界面的宏观性质与微观结构
- 格式:ppt
- 大小:53.85 MB
- 文档页数:68
第一章 热力学第一定律1. 热力学第一定律U Q W ∆=+只适用于:答案:D〔A 〕单纯状态变化 〔B 〕相变化〔C 〕化学变化 〔D 〕封闭体系的任何变化2. 1mol 单原子理想气体,在300K 时绝热压缩到500K ,则其焓变H ∆约为:4157J3. 关于热和功,下面说法中,不正确的是:答案:B〔A 〕功和热只出现在体系状态变化的过程中,只存在于体系和环境的界面上〔B 〕只有封闭体系发生的过程中,功和热才有明确的意义〔C 〕功和热不是能量,而是能量传递的两种形式,可称为被交换的能量〔D 〕在封闭体系中发生的过程,如果内能不变,则功和热对体系的影响必互相抵消4. 涉与焓的下列说法中正确的是:答案:D〔A 〕单质的焓值均为零 〔B 〕在等温过程中焓变为零〔C 〕在绝热可逆过程中焓变为零〔D 〕化学反应中体系的焓变不一定大于内能变化5. 下列过程中,体系内能变化不为零的是:答案:D〔A 〕不可逆循环过程 〔B 〕可逆循环过程〔C 〕两种理想气体的混合过程 〔D 〕纯液体的真空蒸发过程6. 对于理想气体,下列关系中那个是不正确的?答案:A〔A 〕0)(=∂∂V TU 〔B 〕0)V U (T =∂∂〔C 〕0)P U (T =∂∂〔D 〕0)P H (T =∂∂ 7. 实际气体的节流膨胀过程中,哪一组的描述是正确的?答案:A〔A 〕 Q=0 ;H ∆=0;P ∆<0 〔B 〕 Q=0 ;H ∆= 0;P ∆>0〔C 〕 Q>0 ;H ∆=0;P ∆<0 〔D 〕 Q<0 ;H ∆= 0;P ∆<08. 3mol 的单原子理想气体,从初态T 1=300 K 、p 1=100kPa 反抗恒定的外压50kPa 作不可逆膨胀至终态T 2=300 K 、p 2=50kPa ,对于这一过程的Q=3741J 、W=-3741J 、U ∆=0、H ∆=0。
9. 在一个绝热的刚壁容器中,发生一个化学反应,使物系的温度从T 1升高到T 2,压力从p 1升高到p 2,则:Q = 0 ;W = 0 :U ∆= 0。
宏观、细观和微观相结合的材料性质研究
田永生;张盛;李广强
【期刊名称】《水利与建筑工程学报》
【年(卷),期】2008(006)001
【摘要】材料的宏观性能与微观性能相差甚远,已有的宏观理论在细观或者微观情况下通常不再适用;为更好地理解材料的力学性能,需要进行宏观,细观、及微观三个层次相结合的三观研究,但如何将这三个层次的现象联系起来,无论对哪一学科都还是难题.从理论、实验和计算等方面介绍了进行材料的宏观、细观和微观相结合研究的途径,并对岩石材料宏观、细观和微观相结合的三观研究进行了着重介绍.【总页数】4页(P111-114)
【作者】田永生;张盛;李广强
【作者单位】四川大唐国际甘孜水电开发有限公司,四川,甘孜,626001;河南理工大学,能源学院,河南,焦作,454000;四川大唐国际甘孜水电开发有限公司,四川,甘
孜,626001
【正文语种】中文
【中图分类】TU5
【相关文献】
1.复合材料的细观微观结构设计与性能预测 [J], 滕风恩;姜汉成
2.纤维增强复合材料宏观与细观统一的细观力学模型 [J], 刘波;雷友锋;宋迎东
3.宏观与微观辨证相结合——李元文教授使用紫草治疗皮肤病验案举隅 [J], 萧明;
李元文; 任雪雯; 吴迪; 胡博; 张丰川
4.基于宏观与微观辨证相结合的"眼底脏腑辨证"探讨眼底视网膜病变 [J], 陆秉文;谢立科;吴改萍;赵健;袁航
5.第十届国际复合材料会议关于复合材料设计的宏观力学、细观力学与微观力学的讨论和研究动向 [J], 蒋咏秋
