定义与命题(二)
- 格式:doc
- 大小:40.50 KB
- 文档页数:2
定义与命题教学目标:1、了解命题、定义的含义;2、对命题的概念有正确的理解;3、区分命题的条件和结论。
教学重点:找出命题的条件(题设)和结论。
教学难点:命题概念的理解。
教学过程:回顾已知引入新课1、填空:(1)三角形的任意两边之和第三边;(2)三角形内角和等于;(3)三角形中,连接一个顶点和它对边中点的连线叫做;(4)三角形三条中线相交于一点,这三条中线的交点叫做。
2、(引入课题)像上(3)(4)这样,对一个概念加以描述说明或作出明确规定的语句叫做这个概念的定义。
自主学习探究新知1、师生共同探究第50面的“说一说”和“议一议”。
2、一般地,对某一事情作出判断的语句叫作命题。
我们来看看,下面的语句哪些是命题?(1)如果一个三角形的三个内角都是锐角,那么这个三角形是锐角三角形。
命题通常写成“如果……那么……”的形式,“如果……”就是条件,“那么……”是结论。
(2)在ΔABC中,如果∠A=∠B,那么这个三角形就是等腰三角形;此命题的条件是,结论是。
3、阅读第51面的“观察”,了解命题的一般表述式。
命题也可以不写“如果”、“那么”。
如:直角三角形的一个内角为22°,另外一个锐角为68°.此命题的条件是,结论是。
AB D C精讲点拨精练提升1、完成第51面的“做一做”,了解互逆命题。
2、如上图:(命题一)如果AD是ΔABC的中线,那么BD=DC.条件,结论;(命题二)如果BD=DC,那么AD是ΔABC的中线。
条件,结论。
比较命题一和命题二的条件和结论,你发现了什么?3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们就把这样的两个命题称为互逆命题。
其中一个叫作原命题,另一个叫作逆命题。
写一个命题的逆命题,只要将原命题的条件和结论互换就可以得到,所以每个命题都有逆命题。
达标检测当堂过关1、说出下列概念的定义:(1)有理数(2)分式方程(3)三角形(4)角平分线2、下列语句哪些是命题:(1)若ab=0,则a=0或b=0;(2)作直线a的平行线b;(3)两直线平行,同位角相等(4)过两点可画几条直线?3、如果ΔABC中∠A=∠B,那么ΔABC是等腰三角形。
子洲三中 “双主”高效课堂 数学 导学案2014-2015学年第一学期 姓名:组名: 使用时间2014年 月 日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八(3) 数学§7、2、2 定义与命题(2)乔智一、学习目标:1.了解公理、证明、定理的含义; 2.识记本教材所采用的公理.3、初步体会证明的思路与书写的过程。
学习过程:学新准备:1、什么叫做定义?举例说明.什么叫命题?举例说明2、找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题? (1)如果两个角相等,那么它们是对顶角; (2)如果a >b ,b >c ,那么a =c ;(3)两角和其中一角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等3阅读教材P168-170页,完成下列问题: (一)知识点:公理、证明、定理的含义公理: 证明: 定理:识记本教材的八条公理: ① ② ③ ④⑤⑥ ⑦ ⑧此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命题的正确性,另外一条我们将在以后认识它。
此外等式和不等式的有关性质也可看作公理.比如:如果a=b ,b=c ,那么a=c .(二)你能用所学的公理、定义、性质完成下列定理的证明吗?试试看?定理:同角(等角)的补角相等。
同角(等角)的余角相等。
三角形的任意两边之和大于第三边。
范例:定理:对顶角相等已知:如图,直线AB 与直线CD 相交于点O ,∠AOC 与∠BOD 是对顶角。
求证:∠AOC=∠BOD证明:∵直线AB 与直线CD 相交于点O ( ) ∴∠AOB 和∠COD 都是平角 ( )∴∠AOC 和∠BOD 都是∠AOD 的补角 ( ) ∴∠AOC=∠BOD ( )总结:证明一个命题的步骤: ①根据命题画图,②根据图形和命题写出已知和求证(写成符号语言)③根据已知对求证进行证明。
第2课定义与命题目标导航学习目标1.了解定义、命题、定理的含义;2.了解命题的结构,会把一个命题写成“如果…那么…”的形式;3.了解真命题和假命题的概念,会判定命题的真假;知识精讲知识点01 定义、命题、定理的含义1.定义:一般地,能清楚地规定某一名词或者术语的意义的语句叫做该名词或术语的定义.2.命题:一般地,判断某一件事情的句子叫做命题.3.定理:用推理方法判断为正确的命题叫做定理注:定理是真命题,但不是全部真命题都可以称为定理,通常只把一些常用的真命题列为定理.知识点02 命题的结构1.命题的结构:命题一般由条件和结论两部分组成,条件是已知事项,结论是由已知事项推出的事项.2.命题的一般形式:“如果…,那么…”,“如果”后面接的部分是题设,“那么”后面接的部分是结论.知识点03 真命题与假命题1.真命题:正确的命题叫真命题,2.假命题:不正确的命题叫做假命题.注:要判定一个命题是真命题,常常通过推理的方式,即根据已知事实来推断未知事实;也有一些命题是人们经过长期实践,公认为正确的.要判定一个命题是假命题,通常只需给出一个反例能力拓展考点01 定义、命题、定理的含义【典例1】下列选项中不是命题的是()A.过直线外一点作这条直线的垂线B.带根号的数都是无理数C.三角形任意两边之和大于第三边D.在同一平面内,垂直于同一条直线的两条直线平行【即学即练1】下列语句中:(1)你去哪里?(2)2022年北京冬奥会;(3)对顶角相等;(4)3不是奇数.命题共有()A.1个B.2个C.3个D.4个考点02 命题的结构【典例2】命题“如果∠1=∠2,∠2=∠3,那么∠1=∠3”的题设是,结论是,它是命题.【即学即练2】把下列命题改成“如果…那么…”的形式.(1)不相交的两条直线是平行线(2)相等的两个角是对顶角(3)经过一点有且只有一条垂线(4)直角都相等.考点03 判断命题的真假【典例3】下列命题中是真命题的是()A.同位角相等B.平行于同一条直线的两直线平行C.垂直于同一条直线的两直线平行D.过一点作已知直线的平行线,有且只有一条【即学即练2】下列语句是假命题的有()A.同角的余角相等B.平行于同一条直线的两条直线平行C.同位角相等D.同一平面内,垂直于同一条直线的两直线平行分层提分题组A 基础过关练1.下列句子中是命题的是()A.画∠A=30°B.您好!C.对顶角不相等D.谁?2.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中真命题有()个A.1 B.2 C.3 D.43.下列命题是假命题的是()A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被4整除,那么它也能被2整除D.内错角相等4.下列命题中,为真命题的是()A.内错角相等B.对顶角相等C.同位角相等D.互补的两个角是邻补角5.命题一般都由条件和结论两部分组成,命题“对顶角相等”的条件是.6.一个命题由“题设”和“结论”两部分组成.则命题“如果同旁内角互补,那么两直线平行”的题设是.7.命题:直线a、b、c,若a⊥b,c⊥b,则a∥c;则此命题为命题.(填真或假)8.把下面的命题改写成“如果…那么…”形式:两条平行线被第三条直线所截,内错角相等9.下面语句是那个定义的特征?(1)连接三角形的顶点和对边中点的线段;(2)三角形一边的延长线和另一边组成的角;(3)不等式组中各个不等式的解集的公共部分;(4)点到直线的垂线段的长度.10.指出下列命题的题设和结论:(1)“平行于同一直线的两条直线互相平行”命题的题设、结论.题设是:,结论是:.(2)“两个负数的和是负数”命题的题设、结论.题设是:,结论是:.(3)“相交的两条直线一定不平行”命题的题设、结论.题设是:,结论是:.(4)“任意两个偶数之差是偶数”命题的题设、结论.题设是:,结论是:.题组B 能力提升练11.下列命题中,属于真命题的是()A.同旁内角互补B.若a<1,则a2﹣1<0 C.