机身整体壁板结构分析
- 格式:pdf
- 大小:2.06 MB
- 文档页数:60
民机机身整体壁板损伤容限分析及试验验证“民机机身整体壁板损伤容限分析及试验验证”,是在民用飞机研制、制造过程中最关键也是最重要的一步,因为它决定着飞机的结构强度、刚度和耐久性。
一般情况下,民机机身整体壁板损伤容限分析及试验验证,包括多种工艺方法,如机身壁板成形工艺、焊接工艺、热处理工艺、环境性能试验等。
1、机身壁板成形工艺:利用机身壁板成形工艺,根据机身壁板的设计要求,将机身材料以机身壁板的形式加工出来。
为了保证机身壁板的精密度和一致性,需要采用特殊的成形工艺,如挤压成形工艺、冷弯成形工艺、热弯成形工艺等。
2、焊接工艺:焊接工艺是用于连接机身壁板的主要工艺,其目的是将不同部件之间的衔接处焊接起来,以形成一个完整的机身壁板结构。
在焊接工艺中,需要使用合适的焊接方法和焊接材料,以保证机身壁板的连接强度。
3、热处理工艺:热处理工艺是用于改善机身壁板力学性能的主要工艺。
热处理工艺可以使机身壁板具有较高的强度和韧性,从而提高机身壁板的抗损伤能力。
4、环境性能试验:环境性能试验是用于证明机身壁板的耐久性和可靠性的主要试验手段。
可以通过对机身壁板进行温度、湿度、振动、冲击等环境性能试验,检测机身壁板的耐久性和可靠性。
最后,为了证明机身壁板的力学性能和耐久性,可以采用拉伸试验、弯曲试验、冲击试验等方式,来验证机身壁板的损伤容限。
总之,“民机机身整体壁板损伤容限分析及试验验证”是一个复杂的工作,需要综合运用多种工艺方法和试验手段,以保证机身壁板的质量及机身的整体力学性能和耐久性。
民机机身整体壁板损伤容限分析及试验验证,是飞机研制和制造过程中不可或缺的一步,其结果直接关系到飞机的安全性能。
所以,必须严格遵循国家规定的制造质量管理标准,以确保机身壁板的质量。
飞机复合材料机身壁板装配技术分析与展望目录1. 内容综述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状与发展趋势 (4)2. 复合材料机身壁板概述 (6)2.1 复合材料的定义与分类 (6)2.2 复合材料机身壁板的设计要求与性能指标 (8)2.3 复合材料机身壁板的应用领域 (10)3. 装配工艺技术分析 (11)3.1 装配方法概述 (13)3.2 关键装配工艺流程 (15)3.3 装配过程中的质量控制与检测方法 (16)4. 装配设备与工具 (17)4.1 常用装配设备简介 (18)4.2 工具的选择与使用 (19)4.3 设备与工具的维护与保养 (21)5. 案例分析 (23)5.1 案例一 (24)5.2 案例二 (25)6. 技术创新与发展方向 (27)6.1 新型复合材料的应用前景 (29)6.2 装配工艺的智能化与自动化 (30)6.3 环保与可持续发展在复合材料机身壁板装配中的应用 (31)7. 结论与展望 (32)7.1 研究成果总结 (33)7.2 存在的问题与挑战 (34)7.3 未来发展趋势与展望 (35)1. 内容综述随着航空技术的发展,飞机设计正经历深刻变革。
复合材料因其轻质、高强度和优势再螺钉性能,已成为现代飞机构造的重要材料。
在飞机机身,复合材料壁板的装配技术呈现了摒弃传统金属材质,转而采用高性能纤维增强复合材料的趋势。
本文聚焦飞机复合材料机身壁板的装配技术,通过分析现状、探讨技术特点、识别挑战及展望未来,旨在为技术人员提供参考,助推高新技术在飞行器设计中的深入应用。
现有技术:该段落首先概述了当前飞机复合材料壁板的装配技术。
这包括传统的钻联、粘接与机械联接方法,以及新兴的自动化装配技术,比如防损伤的台风定位系统和数字化装配辅佐等。
技术进步:其中分析了如在干式装配工艺、真空袋成形、压缩成型、树脂传递模塑与纤维铺层等新装配方法的采纳情况及其对装配质量与效率的提升。
整体机身壁板制造有多难?目前仅有几种机型应用了这些技术飞机壁板按制造技术来分,主要有机加壁板、铆接壁板、焊接壁板等,如图1所示。
整体机加壁板由于其生产效率低、材料利用率低等原因,目前在民用飞机制造中使用越来越少。
相对于目前大量使用的铆接壁板而言,焊接壁板具有诸多优点,它不仅能极大地减轻构件的重量,同时具有良好的气密性,并能减少装配工作量,提高生产效率。
因此,基于焊接工艺制造的飞机壁板成为飞机——特别是民用飞机制造技术的发展趋势之一。
目前,空中客车公司已经在A380等多种机型上采用了激光焊接的整体机身壁板制造技术。
然而,基于焊接的整体机身壁板制造技术,是当代民机制造技术中的难点之一。
在大型民用客机领域,目前仅有空客公司在其多个型号的机体结构中采用了激光焊接壁板制造工艺。
1机身壁板激光焊接技术应用现状针对大型客机焊接整体壁板制造技术,国外已经开展了大量的系统性研究工作。