因版权原因,仅展示原文概要,查看原文内容请购买。
表面与界面问题论文在工程上一般地将固相和气相之间的分界面称为表面,把固相之间的分界面称为界面。
表面和界面都被认为是一极薄层,其成分、结构、性能都有别于内部基体材料,所以通常采用热力学上的自由能、熵、焓等的函数或理论来描述和解释表面和界面中的问题。
表面与界面问题的研究在材料加工中占有重要的位置,它关系到材料在使用时的机械、光、电、磁及热力学等方面的性能。
表面与界面问题的研究结果,能为材料的合成与加工提供新的或改进的方法,从而导致新材料的产生或材料优异性能的开发。
合成与加工的进步也导致加工企业生产高质量、低成本的产品[30]。
一、表面问题:研究表面首先涉及的是表面的分析所使用的方法和仪器,在文献[3]中主要介绍了XPS和AES分析表面的机理和作用:X—射线光电子能谱(XPS) ,XPS能无损地测定表面组分和电子价态,所以XPS广泛地用作表面分析技术、数据处理和线形分析、价带谱、半导体、高聚物、薄膜。
俄歇电子能谱(AES)----由电子束和固体表面相互作用产生的AES,广泛地应用于近表面区的元素和化学分析。
对观察到的跃迁进行分析时,常可测得在分析区域中元素的原子环境AEs是在近表面区例如直至1u左右,最广泛地用于深度剖析的方法、定量分析、深度剖析、小面积分析。
单一的XPS数据对表面化学或组分的变化不是充分灵敏的,所以常采用组合XPS—AES共同分析材料表面的结构和性能。
还可以直接利用金相显微镜和扫描电镜对横断面上沿层深的组织变化进行观察。
文献[6]还介绍了利用声发射技术对渗硼层脆性进行定量分析和评价。
在所给的论文中表面研究的应用主要涉及以下几个方面:1、表面结构表面的结构与内部有许多差异,它存在台阶、扭折、空位、吸附原子、位错露头、及原子偏析等等缺陷。
它们对于固体材料的表面状态和表面形成过程都有影响。
如文献[2],介绍了用XPS研究了注入银离子的BiSrCaCuO玻璃的表面结构.银离子注入改变了铋系玻璃的表面结构,引起的增强扩散效应加剧了晶化过程中的质点迁移,使样品中各元素的化学环境较原始玻璃有更明显的变化,因而影响铋系玻璃表面的晶相形成和晶体生长。
微观粒子与宏观物质的关联性当我们观察一个物体时,我们经常忽略了物质的微观粒子结构。
然而,微观粒子与宏观物质之间存在着紧密的关联性。
在这篇文章中,我们将探讨微观粒子和宏观物质之间的联系,并且试图揭示这种联系对我们理解物质世界的重要性。
首先,让我们从微观粒子的角度来看待物质。
微观粒子包括了原子、分子和更小的粒子,比如电子、质子和中子等。
这些微观粒子构成了物质的基本单位。
它们以非常快的速度在空间中运动,并且它们之间以各种形式相互作用。
这种微观粒子的相互作用造成了物质的性质和行为。
举个例子来说明微观粒子与宏观物质之间的关联性。
让我们考虑一杯水。
表面上看,水是无色、透明的液体,在室温下常常呈现为液态。
然而,当我们深入研究水的微观结构时,我们会发现水是由氢原子和氧原子组成的分子所构成的。
当水分子以高速运动时,它们之间的相互作用使得水分子之间形成了相对稳定的结构,从而赋予水独特的物理和化学性质。
这种微观粒子与宏观物质之间的关联性可以进一步解释凝聚态物质的存在和特性。
凝聚态物质包括固体和液体,它们具有相对固定的体积和形状。
固体的微观粒子之间存在着牢固的相互作用,使得固体具有形状稳定性和刚性。
与此相反,液体的微观粒子具有较弱的相互作用,使得液体具有流动性和变形性。
此外,微观粒子的运动方式和相互作用方式也对宏观物质的性质产生重要影响。
微观粒子的热运动使得宏观物质具有热传导性、热膨胀性等特性。