直角都相等D.相等的角是对顶角12.能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A.x=B.x=3 C.x=﹣D.x=π13.下列命题中①相等的角是对顶角;②无理数就是开方开不尽的数;③同旁内角互补;④数轴上的点与实数一一对应.是真命题的有()A.1 个B.2个C.3个D.4个14.将命题“两个锐角的和是钝角”改写成“如果……那么……”的形式是15.判断下列语句是否是命题.如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.16.写出下列命题的条件和结论.(1)两条直线被第三条直线所截,同旁内角互补;(2)绝对值等于3的数是3;(3)如果∠DOE=2∠EOF,那么OF是∠DOE的平分线.题组C 培优拔尖练17.下列语句中,不是命题的是()A.如果b<a,那么a>b B.同旁内角互补C.反向延长射线MN D.垂线段最短18.下列命题中是真命题的是()A.同位角相等B.若a2=b2,则a=b C.等角的补角相等D.两条直线不相交就平行19.对顶角相等是(真或假)命题,此命题的题设是结论是.20.请举出一个关于角相等的定理:.21.已知下列语句:①平角都相等;②画两个相等的角;③两直线平行,同位角相等;④等于同一个角的两个角相等吗;⑤邻补角的平分线互相垂直;⑥等腰三角形的两个底角相等,其中是命题的有(填序号)22.指出下列命题的条件和结论.(1)一个锐角的补角大于这个角的余角;(2)不相等的两个角不是对顶角;(3)异号两数相加得零.23.举反例说明下列命题是假命题.(1)如果a+b>0,那么a>0,b>0;(2)无限小数是无理数;(3)两直线被第三条直线所截,同位角相等.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第7单元平行线的证明2定义与命题一、填空题1.“两角分别相等且其中一组等角的对边相等的两个三角形全等”是_______(填“定义”“公理”或“定理”).2.如果a∥b,b∥c,那么a∥c,这个推理的依据是_________________________.3.给出下列四个命题:①以3,2,5为边长的三角形是直角三角形;②函数y=12x+1的自变量x的取值范围是x≥-12;③若ab>0,则直线y=ax+b必过第二、三象限;④在同一平面内,如果一条直线上有两个点到另一条直线的距离相等,那么这两条直线平行.其中,是真命题的序号是_______.4.(1)把“同旁内角互补,两直线平行”写成“如果……那么……”的形式为_______.(2)证明命题“若x(1-x)=0,则x=0”是假命题的反例是_______.二、选择题5.下列语句中,属于定理的是()A.在直线AB上取一点EB.如果两个角相等,那么这两个角是对顶角C.同位角相等D.同角的补角相等6.下列所学过的真命题中,不是公理的是()A.对顶角相等B.两角及其夹边分别相等的两个三角形全等C.同位角相等,两直线平行D.三边分别相等的两个三角形全等7.某工程队在修建高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程()A.直线的公理B.直线的公理或线段最短公理C.线段最短公理D.平行公理8.下列说法正确的是()A.真命题都可以作为定理B.公理不需要证明C.定理不一定都要证明D.证明只能根据定义、公理进行三、解答题9.指出下列命题的条件和结论:①平行于同一直线的两条直线互相平行;②若ab=1,则a 与b互为倒数;③同角的余角相等;④长方形的四个角都是直角.10.(1)根据题意,把下列推理的依据写出来,并指出是公理还是定理.①如图所示,若∠1=∠2,则a∥b;②在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,∠C=∠C′,则△ABC≌△A′B′C′;③如果a=b,b=c,那么a=c.(2)如图,已知AC⊥BC,C为垂足,E是BC上一点,并且∠1=∠2.试问:DE与BC有何位置关系?请说明理由.B组(中档题)四、填空题11.下列命题可以作为定理的有_______个.①2与6的平均值是8;②能被3整除的数也能被6整除;③5是方程12x+7=9x+26的根;④三角形的内角和是180°;⑤等式两边加上同一个数仍是等式.12.如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题_______.(用序号⊗⊗⊗⇒⊗的形式写出)13.A,B,C,D,E五名学生猜自己的数学成绩:A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.”C说:“如果我得优,那么D也得优.”D说:“如果我得优,那么E也得优.”大家都没有说错,但只有三个人得优,那么得优的三个人是_______.五、解答题14.请你完成命题“有两边及一边上的中线对应相等的两个三角形全等”的证明.(画出图形,写出已知、求证,并完成证明)C组(综合题)15.如图,EG∥AF,请你从下面三个等式中再选两个作为已知条件,另一个作为结论,推出一个正确的命题(只需要写出一种情况),并给予证明.①∠B=∠ACB;②DE=DF;③BE=CF.已知:EG∥AF,_______=_______,_______=_______.求证:_______=_______.参考答案A组(基础题)一、填空题1.“两角分别相等且其中一组等角的对边相等的两个三角形全等”是定理(填“定义”“公理”或“定理”).2.如果a∥b,b∥c,那么a∥c,这个推理的依据是平行于同一条直线的两条直线平行.3.给出下列四个命题:①以3,2,5为边长的三角形是直角三角形;②函数y=12x+1的自变量x的取值范围是x≥-12;③若ab>0,则直线y=ax+b必过第二、三象限;④在同一平面内,如果一条直线上有两个点到另一条直线的距离相等,那么这两条直线平行.其中,是真命题的序号是③.4.(1)把“同旁内角互补,两直线平行”写成“如果……那么……”的形式为如果同旁内角互补,那么两直线平行.(2)证明命题“若x(1-x)=0,则x=0”是假命题的反例是当x=1时,x(1-x)=0.二、选择题5.下列语句中,属于定理的是(D)A.在直线AB上取一点EB.如果两个角相等,那么这两个角是对顶角C.同位角相等D.同角的补角相等6.下列所学过的真命题中,不是公理的是(A)A.对顶角相等B.两角及其夹边分别相等的两个三角形全等C.同位角相等,两直线平行D.三边分别相等的两个三角形全等7.某工程队在修建高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程(C)A.直线的公理B.直线的公理或线段最短公理C.线段最短公理D.平行公理8.下列说法正确的是(B)A.真命题都可以作为定理B.公理不需要证明C.定理不一定都要证明D.证明只能根据定义、公理进行三、解答题9.指出下列命题的条件和结论:①平行于同一直线的两条直线互相平行;②若ab=1,则a 与b互为倒数;③同角的余角相等;④长方形的四个角都是直角.解:①条件:两条直线都和第三条直线平行.结论:这两条直线互相平行.②条件:ab=1.结论:a与b互为倒数.③条件:两个角是同一个角的余角.结论:这两个角相等.④条件:一个四边形是长方形.结论:这个四边形的四个角都是直角.10.(1)根据题意,把下列推理的依据写出来,并指出是公理还是定理.①如图所示,若∠1=∠2,则a∥b;②在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,∠C=∠C′,则△ABC≌△A′B′C′;③如果a=b,b=c,那么a=c.解:①内错角相等,两直线平行,是定理.②两角分别相等且其中一组等角的对边相等的两个三角形全等,是定理.③等量代换,是公理.(2)如图,已知AC⊥BC,C为垂足,E是BC上一点,并且∠1=∠2.试问:DE与BC有何位置关系?请说明理由.解:DE⊥BC.理由:∵∠1=∠2,∴AC∥DE.∴∠ACE+∠DEC=180°.∵AC⊥BC,∴∠ACE=90°.∴∠DEC=180°-90°=90°.∴DE⊥BC.B组(中档题)四、填空题11.下列命题可以作为定理的有2个.