以波音787、空客A380、A350为代表的新型客机由于大量采用轻质高强整体壁板结构,在减轻结构重量、延长使用寿命、降低维修成本方面有了显著的进步,典型代表之一就是结合新材料新工艺的新型高强铝合金焊接壁板等机身结构。
经过近十年的研究,空客公司将激光焊接机身壁板首先在A318飞机上得到应用。
空中客车公司采用激光焊接技术将A318机身两块下壁板的蒙皮与桁条焊接成整体机身壁板,焊缝长度达110m,从而使激光双光束焊接技术在飞机整体壁板制造上有了突破性的应用。
在后续的A380、A340等机型上,机体焊接结构用量不断增加,A350上的焊缝总长度更是达到1000m,如图2所示。
相关资料表明,空中客车公司机身壁板采用的即是如图3(a)所示的双激光束双侧同步焊接工艺。
对于民用客机机身壁板而言,如图3(b)所示的单面焊接双面成形工艺会对蒙皮完整性造成破坏,从而影响机身的气动外形;如果加以打磨等处理后服役使用,则会影响其疲劳寿命性能。
由于T型结构双激光束双侧焊接工艺避免了传统的T型结构单面焊接双面成形工艺对底板(蒙皮)完整性的破坏,同时该工艺对比传统的铆接工艺而言能极大地减,轻构件的重量,因而在航空制造业中受到青睐。
第三章飞机机身结构分析与设计为了确保飞机机身的安全性和可靠性,需要对其进行分析和设计。
飞机机身结构主要包括机身壳体、机翼、机尾等部分。
本章将从材料选择、结构设计、强度分析等方面进行讨论。
一、材料选择飞机机身的材料选择是非常重要的,直接关系到飞机的性能和安全性。
一般来说,飞机机身材料应具备以下特点:1.轻质高强度:飞机机身需要在重量限制条件下承受大的载荷,因此需要采用轻质高强度材料,如铝合金、钛合金等。
2.耐腐蚀性:飞机在大气条件下长时间运行,会受到潮湿、腐蚀等影响,因此材料需要具备较好的耐腐蚀性。
3.抗疲劳性:飞机机身会受到很多往复的载荷作用,因此材料需要具备良好的抗疲劳性能。
4.断裂韧性:飞机机身需要能够承受意外负荷和冲击,因此材料需要具备较好的断裂韧性。
5.低温性:飞机在高空工作时会遇到低温环境,材料需要具备较好的低温性能。
根据上述要求,一般采用铝合金作为飞机机身的主要材料,具有轻质、高强度、良好的抗腐蚀性和可塑性等优点。
在一些高性能飞机中,还会采用钢、钛合金等材料。
二、结构设计飞机机身的结构设计需要兼顾强度、刚度和轻量化等要求。
一般来说,机身结构可以分为长程结构和战斗结构两个方面。
1.长程结构:一般采用壳体结构,包括压力壳体和非压力壳体。
压力壳体一般是机身的主要承载结构,需要承受气动载荷和重力载荷。
非压力壳体主要是起到支撑作用,如救生筏支架等。
2.战斗结构:战斗结构一般包括机翼和机尾等部分。
机翼需要承受气动载荷和惯性载荷,并通过机身传递到其他部分。
机尾主要用于保护飞机的尾部、提供升力等功能。
在结构设计中,需要考虑载荷分布、结构布局、连接方式等因素。
同时,还需要对结构进行优化设计,以提高结构的强度、刚度和轻量化程度。
三、强度分析强度分析是飞机机身设计的重要步骤,主要是分析结构的强度和刚度等性能。
强度分析包括静力强度分析和疲劳强度分析。
1.静力强度分析:静力强度分析主要是对飞机机身在静态载荷下的强度进行分析。
某型飞机整体壁板设计【摘要】整体壁板是现代先进飞机的重要结构件,从整体壁板的结构特点出发,介绍了整体壁板的结构形式和分类,重点阐述了某型飞机整体壁板蒙皮厚度的计算方法、筋条布置的原则和间距的计算方法,另外还介绍了整体壁板加工方法。
【关键词】整体壁板结构特征;整体壁板设计;整体壁板加工方法1、引言随着飞机性能的不断提高,对飞机结构的气动外形和整体性的要求也越来越高,而且随着市场多元化的发展,进一步降低制造成本,使产品更加具有竞争力,是许多飞机制造厂商面临的主要问题。
2、整体壁板结构特性飞机的壁板通常是用蒙皮和纵向、横向加强零件靠铆接、胶接、焊接、螺接等装配而成。
这种装配式壁板的刚度、强度、密封性都较差。
后来,为了减轻结构重量,逐渐改用整体壁板代替装配壁板,即壁板的蒙皮、加强凸台、下陷、筋条等架构要素之间没有任何机械连接。
作为飞机上最主要的一类零件——整体壁板,它既是构成飞机气动外形的重要组成部分,同时也是机身、机翼等的主要承力构件。
因此先进飞机的整体壁板不仅具有复杂的双曲率外形,同时还具有复杂的内部结构,如整体加强凸台、口框、肋、筋条等。
这样的零件结构既可以达到满足外形的要求,同时又可以达到减少零件数量、减轻重量和提高使用寿命的目的。
整体壁板主要用于飞机机身、机翼、地板和油箱等重要部位,与传统的铆接式壁板相比,整体壁板结构件有以下优点:(1)可以减轻结构重量。
同一个部件,在保证同样刚度和强度的情况下,由于减少所含零件及紧固件的数量,整体壁板比铆接壁板结构重量轻15%~20%。
