l量子计算与量子信息。ppt
- 格式:pptx
- 大小:722.92 KB
- 文档页数:15
4.14.2证明过程需要用到如下三个泰勒级数展开式:e^x= 1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x )sin x = x -x^3/3!+x^5/5!-...(-1)^(k -1)*x^(2k -1)/(2k -1)!+Rn(x)(-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-...(-1)^k*x^(2k)/(2k)!+... (-∞<x<∞)这种矩阵形式的指数表达式exp(iAx)就是用相应的泰勒级数展开来定义的,方法就是把上面的x 换成这里的矩阵iAx 即可。
上面的数字1,就是单位矩阵I ,n 次方也就是矩阵iAx 相乘n 次。
exp(iAx)=I+iAx -A^2x^2/2!-iA^3x^3/3!+A^4x^4/4!+......+(iAx)^n/n!+......=I+iAx -Ix^2/2!-iA^3x^3/3!+Ix^4/4!+......(注意到A^2=I)再结合sinx 和cosx 的泰勒级数展开式,就可以发现,cos(x)I = I -Ix^2/2!+Ix^4/4!-...isin(x)A=iAx -iA^3x^3/3!+iA^5x^5/5!-......所以就有exp(iAx)=cos(x)I+isin(x)A4.3y zH=(X+Z)/2=R x(π) R y(π/2)exp(iπ/2)R x(θ)=R z(−π/2) R y(θ) R z(π/2)所以H=R z(−π/2) R y(π) R z(π/2) R y(π/2)exp(iπ/2)4.5X^2=Y^2=Z^2=I 并且paili矩阵相互反对易,展开化简即得4.74.17H Z H4.18左边线路的作用:|00>→|00>|01>→|01>|10>→|10>|11>→-|11>右边线路的作用:|00>→|00>|01>→|01>|10>→|10>|11>→-|11>所以等价4.19[1001 00000000 0110][a b e f c d g ℎi j m n k l o p ][1001 00000000 0110]=[a b e f c d g ℎm n i j o p k l ][1001 00000000 0110]= [a b e f d c ℎg m n i j p o l k ]4.20左边=(H ⨂H)(|0><0|⨂I+|1><1|⨂X)(H ⨂H)= [1000 00010001 1000]=右边4.21直接输入8个状态进行验证即可4.22设V^2=U,而V=e^(i α)AXBXC, V +=e^(-i α) C +XB +XA +[100e^(i α)]可以无限穿越节点,但不能穿越X4.23U=R x (θ)=R z (−π2)R y (θ)R z (π2) 不能减少U=R y (θ) 能4.24控制比特:|00>: 第一比特位 T|0>=|0>第二比特位 T +T +S= (T 2)+S=S +S=I第三比特位 H T +T T +TH=I|01>: 第一比特位 T|0>=|0>第二比特位 T +T +S= (T 2)+S=S +S=I第三比特位 H XT +T XT +TH=I|10>: 第一比特位 T|1>=e^(i π/4)|1>第二比特位 T +XT +X S=e^(−i π/4) S,e^(−i π/4) S|0>= e^(−i π/4)|0>第三比特位 H T +X T T +X TH=I,e^(i π/4)|1>⨂ e^(−i π/4)|0>=|10>|11>: 第一比特位 T|1>=e^(i π/4)|1>第二比特位 T +XT +X S=e^(−i π/4) S,e^(−i π/4) S|1>= e^(i π/4)|1>第三比特位 H XT +X T XT +X TH= e^(-i π/2)HZH= e^(-i π/2)X e^(i π/4)|1>⨂ e^(i π/4)|1>= e^(i π/2)|11>R z (π2) R y (θ2) R z (−π2) R y (θ2) R y (θ2) R y (θ2)4.25(1)第三比特是控制位(2)第三比特是控制位或第一比特是控制位4.26直接输入8个状态进行验证即可(验算后没相位因子?)4.27构造如图:4.32ρ,=∑ρij00ij |i><j|⨂|0><0|+ ∑ρij11ij |i><j|⨂|1><1|ρ=Σρijmn |i><j|⨂|m><n|tr(ρ)= Σρijmn |i><j|tr(|m><n|)=Σρijm |i><j|4.33产生Bell 态的线路为而线路与恒等算子I完成的效果一样因而最后测量的是初始输入的计算基4.364.37U4U3U2U1U=I按照书上的步骤计算即可4.394.40E(U,V)=√<φ|(U −V )+(U −V )|φ>=√<φ|(U +U +V +V)|φ>−<φ|(U +V +V +U)|φ>=√2−<φ|(U +V +V +U)|φ>U=cos(α/2)-isin(α/2)n ⃗ *σV= cos((α+β)/2)-isin((α+β)/2)n ⃗ *σ<φ|(U +V +V +U)|φ>=<φ|2cos (β2)I|φ>=2cos (β2) E(U,V)= √2−2cos (β2)=|1-exp(i β/2)|4.41(S 为相位门)输入|00 φ>输出是|00>⨂(3/4 S| φ>+1/4 XSX| φ>)+(|01>+|10>−|11>⨂(1/4)(S| φ>− XSX| φ>)(3/4)^2+(1/4)^2=5/8所以以5/8的概率得到|00>3/4 S+1/4 XSX=(1/4) [3+i 001+3i]R z (θ)=exp(-i θ/2) [10035+45i ]而(3+i) [10035+45i ]= [3+i 001+3i]4.47利用练习2.54 A ,B 对易,则exp(A)*exp(B)=exp(A+B)4.49左边对e^[(A+B)△t]泰勒展开到O(△t^3)即可右边对e^(A △t ),e^(B △t )泰勒展开到O(△t^3) e^{-0.5[A,B] △t^2}泰勒展开到O(△t^4)右边再合并化简即可与左边相同4.50(1) 每项e^[-i H k △t] 泰勒展开到O(△t^2)即可(2)E(U △t m ,e^(-2miH △t)≤∑E(U △t ,e^(−2iH △t)m 1=m||U △t −e^(−2iH △t)|φ>||=m|| O(△t^3) |φ>||=ma △t^34.51[01−10]X=Z[0−i−i0]Y=Z 再用式4.113即可。
量子信息与量子计算
《量子信息与量子计算》
1、量子信息
量子信息是指利用量子效应转移和存储信息和实现信息处理的科学理论和技术,是利用量子物理系统中量子状态的熵变化,构建信息处理模型和系统,采用量子机制实现信息的输入、输出、存储、处理、变换等高级功能的科学理论和技术。
近年来,量子信息受到越来越多的关注,在量子竞速、量子加密通信、量子调谐性、量子模拟计算等研究领域取得了一些突破性进展。
2、量子计算
量子计算是一种新型的计算机技术,它利用量子特性的效应,实现信息的处理。
它的主要思想是利用量子力学的量子系统来存储和处理信息,使信息在量子系统中构建一种传输和处理模式,实现量子信息处理的功能。
量子计算机则是将这种思想应用到计算机中,将量子处理器应用于计算机中,实现将量子信息处理技术应用到计算机中的功能,开发出新一代高性能的计算机来实现信息处理。
3、量子信息与量子计算的关系
量子信息和量子计算相互依存,量子信息是量子计算的基础,量子计算则是量子信息的一种应用。
他们的关系可总结为:量子信息是一种量子物理学原理,它提供了量子计算的基础原理和技术,量子计算则是将量子信息的基础原理和技术应用到计算机中,实现量子信息的处理,构建新一代更加高效、高性能的计算机。
量子计算和量子信息数学与信息科学学院 基础数学 算子代数与量子计算 段媛媛 111494密度算子我们已经知道用状态向量的语言可以描述量子力学,而另一种描述是采用称为密度算子或密度矩阵的工具。
这种形式在数学上等价于状态向量的方法,但它为描述状态不完全已知的量子系统提供了一条方便的途径,为量子力学某些最常见场合提供了方便得多的语言。
1.量子状态的系综和密度算子的定义设量子系统以概率i p处在一组状态i ψ的某一个,其中i 是一个指标,则称{}iip ψ,为一个系综(ensemble of pure state )。
系统的密度算子定义为:∑≡ii i i p ψψρ,密度算子常被称作密度矩阵。
例1.(1)设封闭量子系统的演化由酉算子U描述,如果系统状态为i ψ的概率为i p ,则演化发生后,系统将以概率i p进入状态i U ψ,于是密度算子由∑≡ii i i p ψψρ演化为++=='∑U U U U p I I ii ρψψρ(2)设我们进行由测量算子m M 描述的测量,如果初态是i ψ,则得到结果m 后的状态是im m i im m i M M M ψψψψ+=,于是,经过一个得到结果m 的测量,我们得到个别概率为()m i p 状态mi ψ的系综,相应的密度算子为()()ρρψψρm m mm m imim M M tr M M m i p ++==∑。
(3)设想量子系统以概率i p 处于状态i ρ,则系统可用密度矩阵i i p ρ∑来描述。
(4)设我们进行由测量算子m M描述的测量,如果初态是i ψ,由于某种原因,测量结果m 的记录丢失了,我们将以概率()m p 处于m ρ,但不再知道m 的实际值,这样,系统的状态就将由密度算子()()()∑∑∑++++===mm m mm mmm m m mm M M M Mtr M M M M tr m p ρρρρρρ来描述。
例2. 令ρ是密度算子,ρ的一个最小系综(minimal ensemble )指包含等于ρ的秩数目的系综{}i i p ψ,。