①2与6的平均值是8;②能被3整除的数也能被6整除;③5是方程12x+7=9x+26的根;④三角形的内角和是180°;⑤等式两边加上同一个数仍是等式.12.如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题①③④⇒②(答案不唯一).(用序号⊗⊗⊗⇒⊗的形式写出)13.A,B,C,D,E五名学生猜自己的数学成绩:A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.”C说:“如果我得优,那么D也得优.”D 说:“如果我得优,那么E 也得优.”大家都没有说错,但只有三个人得优,那么得优的三个人是C ,D ,E .五、解答题14.请你完成命题“有两边及一边上的中线对应相等的两个三角形全等”的证明.(画出图形,写出已知、求证,并完成证明)解:已知:如图,在△ABC 和△A ′B ′C ′中,AB =A ′B ′,BC =B ′C ′,AD ,A ′D ′分别是BC ,B ′C ′边上的中线,AD =A ′D ′.求证:△ABC ≌△A ′B ′C ′.证明:∵AD ,A ′D ′分别是BC ,B ′C ′边上的中线,∴BD =12BC ,B ′D ′=12B ′C ′.∵BC =B ′C ′,∴BD =B ′D ′.在△ABD 和△A ′B ′D ′中,=A ′B ′,=A ′D ′,=B ′D ′,∴△ABD ≌△A ′B ′D ′(SSS).∴∠B =∠B ′.在△ABC 和△A ′B ′C ′中,=A ′B ′,B =∠B ′,=B ′C ′,∴△ABC ≌△A ′B ′C ′(SAS).C组(综合题)15.如图,EG∥AF,请你从下面三个等式中再选两个作为已知条件,另一个作为结论,推出一个正确的命题(只需要写出一种情况),并给予证明.①∠B=∠ACB;②DE=DF;③BE=CF.已知:EG∥AF,∠B=∠ACB,DE=DF.求证:BE=CF.证明:∵EG∥AF,∴∠GED=∠F,∠EGD=∠DCF.又∵DE=DF,∴△EGD≌△FCD(AAS).∴EG=CF.∵EG∥AF,∴∠EGB=∠ACB.∵∠B=∠ACB,∴∠B=∠EGB.∴BE=EG.∴BE=CF.(答案不唯一)。
7.2 定义与命题第1课时定义与命题第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);活动目的:让学生通过对一个学生比较感兴趣的名词:“黑客”、“因特网”的不同理解,从而使学生了解定义的含义.教学效果:很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)活动目的:通过对水流的污染问题引入命题的概念,使学生了解命题的含义,会判断某些语句是不是命题.教学效果:命题的判断只有两种形式,要么肯定,要么否定。
第02讲定义与命题证明一、定义、命题、基本事实与定理1.定义一般地,能清楚的规定某一名称或术语的意义的句子叫做该名称或术语的定义.2.命题一般地,判断某一件事情的句子叫命题.正确的命题叫做真命题;不正确的命题叫做假命题.命题通常由条件、结论两个部分组成,条件是已知事项,结论是由已知事项得到的事项.通常命题可以写成“如果……那么……”的形式,其中以“如果“开始的部分是条件,”那么“后面的部分是结论.要点:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.当证明一个命题是假命题时只要举出一个反例就可以.3.基本事实人们经过长期实践后公认为正确的命题,作为判断其他命题的依据,也可称为公理. 4.定理用推理的方法判断为正确的命题.定理也可以作为判断其他命题真假的依据.要点:满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.二、证明1.证明从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步推得结论成立,这样的推理过程叫做证明.2.证明表述格式证明几何命题时,表述格式一般如下:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.要点:在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线.三、三角形外角的性质三角形一个外角等于与它不相邻两个内角的和。
例1.下列语句中,不是命题的是()A.两点确定一条直线B.垂线段最短C.同位角相等D.作∠A的平分线例2.下列命题是假命题的是()A.和为180°的两个角互补B .在同一平面内,过直线外一点有且只有一条直线与已知直线平行C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两条直线被第三条直线所截,同位角相等例3.命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③同位角相等④相等的角是对顶角;其中假命题有()A .1个B .2个C .3个D .4个例4.把命题“等角的余角相等”改写成“如果……那么……”的形式,正确的是()A .如果两个角互余,那么这两个角相等B .如果两个角相等.那么这两个角互为余角C .如果两个角相等,那么这两个角的余角也相等D .如果两个角互余,那么这两个角的余角相等例5.如图,1∠,2∠,3∠中是ABC 外角的是()A .1∠,2∠B .2∠,3∠C .1∠,3∠D .1∠,2∠,3∠例6.如图,在ABC ∆中,60B ∠=︒,80A ∠=︒,延长BC 至点D ,则ACD ∠的大小为()A .140︒B .150︒C .160︒D .170︒例7.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°例8.下列句子:①爸爸你去哪儿呢?②舌尖上的中国;③中国好声音是选秀节目;④邱波是喀山世锦赛十米跳台的冠军;⑤你不是调皮捣蛋的坏孩子;⑥奔跑吧兄弟!是命题的有__________(只填序号).例9.请写出命题“互为相反数的两个数和为零”的逆命题:____________________例10.把命题“直角三角形的两个锐角互为余角”改写成“如果…那么…”的形式是________,这个命题是__________(填“真”或“假”)命题1.下列句子中,属于命题的是()A .直线AB 和CD 垂直吗?B .过线段AB 的中点C 作AB 的垂线C .同旁内角不互补,两直线不平行D .已知21a =,求a 的值2.下列说法是真命题的有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a b ∥,b c ∥,则a c ∥.A .1个B .2个C .3个D .4个3.说明“若a b >,则a b >”是假命题的反例可以是()A .6a =,5b =B .5a =-,6b =-C .6a =-,5b =D .6a =,=5b -4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是()A .191,250︒︒∠=∠=B .189,21︒︒∠=∠=C .1120,240∠=︒∠=︒D .1102,22︒︒∠=∠=5.如图,BCD ∠为ABC 的外角,64A ∠=︒,142BCD ∠=︒,那么B ∠=()A .60°B .82°C .78°D .80°6.如图,直线m n ∥,A ∠的两边分别与直线m ,n 相交.若60A ∠=︒,1140∠=︒,则2∠的度数是()A .140︒B .120︒C .100︒D .80︒7.如图,点D 在ABC 的边AB 的延长线上,且DE BC ∥,若32A ∠=︒,58D ∠=︒,则C ∠的度数是()A .25︒B .8.如图,123∠∠∠,,的大小关系正确的是(A .123∠=∠+∠B .9.如图,已知AB DE ∥,A .50︒B .60︒10.如图,ABC 中,AD BC ⊥交BC 延长线上一点,FG AE ⊥交AD 的延长线于点下列结论:①DEA AGH ∠=∠;②(12DAE ABD ACE ∠=∠-∠③AGH BAE ACB =+∠∠∠④::AEB AEC S S AB AC =△△其中正确结论的个数是(A .1B .2C .3D .4二、填空题11.