(2)可以提高整体油箱密封性。
由于没有蒙皮与长桁连接的钉孔(或螺栓孔),大大减少油箱的渗漏几率,而且可以减少密封材料的用量,一般比铆接结构减少密封用胶量80%。
(3)可以提高结构的疲劳寿命。
由于紧固件用量少,净截面面积大于铆接壁板,从而提高结构的疲劳寿命,同时还可以承受较高的压缩屈服载荷。
(4)可以缩短装配周期。
由于减少了零件和紧固件的数量,从而减少67%左右的装配工作量,简化协调关系,缩短装配周期。
图1长桁和蒙皮组合结构某民用飞机机身典型壁板压损分析张晓刚,王冰(上海飞机设计研究院结构设计研究部,上海201210)摘要:通过RADIOSS 显示有限元计算,对典型壁板结构的承载能力进行了计算分析,并与试验结果进行对比,验证了RADIOSS 显式有限元计算分析的准确性。
在此基础上,针对某民用飞机的机身壁板5种不同的典型壁板结构,分别在长度为200mm 和530mm 的情况下,采用有限元分析方法计算了长桁及壁板结构的压损和失稳情况,最终得出5种构型下的压损及失稳结果,为机身结构共性结构选型提供了数据支持。
关键词:壁板结构;压损;失稳中图分类号:V214.1文献标识码:A文章编号:1671-654X (2012)05-0065-03Typical Fuselage Panel Structure Crippling AnalysisZHANG Xiao-gang ,WANG Bing(Shanghai Aircraft Design And Research Institute ,Shanghai 201210,China )Abstract :The carrying capacity of a typical panel structure was calculated that compared with experimen-tal results to verify the explicit finite element calculation.Then five kinds of different panels'crippling and buckling for a civil aircraft were calculated in a length of 200mm and 530mm ,respectively.The re-sults of five different configurations provide data for selecting common airframe structure.Key words :panel structure ;crippling ;buckling引言机身壁板结构是指长桁和蒙皮组成的整体承载结构。
飞机机翼整体壁板加工分类:科學新知2007.4.29 13:08 作者:胡耀阳| 评论:0 | 阅读:88随着飞机性能的不断提高,对飞机机翼的气动和结构要求越来越高,而且随着市场多元化的发展,进一步的降低制造成本,使产品更加有竞争力,使许多飞机制造商面临的主要问题。
在国内发展的一种新型飞机上,为了进一步的降低飞机的结构重量,减少装配工作量,采用了更新的飞机机翼整体壁板的设计思想。
它集变厚度蒙皮、长珩、梳状接头、口盖、横向加强肋与一起,形成新型的飞机机翼整体壁板。
新型飞机机翼整体壁板结构特点零件加工完成后的尺寸为10880mm×640mm×64mm,宽度方向的弧形弓高为13mm,毛料重量:1.898吨,零件重量:221kg。
因此其零件尺寸和加工前后重量的变化对加工控制的要求就是一个难点。
零件的协调要求高是一个难点。
要求相邻的壁板两端面和15个加强肋的位置偏移不能超过0.5mm。
理论外形面对装配型架的间隙不超过0.5mm。
零件加工过程中的变形控制要求在0.5mm以内。
由于T型筋与加强肋的纵横交错成网格状,使零件内部形成了底面为弧形、四周为变化角度的立筋、T型筋的凹槽和槽底面上设计的360多个台阶和下陷。
由于零件的材料利用率仅有11.6%,切削余量很大。
机翼整体结构复合壁板正面全图机翼整体结构复合壁板理论外形面全图根据上述分析地零件结构特点,我们制定下面的加工方案:1、根据毛料长11.8米×0.76米×80毫米;毛料1.898吨,零件结构复杂并带有机翼理论外形的复合型整体机翼壁板的加工任务,选择合适的五座标龙门数控设备。
2、在编程过程中,采用对零件的理论外形面和内槽进行分层粗加工和法向精加工的方法,减少了零件的加工变形,使零件对装配型架的间隙小于0.5毫米。
3、利用五坐标数控机床的摆角,一次将零件理论外形底面和法向T型立筋加工出来,减少了以前零件理论外形面需要喷丸成型或冷成型加工方法,简化了零件加工工艺过程,从而大幅度提高了生产效率,减少了加工费用。