这些性质使得我们可以使用热能来驱动一系列的技术应用,比如制冷、发动机驱动等。
另一个重要的方面是微观粒子与宏观物质之间的量子效应。
量子效应是描述微观粒子行为的物理理论。
在微观领域中,微观粒子不遵循经典力学的规律,而是服从量子力学的原理。
这导致了许多奇异的现象,如量子纠缠和量子叠加态等。
虽然这些现象在宏观尺度上并不明显,但它们对微观粒子和宏观物质之间的关联性具有重要影响。
总之,微观粒子与宏观物质之间存在着紧密的关联性。
微观粒子的结构和相互作用方式决定了宏观物质的性质和行为。
物质的宏观性质与微观结构在我们生活的这个世界里,物质以各种各样的形态存在着,从微小的原子和分子到巨大的星球和星系。
物质的性质也是多种多样的,有些物质坚硬如铁,有些物质柔软如丝;有些物质能够燃烧,有些物质则无法燃烧。
这些宏观性质的差异,实际上都源于物质的微观结构。
当我们观察一块金属,比如铁,我们会发现它具有坚硬、有光泽、能够导电和导热等性质。
为什么铁会有这些性质呢?这就要从铁的微观结构说起。
铁是由铁原子组成的,铁原子按照一定的规律排列形成了晶体结构。
在这种晶体结构中,原子之间通过金属键紧密结合在一起,使得铁具有较高的强度和硬度。
同时,金属键的存在也使得电子能够在铁原子之间自由移动,从而赋予了铁良好的导电性和导热性。
再来看水,它是一种无色、无味、透明的液体,可以溶解许多物质。
水的这些性质与它的分子结构密切相关。
水分子由一个氧原子和两个氢原子组成,呈 V 字形结构。
由于氧原子的电负性较大,氢原子的电负性较小,所以水分子中的氧原子会吸引氢原子的电子,使得水分子带有极性。
这种极性使得水分子之间能够形成氢键,从而导致水具有较高的沸点和比热容。
同时,水分子的极性也使得它能够溶解许多极性物质,如盐和糖。
物质的微观结构不仅决定了它们的物理性质,还决定了它们的化学性质。
例如,氧气是一种支持燃烧的气体,而氮气则相对不活泼。
这是因为氧气分子由两个氧原子通过双键结合而成,这种双键使得氧气分子具有较强的氧化性。
而氮气分子由两个氮原子通过三键结合而成,三键的强度很高,使得氮气分子非常稳定,不容易与其他物质发生反应。
在化学反应中,物质的微观结构也起着至关重要的作用。
化学反应的本质是原子之间的重新组合,而原子的组合方式取决于它们的外层电子结构。
例如,当氢气和氧气发生反应生成水时,氢原子和氧原子的外层电子会重新分布,形成新的化学键,从而生成水分子。
除了常见的固体、液体和气体,物质还存在其他形态,如等离子体。
等离子体是一种由自由电子和带电离子组成的物质状态,常见于高温、高压的环境中,如恒星内部和闪电中。
第1章绪论1.复合材料的定义(Composition Materials , Composite)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合材料=基体(连续相)+增强材料(分散相)分散相是以独立形态分布在整个连续相中,两相之间存在着相界面。
分散相可以是增强纤维,也可以是颗粒或弥散的填料。
2.复合材料常见分类方法:1)按性能分:常用复合材料、先进复合材料2)按用途分:结构复合材料、功能复合材料3)按复合方式分:宏观复合、微观复合4)按基体材料分:聚合物基、金属基、无机非金属基5)按增强体形式分:纤维增强复合材料、颗粒增强、片材增强、叠层复合3.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?三个结构层次: 一次结构——单层材料——微观力学一次结构二次结构——层合体——宏观力学二次结构三次结构——产品结构——结构力学三次结构设计层次:单层材料设计、铺层设计、结构设计4.复合材料力学主要是在单层板和层合板这两个结构层次上展开的,其研究内容分为微观力学和宏观力学两部分。