下列语句:①整数一定是有理数;②画直线AB ;③直角都相等;④如果=1x -,那么10x +>;⑤我下次考试能得满分吗?其中是命题的是________.(填序号)12.将命题“有一个内角是直角的三角形是直角三角形”改写成如果…那么…的形式_____.13.判断命题“若24a =,则2a =”是假命题,需要举出的反例是______.14.指出下列命题的题设和结论:(1)“平行于同一直线的两条直线互相平行”命题的题设、结论.题设是:_____,结论是:_____.(2)“两个负数的和是负数”命题的题设、结论.题设是:_____,结论是:_____.(3)“相交的两条直线一定不平行”命题的题设、结论.题设是:_____,结论是:_____.(4)“任意两个偶数之差是偶数”命题的题设、结论.题设是:_____,结论是:_____.15.如图,在ABC 中,D 是延长线上一点,50B ∠=︒,70A ∠=︒,则ACD ∠=______.16.如图,已知在ABC 中,CD 是边AB 上的高线,CE 平分ACD ∠,交AB 于点E ,46ACD ∠=︒,则AEC ∠的度数为____________°.17.将一把直尺与一块三角板如图放置,若1130∠=︒,则2∠的度数为________.18.已知ABC 中,70A ∠=︒,BD 是ABC ∠的角平分线,CD 是ACB ∠的外角角平分线,交点为D ,则D ∠=___________︒.三、解答题19.写出下列命题的条件和结论.(1)两条直线被第三条直线所截,同旁内角互补;(2)绝对值等于3的数是3;(3)如果∠DOE =2∠EOF ,那么OF 是∠DOE 的平分线.20.把下列命题改成“如果…那么…”的形式.(1)不相交的两条直线是平行线(2)相等的两个角是对顶角(3)经过一点有且只有一条垂线(4)直角都相等.21.如图,现有以下三个条件:①//,AB CD ②,B C ∠=∠③E F ∠=∠.请你以其中两个作为题设,另一个作为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出反例(证明其中的一个命题即可).22.如图,现有以下3个论断://BD EC ;D C ∠=∠;A F ∠=∠.(1)请以其中两个为条件,另一个为结论组成命题,你能组成哪几个命题?(2)你组成的命题是真命题还是假命题?请你选择一个真命题加以证明.23.填写推理的理由.已知:如图,CD AB ⊥于点D ,EF AB ⊥于点E ,12∠=∠,DG 交AC 于点G ,EF 交BC 于点F .求证:ADG B ∠=∠.证明:∵CD AB ⊥,EF AB ⊥(),∴CD EF ().∴23∠∠=().∵12∠=∠(),∴13∠=∠().∴DG BC ().∴ADG B ∠=∠().24.点D 为△ABC 的边BC 的延长线上的一点,DF ⊥AB 于点F ,交AC 于点E ,∠A =35°,∠D =40°,求∠ACD 的度数.25.如图,在△ABC 中,∠A =70°,∠ACD =30°,CD 平分∠ACB .求:28.已知:如图1,点B 在(1)求证AB CD ∥;(2)如图2,BQ 平分ABE ∠,过点C 作①补全图形;②若PCF DCF ∠=∠,设ABQ x ∠=︒,29.如图1,已知线段AB 、CD 相交于点一、单选题1.(2020·四川雅安·中考真题)下列四个选项中不是命题的是()A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c=2.(2020·湖北宜昌·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A .B .C .D .二、填空题3.(2020·湖南永州·中考真题)已知直线//a b ,用一块含30°角的直角三角板按图中所示的方式放置,若125∠=︒,则2∠=_________.4.(2021·河北·统考中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ∠,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.三、解答题5.(2017·重庆·中考真题)如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD=58°,点D 在GH 上,求∠BDC 的度数.。
北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课的主要内容是让学生理解并掌握命题与定理的概念,学会如何用数学语言表述命题,以及如何通过推理和证明来判断命题的真假。
本节课的内容是学生学习更高级数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析学生在七年级时已经接触过简单的命题和定理,对命题和定理的概念有初步的了解。
但是,对于如何准确地表述命题,如何通过推理和证明来判断命题的真假,以及如何运用命题和定理解决实际问题等方面,还需要进一步的学习和掌握。
因此,在教学过程中,教师需要根据学生的实际情况,从简单的例子入手,逐步引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。
三. 教学目标1.理解命题与定理的概念,掌握如何用数学语言表述命题。
2.学会通过推理和证明来判断命题的真假。
3.能够运用命题和定理解决实际问题。
4.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:理解命题与定理的概念,掌握如何用数学语言表述命题,学会通过推理和证明来判断命题的真假。
2.难点:如何引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。
五. 教学方法1.讲授法:教师通过讲解和举例,引导学生理解和掌握命题与定理的概念。
2.实践法:学生通过动手操作和思考,培养学生的逻辑思维能力和数学素养。
3.讨论法:学生分组讨论,交流自己的理解和思路,培养学生的合作意识和沟通能力。
六. 教学准备1.教师准备PPT,内容包括教材中的重点和难点,以及一些相关的例子和练习题。
2.准备一些与本节课内容相关的实物或图片,用于导入和呈现。
七. 教学过程1.导入(5分钟)教师通过展示一些与本节课内容相关的实物或图片,引导学生观察和思考,激发学生的兴趣。
然后,教师简要介绍本节课的主要内容,让学生对课程有一个初步的了解。
第02讲定义与命题证明一、定义、命题、基本事实与定理1.定义一般地,能清楚的规定某一名称或术语的意义的句子叫做该名称或术语的定义.2.命题一般地,判断某一件事情的句子叫命题.正确的命题叫做真命题;不正确的命题叫做假命题.命题通常由条件、结论两个部分组成,条件是已知事项,结论是由已知事项得到的事项.通常命题可以写成“如果……那么……”的形式,其中以“如果“开始的部分是条件,”那么“后面的部分是结论.要点:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.当证明一个命题是假命题时只要举出一个反例就可以.3.基本事实人们经过长期实践后公认为正确的命题,作为判断其他命题的依据,也可称为公理. 4.定理用推理的方法判断为正确的命题.定理也可以作为判断其他命题真假的依据.要点:满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.二、证明1.证明从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步推得结论成立,这样的推理过程叫做证明.2.证明表述格式证明几何命题时,表述格式一般如下:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.要点:在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线.三、三角形外角的性质三角形一个外角等于与它不相邻两个内角的和。
