程的解法;(3)线性微分方程的解的存在性定理。
5.3 非线性微分方程(1)非线性微分方程的定义;(2)非线性微分方程的解法;(3)非线性微分方程的应用。
六、级数6.1 级数的基本概念(1)级数的定义;(2)级数的收敛性;6.2 幂级数(1)幂级数的概念;(2)幂级数的收敛半径;(3)幂级数的运算。
6.3 泰勒级数和麦克劳林级数(1)泰勒级数的概念;(2)泰勒级数的展开;(3)麦克劳林级数。
《高等数学》课程电子教案本课程为我校第二批精品课程建设立项项目,学院为此专门抽调各教研室骨干教师组成课程组,充分发挥和强化其建设与改革职能,前期建设所取得的成果要紧表达在以下几个方面:一、师资队伍建设本课程组共12名成员,其中正副教授5人,讲师3人,助教5人,其中具有博士学位3人,具有硕士学位6人,已初步建立一支数量充足、结构合理、素养优良、充满生气与活力的专任教师队伍。
二、教材建设考虑到师范院校属性及相关学科的教学特点,构建融会贯穿的课程体系,我们差不多编写出下述《高等数学》系列教材:1. 孙国正主编,高等数学,安徽大学出版社20032. 刘树德编,高等数学,校科类基础课,教材,已申请出版3. 刘树德编,高等数学续论,选修课教材,校内胶印使用三、教学改革1. 加强教学内容的整合力度,以社会进展的新科技、新成果充实教学内容,提高教学起点。
2. 深入进行教学方法改革,多用启发式、讨论式、研究式教学方法,从改变教师的教学方式之入手,达到转变学生的学习方式之目的。
3. 运用现代教育手段提升教学水平。
为教师制作CAI课件,使用多媒体授课,加快运算机辅助教学软件的开发积极制造条件。
四、教学研究项目1. 省高校教学研究项目, 高等数学课程的优化设计,1999-2002;2. 校教材建设基金资助项目,出版校科类基础课教材《高等数学》, 20063. 校第二批精品课程建设立项项目, 《高等数学》,2005-2008课程建设是一项长期困难的工作,今后我们要连续努力,加快建设的步伐。
2005.12《高等数学》课程电子教案(节选)授课人:刘树德教学内容:1、微积分学的差不多定理与差不多公式;2、定积分的换元积分法与分部积分法。
教学目的:1、明白得微积分学的差不多定理与差不多公式的涵义和重要性;2、熟练把握和运用定积分的换元积分公式与分部积分公式。
教学重点:定积分的换元积分法与分部积分法教学难点:微积分学的差不多定理与差不多公式教学手段:讲授§6.2 微积分学的差不多定理与差不多公式若已知f(x)在[a,b]上的定积分存在,如何样运算那个积分值呢?假如利用定积分的定义,由于需要运算一个和式的极限,能够想象,即使是专门简单的被积函数,那也是十分困难的。
高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个非空数集A中的每一个元素在非空数集B中都有唯一确定的元素和它对应。
函数的性质:单调性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋向于某一数值a时,函数f(x)趋向于某一数值L,我们称f(x)当x趋向于a时的极限为L,记作:lim(f(x),a)=L。
1.3 极限的运算极限的四则运算法则:1)lim(f(x)+g(x),a)=lim(f(x),a)+lim(g(x),a)2)lim(f(x)g(x),a)=lim(f(x),a)lim(g(x),a)3)lim(f(x)/g(x),a)=lim(f(x),a)/lim(g(x),a) (g(x)≠0)4)lim(cu(x),a)=lim(c,a)lim(u(x),a) (c为常数,u(x)可导)1.4 无穷小与无穷大无穷小的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|<M,则称f(x)为无穷小。
无穷大的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|>M,则称f(x)为无穷大。
第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在x处的导数定义为f'(x)=lim(f(x+Δx)-f(x),Δx)=lim(Δx,0)f'(x+Δx)。
2.2 导数的运算导数的四则运算法则:1)(f(x)+g(x))'=f'(x)+g'(x)2)(f(x)g(x))'=f(x)g'(x)+f'(x)g(x)3)(f(g(x)))'=f'(g(x))g'(x)4)(cu(x))'=c'u(x)+cu'(x) (c为常数,u(x)可导)2.3 微分微分的定义:函数f(x)在x处的微分定义为df(x)=f'(x)Δx。
高等数学电子教案word【篇一:同济第六版《高等数学》教案word版-第01章函数与极限】第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质。