第2章复合材料界面和优化设计1.复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观形式复合而成的多相材料。
2.复合材料界面机能:1)传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用2)阻断效应:适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用3)不连续效应:在界面上产生物理性能不连续性和界面摩擦现象,如抗电性、电感应性、磁性、耐热性等4)散热和吸收效应:5)诱导效应3.界面效应既与界面结合状态、形态和物理、化学性质等相关,也与界面两边组元材料的浸润性、相容性、扩散性等密切相关。
4.聚合物基复合材料是由增强体与聚合物基体复合而形成的材料。
聚合物基复合材料分类:热塑性、热固性聚合物基复合材料。
热塑性聚合物基复合材料成型两个阶段:①熔体与增强体之间接触和润湿②复合后体系冷却凝固成型。
介尺度热力学-概述说明以及解释1.引言1.1 概述概述:介尺度热力学是一个新兴领域,它将介尺度概念与传统热力学相结合,探索微观与宏观之间的关系。
在介尺度热力学中,我们不仅考虑宏观尺度上的热力学性质,还关注微观尺度上的原子和分子之间的相互作用。
通过介尺度热力学的研究,我们可以更好地理解物质的性质和行为,为材料设计和能源转换等领域提供新的思路和方法。
本文将介绍介尺度概念、热力学基础以及介尺度热力学的应用,旨在探讨这一领域的重要性和未来发展方向。
1.2 文章结构文章结构部分的内容应当包括如下内容:文章结构部分会对本文的组织结构和各章节内容进行简要介绍,为读者提供一份指南,方便他们更好地理解整篇文章。
本文分为引言、正文和结论三个主要部分。
在引言部分,首先会进行概述,简要介绍介尺度热力学的相关背景和意义;然后说明文章的结构,即本文所涵盖的章节和内容;最后阐明本文的目的,即为什么要进行介尺度热力学的研究。
在正文部分,将会从介尺度的概念开始阐述,介绍介尺度理论在热力学中的应用和意义;然后讨论热力学的基础知识,包括热力学基本定律和热力学过程;最后通过介尺度热力学的具体案例和应用,展示介尺度热力学在实际问题中的应用和优势。
在结论部分,将总结介尺度热力学的重要性,强调介尺度热力学在材料科学、生物学等领域的意义;展望介尺度热力学的未来发展方向,指出可能的研究方向和挑战;最后得出结论,概括全文的主要内容,强调介尺度热力学的研究价值和现实意义。
1.3 目的介尺度热力学是一门新兴领域,其研究对象涉及到介观级别的系统,介尺度范围介于微观和宏观之间。
本文的目的是探讨介尺度热力学的基本概念、原理和应用,希望通过对介尺度热力学的深入研究,能够更好地理解介尺度系统的特性和行为规律,为科学界提供更多关于介尺度热力学的理论基础和实践指导。
同时,本文还旨在强调介尺度热力学在材料科学、生物学、化学等领域中的重要性,为进一步开拓介尺度热力学的研究和应用方向提供参考和借鉴。
材料的结构和构造材料的结构和构造材料的性质除与材料组成有关外,还与其结构和构造有密切关系。
材料的结构和构造是泛指材料各组成部分之间的结合方式及其在空间排列分布的规律。
目前,材料不同层次的结构和构造的名称和划分,在不同学科间尚未统一。
通常,按材料的结构和构造的尺度范围,可分为宏观结构、介观结构和微观结构。