例1.下列语句中,不是命题的是()A.两点确定一条直线B.垂线段最短C.同位角相等D.作∠A的平分线【答案】D【解析】判断一件事情的语句叫命题,以此进行判断.A.两点确定一条直线,是一个真命题;B.垂线段最短,是一个真命题;C.同位角相等,是一个假命题;D.作∠A的平分线,没有判断的意义,不是命题.故选D.【点睛】本题考核知识点:命题.解题关键点:理解命题的意义.例2.下列命题是假命题的是()A.和为180°的两个角互补B.在同一平面内,过直线外一点有且只有一条直线与已知直线平行C.在同一平面内,垂直于同一条直线的两条直线互相平行D.两条直线被第三条直线所截,同位角相等【答案】D【解析】根据互补的定义,平行线的判定与基本事实,进行判断.A、和为180°的两个角互补,是真命题;B、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,是真命题;C、在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;D、两条平行直线被第三条直线所截,同位角相等,是假命题.故选D.【点睛】本题考查真假命题的判断,熟练掌握平行线的判定与基本事实是解题的关键.例3.命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③同位角相等④相等的角是对顶角;其中假命题有()A.1个B.2个C.3个D.4个【答案】B【解析】利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.①对顶角相等,正确,是真命题;②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;③同位角相等,错误,是假命题;④相等的角是对顶角,错误,是假命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质等基础知识,难度较小.例4.把命题“等角的余角相等”改写成“如果……那么……”的形式,正确的是()A .如果两个角互余,那么这两个角相等B .如果两个角相等.那么这两个角互为余角C .如果两个角相等,那么这两个角的余角也相等D .如果两个角互余,那么这两个角的余角相等【答案】C【解析】根据任何一个命题都可以写成“如果…,那么…”的形式,如果后面是题设,那么后面是结论,从而得出答案.解:命题“等角的余角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”.故命题“等角的余角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的余角相等.故选择:C.【点睛】此题考查了命题与定理,解答此题的关键是找出原命题的题设和结论,此题比较简单.例5.如图,1∠,2∠,3∠中是ABC 外角的是()A .1∠,2∠B .2∠,3∠C .1∠,3∠D .1∠,2∠,3∠【答案】C【解析】根据三角形的一条边的延长线于另一边的夹角叫做这个三角形的外角判断.属于ABC 外角的有13∠∠、.故选C .【点睛】本题考查了三角形的外角的定义,是基础题,熟记概念是解题的关键.例6.如图,在ABC ∆中,60B ∠=︒,80A ∠=︒,延长BC 至点D ,则ACD ∠的大小为()A .140︒B .150︒C .160︒D .170︒【答案】A【解析】根据三角形的一个外角等于和它不相邻的两个内角的和计算.由三角形的外角性质可知,∠ACD=∠B+∠A=140°,故选:A .【点睛】此题考查三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.例7.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°【答案】A∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .例8.下列句子:①爸爸你去哪儿呢?②舌尖上的中国;③中国好声音是选秀节目;④邱波是喀山世锦赛十米跳台的冠军;⑤你不是调皮捣蛋的坏孩子;⑥奔跑吧兄弟!是命题的有__________(只填序号).【答案】③④⑤【解析】直接根据命题的定义进行判断.①是疑问句,没有判断;②没有对事情作出判断;⑥是祈使句,不含判断的意思;只有③④⑤是对某一件事情作出判断的语句.故答案为:③④⑤.【点睛】本题考查命题的判断,熟练掌握命题是对一件事情作出判断的语句是解题的关键.例9.请写出命题“互为相反数的两个数和为零”的逆命题:____________________【答案】和为零的两个数是互为相反数.【解析】两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.逆命题是:和是0的两个数互为相反数;故答案为和是0的两个数互为相反数.【点睛】本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,难度适中.例10.把命题“直角三角形的两个锐角互为余角”改写成“如果…那么…”的形式是________,这个命题是__________(填“真”或“假”)命题【答案】如果一个三角形是直角三角形,那么它的两个锐角互为余角真【解析】找出命题中的题设与结论即可得,根据直角三角形的性质即可得判断真假.命题“直角三角形的两个锐角互为余角”中的题设是三角形是直角三角形,结论是它的两个锐角互为余角,则改写成:如果一个三角形是直角三角形,那么它的两个锐角互为余角,由直角三角形的性质得:这个命题是真命题,故答案为:如果一个三角形是直角三角形,那么它的两个锐角互为余角;真.【点睛】本题考查了命题、直角三角形的性质,掌握理解命题的概念是解题关键.一、单选题4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是()A .191,250︒︒∠=∠=B .189,21︒︒∠=∠=C .1120,240∠=︒∠=︒D .1102,22︒︒∠=∠=【答案】D【分析】分别计算出各选项角的度数,进而可得出结论.【解析】解:A 、915041-︒︒=︒是锐角,不符合题意;B 、89︒与1︒是两个锐角,不符合题意;C 、1204080-︒︒=︒是锐角,不符合题意;D 、1022100︒︒-=︒是钝角,符合题意.故选:D .【点睛】本题考查的是命题与定理,熟知反例的定义是解题的关键.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.5.如图,BCD ∠为ABC 的外角,64A ∠=︒,142BCD ∠=︒,那么B ∠=()A .60°B .82°C .78°D .80°【答案】C 【分析】根据外角的性质进行求解即可.【解析】解:∵64A ∠=︒,142BCD ∠=︒,∴78B BCD A ∠=∠-∠=︒;故选C .【点睛】本题考查三角形的外角.熟练掌握三角形一个外角等于与它不相邻的两个内角和,是解题的关键.6.如图,直线m n ∥,A ∠的两边分别与直线m ,n 相交.若60A ∠=︒,1140∠=︒,则2∠的度数是()A .140︒B .120︒C .100︒D .80︒【答案】D【分析】利用三角形外角的性质与平行线的性质求解.【解析】解:如图所示.60A ∠=︒,1140∠=︒,∴3180A ∠=∠-∠=︒,又 m n ∥,∴2380∠=∠=︒.故选:D .【点睛】本题考查了三角形外角的性质,平行线的性质,熟练掌握平行线的性质是解题的关键.7.如图,点D 在ABC 的边AB 的延长线上,且DE BC ∥,若32A ∠=︒,58D ∠=︒,则C ∠的度数是()A .25︒B .26︒C .28︒D .32︒【答案】B 【分析】根据平行线的性质求出DBC ∠,根据三角形外角性质得出即可.【解析】解:∵DE BC ∥,58D ∠=︒,∴58DBC ∠=︒,∵32A ∠=︒,∴583226C ︒︒︒∠=-=,故选:B .【点睛】此题考查三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键.8.如图,123∠∠∠,,的大小关系正确的是()A .123∠=∠+∠B .2213∠=∠+∠C .321∠>∠>∠D .123∠>∠>∠【答案】D 【分析】根据三角形的外角的性质进行解题.