教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;5、闭区间上连续函数性质的应用。
1. 1 映射与函数一、集合1. 集合概念集合(简称集): 集合是指具有某种特定性质的事物的总体. 用a, b, c….等表示.元素: 组成集合的事物称为集合的元素. a是集合m的元素表示为a m.集合的表示:列举法: 把集合的全体元素一一列举出来.例如a={a, b, c, d, e, f, g}.描述法: 若集合m是由元素具有某种性质p的元素x的全体所组成, 则m可表示为 a={a1, a2, ? ? ?, an},m={x | x具有性质p }.例如m={(x, y)| x, y为实数, x2+y2=1}.几个数集:n表示所有自然数构成的集合, 称为自然数集.n={0, 1, 2, ? ? ?, n, ? ? ?}. n+={1, 2, ? ? ?, n, ? ? ?}.r表示所有实数构成的集合, 称为实数集.z表示所有整数构成的集合, 称为整数集.z={? ? ?, -n, ? ? ?, -2, -1, 0, 1, 2, ? ? ?, n, ? ? ?}.q表示所有有理数构成的集合, 称为有理数集.p q={|p∈z,q∈n+且p与q互质} q子集: 若x∈a, 则必有x∈b, 则称a是b的子集, 记为a?b(读作a包含于b)或b?a .如果集合a与集合b互为子集, a?b且b?a, 则称集合a与集合b相等, 记作a=b.若a?b且a≠b, 则称a是b的真子集, 记作a?≠b . 例如, n?≠z?≠q?≠r.不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集.2. 集合的运算设a、b是两个集合, 由所有属于a或者属于b的元素组成的集合称为a与b的并集(简称并), 记作a?b, 即a?b={x|x∈a或x∈b}.设a、b是两个集合, 由所有既属于a又属于b的元素组成的集合称为a与b的交集(简称交), 记作a?b, 即a?b={x|x∈a且x∈b}.设a、b是两个集合, 由所有属于a而不属于b的元素组成的集合称为a与b的差集(简称差), 记作a\b, 即a\b={x|x∈a且x?b}.如果我们研究某个问题限定在一个大的集合i中进行, 所研究的其他集合a都是i的子集. 此时, 我们称集合i为全集或基本集. 称i\a为a 的余集或补集, 记作ac.集合运算的法则:设a、b、c为任意三个集合, 则(1)交换律a?b=b?a, a?b=b?a;(2)结合律 (a?b)?c=a?(b?c), (a?b)?c=a?(b?c);(3)分配律 (a?b)?c=(a?c)?(b?c), (a?b)?c=(a?c)?(b?c);(4)对偶律 (a?b)c=ac ?bc, (a?b)c=ac ?bc.(a?b)c=ac ?bc的证明:x∈(a?b)c?x?a?b?x?a且x?b?x∈a c且x∈bc ?x∈ac ?bc, 所以(a?b)c=ac ?bc.直积(笛卡儿乘积):设a、b是任意两个集合, 在集合a中任意取一个元素x, 在集合b 中任意取一个元素y, 组成一个有序对(x, y), 把这样的有序对作为新元素, 它们全体组成的集合称为集合a与集合b的直积, 记为a?b, 即 a?b={(x, y)|x∈a且y∈b}.例如, r?r={(x, y)| x∈r且y∈r }即为xoy面上全体点的集合, r?r常记作r2.3. 区间和邻域有限区间:设ab, 称数集{x|axb}为开区间, 记为(a, b), 即(a, b)={x|axb}.类似地有[a, b] = {x | a ≤x≤b }称为闭区间,[a, b) = {x | a≤xb }、(a, b] = {x | ax≤b }称为半开区间.其中a和b称为区间(a, b)、[a, b]、[a, b)、(a, b]的端点, b-a称为区间的长度.无限区间:[a, +∞) = {x | a≤x }, (-∞, b] = {x | x b } , (-∞, +∞)={x | | x | +∞}.区间在数轴上的表示:邻域: 以点a为中心的任何开区间称为点a的邻域, 记作u(a).二、映射1. 映射的概念定义设x、y是两个非空集合, 如果存在一个法则f, 使得对x中每个元素x, 按法则f, 在y中有唯一确定的元素y与之对应, 则称f为从x 到y的映射, 记作f : x→y ,其中y称为元素x(在映射f下)的像, 并记作f(x), 即y=f(x),而元素x称为元素y(在映射f下)的一个原像; 集合x称为映射f的定义域, 记作d f, 即d f=x ;x中所有元素的像所组成的集合称为映射f的值域, 记为r f, 或f(x), 即r f=f(x)={f(x)|x∈x}.