一、宏观结构材料的宏观结构是指用肉眼或放大镜可分辨出的结构和构造状况,其尺度范围在10-3m级以上。
按宏观结构的特征,材料有致密、多孔、粒状、层状等结构,宏观结构不同的材料具有不同的特性。
例如,玻璃与泡沫玻璃的组成相同,但宏观结构不同,前者为致密结构,后者为多孔结构,其性质截然不同,玻璃用作采光材料,泡沫玻璃用作绝热材料。
材料宏观结构和构造的分类及特征见表1-1。
宏观结构结构特征常用的土木工程材料举例钢铁、玻璃、塑料等致密结构无宏观尺度的孔隙按孔隙石膏制品、烧土制品等微孔结构主要具有微细孔隙特征加气混凝土、泡沫玻璃、泡沫翅多孔结构具有较多粗大孔隙料等主要由纤维状材料构木材,玻璃钢、岩棉、GRC等成纤维结构复合墙板、胶合板、纸面石膏板由多层材料叠合构成层状结构等按构造由松散颗粒状材料构特征散粒结构砂石材料、膨胀蛭石、膨胀珍珠成岩等聚集结构由骨料和胶结材料构各种混凝土、砂浆、陶瓷等成二、介观结构材料的介观结构(又称亚微观结构)是指用光学显微镜和一般扫描透射电子显微镜所能观察到的结构,是介于宏观和微观之间的结构。
其尺度范围在10-3,10-9m。
材料的介观结构根据其尺度范围,还可分为显微结构和纳米结构。
其中,显微结构是指用光学显微镜所能观察到的结构,其尺度范围在10-3,10-7m。
土木工程材料的显微结构,应根据具体材料分类研究。
对于水泥混凝土,通常是研究水泥石的孔隙结构及界面特性等结构;对于金属材料,通常是研究其金相组织、晶界及晶粒尺寸等。
对于木材,通常是研究木纤维、管胞、髓线等组织的结构。
材料在显微结构层次上的差异对材料的性能有显著的影响。
物质的内部结构与性质一、引言物质是构成宇宙万物的基本单位,了解物质的内部结构对我们理解物质的性质具有重要的意义。
本文将探讨物质的内部结构与性质之间的关系,为读者带来新的认识和思考。
二、物质的基本结构物质的基本结构是由原子构成的。
原子是物质的最小单位,它由带正电的原子核和围绕核的带负电的电子构成。
原子核由质子和中子组成,质子带正电,中子不带电。
电子带负电,数量与质子相等,形成了原子的稳定结构。
不同的原子由于原子核中质子和中子的不同组合而具有不同的性质。
三、元素与周期表基于原子的不同属性,科学家将元素按照一定的规律整理成周期表。
周期表按照原子核中的质子数目从小到大排列,每个周期表示原子核中一个能量级别的填充。
同一个周期内的元素具有相似的性质,这是因为它们具有相似的原子结构。
四、化学键与化合物的性质原子间通过化学键的形成将原子连接成分子,进而形成化合物。
化学键的形成与元素间的电子转移和共享有关。
共价键是原子间共享电子形成的强大连接,离子键是由正负电荷之间的吸引力形成的。
不同的化学键决定了化合物的性质。
例如,离子化合物通常具有高熔点,易溶于水,而共价化合物通常不溶于水,且具有较低的熔点。
五、晶体结构与物质性质许多固体物质具有晶体结构,晶体是由原子、分子或离子在空间周期性排列而成的结构。
晶体结构对物质的性质有着重要的影响。
晶体中的排列方式决定了物质的密度、硬度、导电性等性质,而且在光学等方面也起到重要的作用。
六、材料的微观结构与宏观性质物质的宏观性质是由其微观结构所决定的,微观结构的变化将导致宏观性质的改变。
例如,金属材料中原子间的自由电子使其具有较好的导电性和热传导性;高分子材料中长链的排列方式决定了其力学性能。
通过调控微观结构,可以改变材料的性质,提高材料的性能。
七、内部结构与物质性质的研究方法科学家们通过一系列的研究方法来探究物质的内部结构与性质之间的关系。
例如,X射线衍射可以用来确定晶体结构;电子显微镜可以观察原子、分子的形貌和排列方式;光谱学可以研究物质的光学性质等。