【解析】由三角形的外角大于与它不相邻的每一个内角,可得123∠∠∠、、的大小关系为:123∠>∠>∠.故选D .【点睛】本题考查三角形外角的性质,掌握三角形的外角的性质是解题的关键.9.如图,已知AB DE ∥,130B ∠=︒,110D ∠=︒,则C ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B 【分析】利用平行线的性质:两直线平行,同位角相等,得出110DFG CDE ∠=∠=︒,再利用三角形外角的性质即可求出答案.【解析】如图所示,延长AB ,CD 交于点F ,∵AB DE ∥,110CDE ∠=︒,∴110DFG CDE ∠=∠=︒,∴18070BFC DFG ∠=︒-∠=︒,∵130ABC ∠=︒,∴60C ABC BFC ∠=∠-∠=︒.故选:B .【点睛】本题考查的是平行线的性质及三角形外角的性质,牢固掌握以上知识点是做出本题的关键.二、填空题11.下列语句:①整数一定是有理数;②画直线AB ;③直角都相等;④如果=1x -,那么10x +>;⑤我下次考试能得满分吗?其中是命题的是________.(填序号)【答案】①③④【分析】根据命题的定义:判断一件事情的句子逐一判断即可.【解析】解:①整数一定是有理数,是命题;②画直线AB ,不是命题;③直角都相等,是命题;④如果=1x -,那么10x +>,是命题;⑤我下次考试能得满分吗?不是命题.综上,是命题的是:①③④.故答案为:①③④.【点睛】本题考查的是命题的定义,属于基础概念题型,熟知命题的定义、熟练掌握基本知识是解题的关键.12.将命题“有一个内角是直角的三角形是直角三角形”改写成如果…那么…的形式_____.【答案】如果一个三角形有一个内角是直角,那么这个三角形是直角三角形【分析】判断语句中的条件和结论,将条件放在如果后面,将结论放在那么后面即可.【解析】题中“有一个内角是直角的三角形”是条件,“直角三角形”是结论,所以命题“有一个内角是直角的三角形是直角三角形”改写成如果…那么…的形式为:如果一个三角形有一个内角是直角,那么这个三角形是直角三角.故答案为:如果一个三角形有一个内角是直角,那么这个三角形是直角三角形.【点睛】本题主要考查命题的改写,正确找出条件和结论是解决本题的关键.13.判断命题“若24a =,则2a =”是假命题,需要举出的反例是______.【答案】当2a =-时,满足24a =,但是2a ≠【分析】根据举反例的要求举出满足题设,但是不满足结论的例子即可.【解析】解:∵当2a =-时,满足24a =,但是2a ≠,∴“若24a =,则2a =”是假命题的反例为:当2a =-时,满足24a =,但是2a ≠,故答案为:当2a =-时,满足24a =,但是2a ≠.【点睛】本题主要考查了乘方、命题以及证明,熟知举反例的要求举出满足题设,但是不满足结论的例子是解题的关键.14.指出下列命题的题设和结论:(1)“平行于同一直线的两条直线互相平行”命题的题设、结论.题设是:_____,结论是:_____.(2)“两个负数的和是负数”命题的题设、结论.题设是:_____,结论是:_____.(3)“相交的两条直线一定不平行”命题的题设、结论.题设是:_____,结论是:_____.(4)“任意两个偶数之差是偶数”命题的题设、结论.题设是:_____,结论是:_____.【答案】两条直线平行于同一条直线这两条直线互相平行有两个负数它们的和是负数两条直线相交它们一定不平行有任意两个偶数它们的差是偶数【分析】对每一个命题,根据命题的结构,写出题设、结论即可求解.【解析】解:(1)“平行于同一直线的两条直线互相平行”可以改写成“如果两条直线平行于同一条直线,那么这两条直线互相平行”.题设是:两条直线平行于同一条直线,结论是:这两条直线互相平行;(2)“两个负数的和是负数”可以改写成“如果有两个负数,那么它们的和是负数”.题设是:有两个负数,结论是:它们的和是负数;(3)“相交的两条直线一定不平行”可以改写成“如果两条直线相交,那么它们一定不平行”.题设是:两条直线相交,结论是:它们一定不平行;(4)“任意两个偶数之差是偶数”可以改写成“如果有任意两个偶数,那么它们的差是偶数”.题设是:有任意两个偶数,结论是:它们的差是偶数故答案为两条直线平行于同一条直线,这两条直线互相平行;有两个负数,它们的和是负数;两条直线相交,它们一定不平行;有任意两个偶数,它们的差是偶数.【点睛】本题考查了命题与定理,命题由题设和结论两部分组成,找题设和结论的关键是会把命题写成“如果…那么…”的形式.15.如图,在ABC 中,D 是延长线上一点,50B ∠=︒,70A ∠=︒,则ACD ∠=______.【答案】120︒/120度【分析】根据三角形的一个外角等于与它不相邻的两个内角之和即可求解.【解析】解:∵50B ∠=︒,70A ∠=︒,∴5070120ACD B A ∠=∠+∠=︒+︒=︒,故答案为:120︒.【点睛】本题主要考查了三角形外角的性质,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.16.如图,已知在ABC 中,CD 是边AB 上的高线,CE 平分ACD ∠,交AB 于点E ,46ACD ∠=︒,则AEC ∠的度数为____________°.【答案】113【分析】由垂直的定义得到90ADC ∠=︒,由角平分线的定义求得23ECD ∠=︒,最后利用三角形的外角性质即可求解.【解析】解:∵CD 是边AB 上的高线,∴90ADC ∠=︒,【答案】40︒/40度【分析】由平行线的性质可得31∠=∠=【解析】解:如图,由题意得:90E ∠=︒,AB CD ∥,∴31130∠=∠=︒,∵3∠是ABE 的外角,∴231309040E ∠=∠-∠=︒-︒=︒.故答案为:40︒.【点睛】本题考查平行线的性质,三角形外角的性质.解题的关键是熟记平行线的性质:两直线平行,同位角相等.18.已知ABC 中,70A ∠=︒,BD 是∠交点为D ,则D ∠=___________︒.【答案】35三、解答题19.写出下列命题的条件和结论.(1)两条直线被第三条直线所截,同旁内角互补;(2)绝对值等于3的数是3;(3)如果∠DOE=2∠EOF,那么OF是∠DOE的平分线.【答案】(1)条件:两条直线被第三条直线所截;结论:同旁内角互补(2)条件:一个数的绝对值等于3;结论:这个数是3(3)条件:∠DOE=2∠EOF;结论:OF是∠DOE的平分线【分析】命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项;命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.(1)解:两条直线被第三条直线所截,同旁内角互补的题设是两条直线被第三条直线所截,结论是同旁内角互补;(2)解:绝对值等于3的数是3的题设是一个数的绝对值等于3,结论是这个数是3;(3)解:如果∠DOE=2∠EOF,那么OF是∠DOE的平分线的题设是∠DOE=2∠EOF,结论是OF是∠DOE的平分线.【点睛】本题考查了命题与定理的知识,写出一个命题的题设和结论常常改写成“如果…那么…”的形式;熟练地掌握命题的组成是解题的关键.20.把下列命题改成“如果…那么…”的形式.(1)不相交的两条直线是平行线(2)相等的两个角是对顶角(3)经过一点有且只有一条垂线(4)直角都相等.【答案】(1)如果两条直线不相交,那么这两条直线平行(2)如果两个角相等,那么这两个角是对顶角(3)如果经过一点,那么有且只有一条直线与已知直线垂直(4)如果所有的角是直角,那么它们都相等【分析】(1)根据命题及其组成即可写得;(2)根据命题及其组成即可写得;(3)根据命题及其组成即可写得;(4)根据命题及其组成即可写得.(1)解:不相交的两条直线是平行线,∵原命题的条件是:“两条直线不相交”,结论是:“这两条直线平行”,∴命题“不相交的两条直线是平行线”写成“如果…那么…”的形式为:“如果两条直线不相交,那么这两条直线平行”;(2)解:相等的两个角是对顶角,∵原命题的条件是:“两个角相等”,结论是:“这两个角是对顶角”,∴命题“相等的两个角是对顶角”写成“如果…那么…”的形式为:“如果两个角相等,那么这两个角是对顶角”;(3)解:经过一点有且只有一条垂线,∵原命题的条件是:“经过一点”,结论是:“有且只有一条垂线”,∴命题“经过一点有且只有一条垂线”写成“如果…那么…”的形式为:“如果经过一点,那么有且只有一条直线与已知直线垂直”;(4)解:直角都相等.