量子信息与量子计算课件
- 格式:ppt
- 大小:2.45 MB
- 文档页数:91
关于量子信息与量子计算量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。
量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。
到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。
这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。
自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。
许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。
以目前的技术来看,这其中以离子阱与核磁共振最具可行性。
事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。
到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。
普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。
量子位是量子计算的理论基石。
在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。
量子信息与量子计算
20世纪末,美国物理学家Peter Shor提出了一种利用量子算法的方法来解决一些复杂性问题,这便是现在所谓的Shor算法,也被看作是量子计算的里程碑式突破。
自此,量子计算成为了物理学、信息学和计算机科学等领域的新生儿。
在传统的计算机中,最基本的储存单位是二进制的0和1,也被称为比特。
而在量子计算机中,最基本的储存单位则是量子比特,即qubit。
qubit和普通的比特存在着不同,普通的比特只可为0或1,而qubit可以同时是0和1,这种量子特性称为叠加态。
与此同时,量子比特还存在着另一种独特的特性,即量子纠缠,即量子比特之间存在一种意义上的“纠缠”状态,在其中一个态发生改变时,另一个态会立即对应变化。
这种特殊情况可以被利用于量子通信,这样的安全性更会被大大提高。
概括来说,以上这些与古典计算机不同的特性,正是量子计算机可以更有效地解决一些复杂性问题的原因之一。
比如用来破解加密算法的Shor算法,理论上至今没有被古典计算机实现,但量子计算机可以在多项式时间内解决该问题。
然而,当前的量子计算机也存在着很多限制,特别是在qubit 稳定性上的问题。
由于qubit在环境和其他因素的影响下很容易失去叠加态和纠缠状态,从而导致计算结果出现偏差,这种现象称为量子纠错问题。
同时,由于量子计算机的部件极其精细,目前的制造成本也十分高昂。
总的来说,随着量子计算机的相关研究进一步深入,持续不断的科研投入和技术突破,相信在不远的将来,量子计算机将成为一种能够真正改变世界的技术,涉及的领域影响将会是极其广泛和深远的。
量子信息与量子计算
《量子信息与量子计算》
1、量子信息
量子信息是指利用量子效应转移和存储信息和实现信息处理的科学理论和技术,是利用量子物理系统中量子状态的熵变化,构建信息处理模型和系统,采用量子机制实现信息的输入、输出、存储、处理、变换等高级功能的科学理论和技术。
近年来,量子信息受到越来越多的关注,在量子竞速、量子加密通信、量子调谐性、量子模拟计算等研究领域取得了一些突破性进展。
2、量子计算
量子计算是一种新型的计算机技术,它利用量子特性的效应,实现信息的处理。
它的主要思想是利用量子力学的量子系统来存储和处理信息,使信息在量子系统中构建一种传输和处理模式,实现量子信息处理的功能。
量子计算机则是将这种思想应用到计算机中,将量子处理器应用于计算机中,实现将量子信息处理技术应用到计算机中的功能,开发出新一代高性能的计算机来实现信息处理。
3、量子信息与量子计算的关系
量子信息和量子计算相互依存,量子信息是量子计算的基础,量子计算则是量子信息的一种应用。
他们的关系可总结为:量子信息是一种量子物理学原理,它提供了量子计算的基础原理和技术,量子计算则是将量子信息的基础原理和技术应用到计算机中,实现量子信息的处理,构建新一代更加高效、高性能的计算机。
量子计算和量子信息数学与信息科学学院 基础数学 算子代数与量子计算 段媛媛 111494密度算子我们已经知道用状态向量的语言可以描述量子力学,而另一种描述是采用称为密度算子或密度矩阵的工具。
这种形式在数学上等价于状态向量的方法,但它为描述状态不完全已知的量子系统提供了一条方便的途径,为量子力学某些最常见场合提供了方便得多的语言。
1.量子状态的系综和密度算子的定义设量子系统以概率i p处在一组状态i ψ的某一个,其中i 是一个指标,则称{}iip ψ,为一个系综(ensemble of pure state )。
系统的密度算子定义为:∑≡ii i i p ψψρ,密度算子常被称作密度矩阵。
例1.(1)设封闭量子系统的演化由酉算子U描述,如果系统状态为i ψ的概率为i p ,则演化发生后,系统将以概率i p进入状态i U ψ,于是密度算子由∑≡ii i i p ψψρ演化为++=='∑U U U U p I I ii ρψψρ(2)设我们进行由测量算子m M 描述的测量,如果初态是i ψ,则得到结果m 后的状态是im m i im m i M M M ψψψψ+=,于是,经过一个得到结果m 的测量,我们得到个别概率为()m i p 状态mi ψ的系综,相应的密度算子为()()ρρψψρm m mm m imim M M tr M M m i p ++==∑。
(3)设想量子系统以概率i p 处于状态i ρ,则系统可用密度矩阵i i p ρ∑来描述。
(4)设我们进行由测量算子m M描述的测量,如果初态是i ψ,由于某种原因,测量结果m 的记录丢失了,我们将以概率()m p 处于m ρ,但不再知道m 的实际值,这样,系统的状态就将由密度算子()()()∑∑∑++++===mm m mm mmm m m mm M M M Mtr M M M M tr m p ρρρρρρ来描述。
例2. 令ρ是密度算子,ρ的一个最小系综(minimal ensemble )指包含等于ρ的秩数目的系综{}i i p ψ,。
pptx•量子计算概述•量子计算机体系结构•量子算法与应用领域•量子编程与开发工具•量子计算机性能评估指标•未来展望与挑战量子计算概述量子计算定义与原理量子计算是利用量子力学中的原理来进行信息处理的新型计算模式。
它采用量子比特作为信息的基本单元,通过量子叠加、量子纠缠等特性实现并行计算,具有在某些特定问题上比传统计算机更高的计算效率。
量子计算的核心思想是利用量子态的叠加性和纠缠性,在相同时间内处理更多信息,从而实现更高效的计算。
量子门是量子计算中的基本操作,类似于传统计算机中的逻辑门。
常见的量子门包括X门、Y门、Z 门、Hadamard门等。
通过不同的量子门组合,可以实现复杂的量子算法和量子程序。
量子比特(qubit)是量子计算的基本单元,与传统计算机中的比特不同,它可以处于0和1的叠加态中。
量子纠缠是量子力学中的一个重要概念,描述了两个或多个粒子之间存在一种特殊的关联关系。
当两个粒子处于纠缠态时,它们的状态是相互依赖的,无论它们相距多远,对一个粒子的测量都会立即影响到另一个粒子的状态。
量子纠缠在量子通信、量子密码学等领域有着广泛的应用。
量子计算机体系结构量子比特(Qubit)量子计算机的基本单元,与传统计算机的比特不同,它可以同时处于0和1的叠加态。
量子门(Quantum Gates)用于操作量子比特,实现量子计算中的逻辑运算。
量子测量(Quantum Measurement)将量子比特从叠加态坍缩到确定态的过程,获取计算结果。
量子算法(Quantum Algorithms)针对特定问题设计的算法,利用量子计算机的并行性加速计算过程。
量子编程语言(Quantum Programming…用于编写量子计算机程序的编程语言,如Q#、Quipper等。
量子操作系统(Quantum Operating S…管理量子计算机硬件和软件资源的系统,提供用户友好的界面和工具。
IBM 推出的商用量子计算机,采用超导量子比特技术,具有高性能和可扩展性。