需要注意的问题:(1)构成一个映射必须具备以下三个要素: 集合x, 即定义域d f=x; 集合y, 即值域的范围: r f ?y; 对应法则f, 使对每个x∈x, 有唯一确定的y=f(x)与之对应.(2)对每个x∈x, 元素x的像y是唯一的; 而对每个y∈r f, 元素y的原像不一定是唯一的; 映射f的值域r f是y的一个子集, 即r f ?y, 不一定r f=y .例1设f : r→r, 对每个x∈r, f(x)=x2.显然, f是一个映射, f的定义域d f=r, 值域r f ={y|y≥0}, 它是r的一个真子集. 对于r f 中的元素y, 除y=0外, 它的原像不是唯一的. 如y=4的原像就有x=2和x=-2两个.例2设x={(x, y)|x2+y2=1}, y={(x, 0)||x|≤1}, f : x →y, 对每个(x, y)∈x, 有唯一确定的(x, 0)∈y与之对应.显然f是一个映射, f的定义域d f=x, 值域r f =y. 在几何上, 这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x轴的区间[-1, 1]上.(3) f :[-, ]→[-1, 1], 对每个x∈[-, ], f(x)=sin x . 2222f是一个映射, 定义域d f =[-, ], 值域r f =[-1, 1]. 22满射、单射和双射:设f是从集合x到集合y的映射, 若r f =y, 即y中任一元素y都是x 中某元素的像, 则称f为x到y上的映射或满射; 若对x中任意两个不同元素x 1≠x 2, 它们的像f(x 1)≠f(x 2), 则称f为x到y的单射; 若映射f既是单射, 又是满射, 则称f为一一映射(或双射).上述三例各是什么映射?2. 逆映射与复合映射设f是x到y的单射, 则由定义, 对每个y∈r f , 有唯一的x∈x, 适合f(x)=y, 于是, 我们可定义一个从r f 到x的新映射g, 即g : r f →x,对每个y∈r f , 规定g(y)=x, 这x满足f(x)=y. 这个映射g称为f的逆映射, 记作f -1, 其定义域df-1=r f , 值域rf-1=x .按上述定义, 只有单射才存在逆映射. 上述三例中哪个映射存在逆映射?设有两个映射g : x→y 1,f : y 2→z,其中y 1?y 2. 则由映射g和f可以定出一个从x到z的对应法则, 它将每个x∈x映射成f[g(x)]∈z . 显然, 这个对应法则确定了一个从x 到z的映射, 这个映射称为映射g和f构成的复合映射, 记作f o g, 即f o g: x →z,(f o g)(x)=f[g(x)], x∈x .应注意的问题:映射g和f构成复合映射的条件是: g的值域r g必须包含在f的定义域内, r g?d f . 否则, 不能构成复合映射. 由此可以知道, 映射g和f 的复合是有顺序的, f o g有意义并不表示g o f也有意义. 即使f o g 与g o f都有意义, 复映射f o g与g o f也未必相同.例4 设有映射g : r→[-1, 1], 对每个x∈r, g(x)=sin x,映射f : [-1, 1]→[0, 1], 对每个u∈[-1, 1], f(u)=-u2.则映射g和f构成复映射f o g: r→[0, 1], 对每个x∈r, 有(f g)(x)=f[g(x)]=f(sinx)=-sin2x=|cosx|.三、函数1. 函数概念定义设数集d?r, 则称映射f : d →r为定义在d上的函数, 通常简记为y=f(x), x∈d,其中x称为自变量, y称为因变量, d称为定义域, 记作d f, 即d f=d.应注意的问题:记号f和f(x)的含义是有区别的, 前者表示自变量x和因变量y之间的对应法则, 而后者表示与自变量x对应的函数值. 但为了叙述方便,习惯上常用记号“f(x), x∈d”或“y=f(x), x∈d”来表示定义在d上的函数, 这时应理解为由它所确定的函数f .函数符号: 函数y=f(x)中表示对应关系的记号f也可改用其它字母, 例如“f”, “?”等. 此时函数就记作y=? (x), y=f(x).函数的两要素:函数是从实数集到实数集的映射, 其值域总在r内, 因此构成函数的要素是定义域d f及对应法则f . 如果两个函数的定义域相同, 对应法则也相同, 那么这两个函数就是相同的, 否则就是不同的.函数的定义域:函数的定义域通常按以下两种情形来确定: 一种是对有实际背景的函数, 根据实际背景中变量的实际意义确定.求定义域举例:1 求函数y=-x2-4的定义域. x要使函数有意义, 必须x≠0, 且x2 - 4≥0.解不等式得| x |≥2.所以函数的定义域为d={x | | x |≥2}, 或d=(-∞, 2]?[2, +∞]).单值函数与多值函数:【篇二:同济第六版《高等数学》教案word版-第02章导数与微分】第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。