∵原命题的条件是:“所有的直角”,结论是:“都相等”,∴命题“直角都相等”写成“如果…那么…”的形式为:“如果所有的角是直角,那么它们都相等”.【点睛】本题考查了命题的组成,命题由题设和结论两部分组成,把命题写成“如果…,那么…”的形式时,“如果”后面接的部分是题设,“那么”后面接的部分是结论.21.如图,现有以下三个条件:①//,AB CD ②,B C ∠=∠③E F ∠=∠.请你以其中两个作为题设,另一个作为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出反例(证明其中的一个命题即可).【答案】(1)可构造如下几个命题:如果//,,AB CD B C ∠=∠那么E F ∠=∠,如果//,,AB CD E F ∠=∠那么B C ∠=∠,如果B C ∠=∠,,E F ∠=∠那么//AB CD ;(2)证明见解析.【分析】(1)分别以其中2句话为条件,第三句话为结论可写出3个命题;(2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.【解析】解:(1)有:如果//,,AB CD B C ∠=∠那么E F ∠=∠;如果//,,AB CD E F ∠=∠那么B C ∠=∠;如果B C ∠=∠,,E F ∠=∠那么//AB CD ;(2)如图:∵AB ∥CD ,∴∠B=∠CDF ,∵∠B=∠C ,∴∠C=∠CDF ,∴CE ∥BF ,∴∠E=∠F ,∴如果//,,AB CD B C ∠=∠那么E F ∠=∠为真命题;∵AB ∥CD ,∴∠B=∠CDF ,∵∠E=∠F ,∴CE ∥BF ,∴∠C=∠CDF ,∴∠B=∠C ,∴如果//,,AB CD E F ∠=∠那么B C ∠=∠为真命题;∵∠E=∠F ,∴CE ∥BF ,∴∠C=∠CDF ,∵∠B=∠C ,∴∠B=∠CDF ,∴AB ∥CD ,∴如果B C ∠=∠,,E F ∠=∠那么//AB CD 为真命题.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.22.如图,现有以下3个论断://BD EC ;D C ∠=∠;A F ∠=∠.(1)请以其中两个为条件,另一个为结论组成命题,你能组成哪几个命题?(2)你组成的命题是真命题还是假命题?请你选择一个真命题加以证明.【答案】(1)见解析;(2)见解析.【分析】(1)分别以其中两个作为条件,第三个作为结论依次交换写出即可;(2)根据平行线的判定和性质对(1)题的3个命题进行证明即可判断其真假.【解析】解:(1)由//BD EC ,D C ∠=∠,得到A F ∠=∠;由//BD EC ,A F ∠=∠,得到D C ∠=∠;由A F ∠=∠,D C ∠=∠,得到//BD EC ;故能组成3个命题.(2)由//BD EC ,D C ∠=∠,得到A F ∠=∠,是真命题.理由如下://BD EC ,ABD C ∴∠=∠.D C ∠=∠ ,∴ABD D ∠=∠,//AC DF ∴,A F ∴∠=∠.由//BD EC ,A F ∠=∠,得到D C ∠=∠,是真命题.理由如下://BD EC ,ABD C ∴∠=∠.A F ∠=∠ ,//AC DF ∴,,D ABD ∴∠=∠D C ∴∠=∠.由A F ∠=∠,D C ∠=∠,得到//BD EC ,是真命题.理由如下:∵A F ∠=∠,//AC DF ∴,D ABD ∴∠=∠.D C ∠=∠ ,ABD C ∴∠=∠,//BD EC ∴.【点睛】本题考查了命题与定理的知识和平行线的判定与性质,属于基础题型,熟练掌握平行线的判定与性质是解题的关键.23.填写推理的理由.已知:如图,CD AB ⊥于点D ,EF AB ⊥于点E ,12∠=∠,DG 交AC 于点G ,EF 交BC 于点F .求证:ADG B ∠=∠.证明:∵CD AB ⊥,EF AB ⊥(),∴CD EF ().∴23∠∠=().∵12∠=∠(),∴13∠=∠().∴DG BC ().∴ADG B ∠=∠().【答案】(1)已知(2)如果两条直线都垂直于同一条直线,那么这两条直线平行(3)两直线平行,同位角相等(4)已知(5)等量代换(6)内错角相等,两直线平行(6)两直线平行,同位角相等【分析】根据已知条件,先判定CD EF 和DG BC ,然后利用平行线的性质来求证.【解析】∵CD AB ⊥,EF AB ⊥(已知),∴CD EF (如果两条直线都垂直于同一条直线,那么这两条直线平行).∴23∠∠=(两直线平行,同位角相等).∵12∠=∠(已知),∴13∠=∠(等量代换).∴DG BC (内错角相等,两直线平行).∴ADG B ∠=∠(两直线平行,同位角相等).【点睛】此题考查平行线的判定与性质,解题关键在于掌握判定定理.24.点D为△ABC的边BC的延长线上的一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=40°,求∠ACD的度数.【答案】85°【分析】根据三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和;及三角形内角和定理:三角形的三个内角和为180°解答.【解析】解:∵DF⊥AB于点F,∴∠DFB=90°在Rt△DFB中,∠DFB=90°,∴∠B+∠D=90°∵∠D=40°,∴∠B=50°∵∠ACD是△DFB的外角,∠A=35°,∴∠ACD=∠B+∠A=50°+35°=85°【点睛】此题考查三角形外角与内角的关系、三角形内角和定理,解题的关键是熟记三角形外角与内角的关系及三角形内角和定理.25.如图,在△ABC中,∠A=70°,∠ACD=30°,CD平分∠ACB.求:(1)∠BDC的度数.(2)∠B的度数.【答案】(1)∠BDC=100°(2)∠B=50°∠=∠+∠【分析】(1)在△ABC中,根据∠A=70°,∠ACD=30°,由外角的性质BDC A ACD 代入即可求出.(2)根据角平分线的定义求出∠ACB,再利用三角形的内角和等于180°列式计算即可得解.(1)在△ABC 中,,BDC A ACD ∠=∠+∠ 又∵∠A =70°,∠ACD =30°,7030100.BDC ∴∠=︒+︒=︒(2)∵∠ACD =30°,CD 平分∠ACB ∴∠BCD =30°,∴∠ACB =2×30°=60°在△ABC 中,∵∠A =70°,∠ACB =60°∴∠B =180°-70°-60°=50°【点睛】本题主要考查了三角形的外角的性质,角平分线的定义,三角形的内角和定理,熟练掌握这些性质定理是解此题的关键.26.如图所示,∠1+∠2=180°,∠3=∠B .(1)AD 与EF 平行吗?请说明理由;(2)试判断∠AED 与∠C 的大小关系,并说明理由.【答案】(1)平行,见解析(2)相等,见解析【分析】(1)由已知条件和三角形外角性质推出∠BDE +∠3=180°,利用“同旁内角互补,两直线平行”即可证明;(2)利用(1)的结论,推出∠ADE =∠B ,DE ∥BC ,利用“两直线平行,同位角相等”可得∠AED =∠C .【解析】(1)证明:(1)平行;∵∠1=∠FDE +∠3,∠1+∠2=180°,∴∠2+∠FDE +∠3=180°,∵∠BDE =∠2+∠FDE ,∴∠BDE +∠3=180°,∴AD ∥EF ;(2)解:∠AED =∠C ;理由如下:∵AB ∥EF ,∴∠ADE =∠3,∵∠3=∠B ,∴∠ADE =∠B ,∴DE ∥BC ,∴∠AED =∠C .【答案】见解析【分析】延长BP 交AC 于点外角的性质求出BPC x ∠=2BPC A D ∠∠∠=+,进而可得结论.【解析】证明:如图,延长设PBA PBD x ∠∠==,∠∴BPC BEC y x ∠∠=+=+x y BPC A ∠∠∴+=-,同理可得D x y BPC ∠∠=++2BPC A D ∠∠∠∴=+,()12BPC A D ∠∠∠∴=+.【点睛】本题考查了三角形外角的性质,相邻的两个内角和是解题的关键.28.已知:如图1,点B 在(1)求证AB CD ∥;(2)如图2,BQ 平分ABE ∠,过点C 作CF BE ⊥于点F .①补全图形;②若PCF DCF ∠=∠,设ABQ x ∠=︒,CPQ y ∠=︒,求x ,y 之间的数量关系.【答案】(1)见解析(2)①见解析;②3180y x =-【分析】(1)过点P 作PK AB ∥,得1ABQ ∠=∠,再根据ABQ CPQ PCD ∠+∠=∠,得出PK CD ∥,即可解得.(2)①根据题意补全图形即可.②过点F 作FM AB ∥,得到ABE BFM ∠=∠,根据已知得2ABE x ∠=︒,再由垂直定理得90CFB ∠=︒,再由2902BFM AFB ∠=∠+∠=︒+∠,得到2290x ∠=︒-︒,由(1)AB CD ∥,可得∠2+∠3=180°,再根据三角形内角和定理得()2x y ∠=︒+︒,即可解答.【解析】(1)过点P 作PK AB ∥.∴1ABQ ∠=∠,∵ABQ CPQ PCD ∠+∠=∠,∴1CPQ PCD ∠+∠=∠.即CPK PCD ∠=∠,∴PK CD ∥,∴AB CD ∥.(2)①补全图形;②过点F 作FM AB ∥.∴ABE BFM ∠=∠,∵BQ 平分∠ABE ,ABQ x ∠=︒,∴2ABE x ∠=︒.∵CF BE ⊥,∴90CFB ∠=︒,∵2902BFM AFB ∠=∠+∠=︒+∠,∴9022x ︒+∠=︒.∴2290x ∠=︒-︒,由(1)知,AB CD ∥,∵FM AB ∥,∴FM CD ∥,∴∠2+∠3=180°,∵3PCF ∠=∠,34360PCF ∠+∠+∠=︒,∴∠3=180°-∠4,∵14CPQ ∠+∠=∠,1x ∠=︒,CPQ y ∠=︒,∴()3180x y ∠=︒-︒+︒,∵∠2+∠3=180°,∴()2x y ∠=︒+︒,∵2290x ∠=︒-︒,∴3180y x =-.【点睛】本题考查了平行线的判断与性质,角平分线的性质,垂直定理,三角形外角和定理,熟练掌握作辅助线是解题的关键.29.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.一、单选题1.(2020·四川雅安·中考真题)下列四个选项中不是命题的是()A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c=【答案】B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【解析】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.2.(2020·湖北宜昌·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A .B .C .D .【答案】C【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【解析】解:A 、如图1,∠1是锐角,且∠1=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B 、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C 、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D 、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.二、填空题3.(2020·湖南永州·中考真题)已知直线//a b ,用一块含30°角的直角三角板按图中所示的方式放置,若125∠=︒,则2∠=_________.【答案】35°【分析】如图,标注字母,延长ED 交a 于C ,利用平行线的性质证明2,DCA ∠=∠,三角形的外角的性质证明1BDE DCA ∠=∠+∠,从而可得答案.【解析】解:如图,标注字母,延长ED 交a 于C ,由题意得:30,90,B DEB ∠=︒∠=︒60,BDE ∴∠=︒//,a b 2,DCA ∴∠=∠1,125,BDE DCA ∠=∠+∠∠=︒ 602535,DCA ∴∠=︒-︒=︒235.∴∠=︒。
7.2 定义与命题 (2)教学目标:知识技能1.了解真命题和假命题的概念。
2.会在简单的情况下判别一个命题的真假。
3.了解公理和定理的含义。
过程与方法1.从生活命题引入数学命题,并通过小组活动,让学生在自己提出问题、自己解决问题的过程中经历知识的产生过程, 并在这个过程中了解类比、归纳、分类等思维方法。
2.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的内在联系。
3.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。
情感态度与价值观让学生在推理中感觉到数学的有用性。
教学重点:命题的真假的概念和判别。
教学难点判别命题的真假其实已涉及证明。
教学过程一、复习1、定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2、命题的定义:判断一件事情的句子,叫做命题3、命题的结构:每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.4、命题的特征:一般地,命题可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论1、相等的角是对顶角;2、钝角大于它的补角;3、两直线平行,同位角相等;二、新授课想一想如何证实一个命题是真命题呢?生1:用学过的观察、实习法生2:这些方法往往不可靠生3:能不能根据已知的真命题来证明呢?生4:那已知的真命题又是怎么证明的?生5:…….公认的真命题称为公理.推理的过程叫证明。
经过证明的真命题称为定理.本套教材选用如下命题作为公理:1.两点确定一条直线。
2.两点之间线段最短。
3.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;4.两条平行线被第三条直线所截,同位角相等;5.两边及其夹角对应相等的两个三角形全等;6.两角及其夹边对应相等的两个三角形全等;7.三边对应相等的两个三角形全等;8.全等三角形的对应边相等,对应角相等.定理 同角(等角)的补角相等。
1.2 定义与命题(第二课时)教学目标:1、理解真命题、假命题、公理、定理的概念2、会判断一个命题的真假,会区分定理、公理和命题教学重难点:1、教学重点:判断一个命题的真假2、教学难点:定理、公理和命题的区别教学过程:一、复习回顾1、什么是定义?2、什么是命题?3、命题由哪两部分组成?二、探究新知合作学习:思考下列命题的条件是什么?结论是什么?(1)边长为a (a>0)的等边三角形的面积为243a (2)两条直线被第三条直线所截,如果同位角相等,那么着两条直线平行(3)对于任何实数x ,x 2<0学情预设:根据上一节课的反复训练,学生应该可以轻松回答。
问:上述命题中,哪些正确?哪些不正确?你的理由是什么?由此引起学生思考,原来命题还有正确的和不正确的之分,教师借此提出真命题和假命题的概念。
正确的命题称为真命题;不正确的命题称为假命题。
练习1 下列几个命题哪些是真命题?哪些是假命题?(1)如果两个角相等,那么它们是对顶角;(2)如果a>b ,b>c ,那么a=c ;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等。
(观察学生是否能初步判断简单的命题真假)问:如何判断一个命题是假命题呢?归纳方法:说明假命题的方法是举反例,即举出使之具有命题的条件,而不具有命题的结论。
练习2 判断下列命题的真假性,并说明理由。
(1)如果3325x x ->-,那么4<x (2)如果0,0≠≠b a ,那么()222b a b ab a +=++(3)两个锐角之和一定是钝角(4)会飞的动物是鸟(5)已知∠1和∠2如图,则∠1>∠2(6)三角形的两边之和大于第三边(7)两点之间直线最短问:如何证实一个命题是真命题呢?(根据第(7)题学生的疑惑)师:真命题常常可以通过推理的方式,根据已知事实来推断未知事实。
也有一些命题是人们经过长期实践后而公认为正确的命题,我们把这样的真命题叫做公理。