第五讲 全等三角形的判定(培优)
- 格式:doc
- 大小:292.00 KB
- 文档页数:6
A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。
书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。
书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。
规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。
无论这个一边是“对边”还是“夹边”,只要对应相等即可。
(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。
求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。
第五讲 三角形全等的判定一、全等三角形的性质:二、判定两个三角形全等的方法一般有以下4种:1、 的两个三角形全等(可以简写成“边边边”或“SSS ”)。
2、 的两个三角形全等(可以简写成“边角边”或“SAS ”)。
3、 的两个三角形全等(可以简写成“角边角”或“ASA ”)。
4、 的两个三角形全等(可以简写成“角角边”或“AAS ”)。
三、判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用:的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”)。
四、注意点:1、ASA 与AAS 的区别。
2、证明全等三角形时,各对应顶点,对应角,对应边必须认清。
3、区别单独角和复合角各自用字母表示。
4、直角三角形的符号Rt △ABC 。
五、尺规作图运用尺规作图作相等角、相等线段以及全等三角形。
六、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用(2)条件不足,会增加条件用判别方法(3)条件比较隐蔽时,可通过添加辅助线用判别方法(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法(5)会在实际问题中用全等三角形的判别方法七、经典常考题练习:(一)精心选一选1、不能推出两个三角形全等的条件是( )A 、有两边和夹角对应相等B 、有两角和夹边对应相等C 、有两角和一边对应相等D 、有两边和一角对应相等2、根据下列条件画三角形,不能确定唯一三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B 或∠C4、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB 的平分线的交点第4题图 第5题图 第6题图5、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC6、如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF A D B C E F D A C B O D C B AA C E DB BC ED A A O D C BE B A D CF AF D E O B CA B = ( ) A.150° B.40° C.80° D.90°7、如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则( )A.∠1=∠EFDB.BE =ECC.BF =DF =CDD.FD ∥BC第7题图 第8题图8、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A.25°B.27°C.30°D.45°9、将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°10、方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC 、△DEF ,下列说法中成立的是( )A 、∠BCA=∠EDFB 、∠BCA=∠EFDC 、∠BAC=∠EFD D 、这两个三角形中,没有相等的角 第10题图 第11题图 第12题图11、如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,则∠AEC=( )A 、28°B 、59°C 、60°D 、62°12、如图,要测量河岸相对两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再作出BF 的垂线DE ,使A 、C 、E 在同一直线上,可以证明△EDC ≌△ABC 得ED=AB ,因此测得DE 的长就是AB 的长,判断△EDC ≌△ABC 的理由是( )A 、角边角 B 、边角边 C 、边边边 D 、斜边、直角边13、在△ABC 与△DEF 中,如果∠A=∠D ,∠B=∠E,要使这两个三角形全等,还需要的条件可以是( )A 、AB=EFB 、BC=EFC 、AB=ACD 、∠C=∠D14、△ABC 和△A ′B ′C ′中,条件①AB= A ′B ′,②BC= B ′C ′,③AC= A ′C ′,④∠A=∠A,⑤∠B=∠B ′,⑥∠C=∠C ′,则下列各组条件中不能保证△ABC ≌△A ′B ′C ′的一组是( )A 、①②③B 、①②⑤C 、①③⑤D 、②⑤⑥(二)、细心填一填1、已知△ABC ≌△A ′B ′C ′,∠A=∠A,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_____, A ′B ′=________.2、在△ABC 中,∠A:∠C:∠B=4:3:2,且△ABC ≌△DEF ,则∠E=_______.3、如图,线段AC 、BD 相交于点O,且AO=OC ,请添加一个条件使△ABO ≌△CDO,应添加的条件为_________________________.(添加一个条件即可) 第3题 第4题 第5题 4、如图,AB//CF,E 为DF 的中点,AB=10,CF=6,则BD=_______.5、如图,O 是△ABC 内一点,且O 到△ABC 三边AB 、BC 、CA 的距离OF=OD=OE ,若∠BAC=70°,则∠BOC=________. 6、△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = .7、△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________. F E F CD A BC D E F12DA C EBC D A B E D AC F B EO C B AF E (三)、用心做一做1、如图,B 、C 、E 三点在同一直线上,AC//DE ,AC=CE, ∠ACD=∠B,求证:△ABC ≌△CDE.2、如图,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE,F 是垂足,过B 作BD ⊥BC 交CF 的延长线于点D. (1)求证:AE=CD ;(2)AC=12cm,求BD 的长. 3、如图,AB=CD,AE ⊥BC 于E,DF ⊥BC 于F ,CE=BF,连接AD 交EF 于点O ,猜想O 为那些线段的中点?请选择其中一种结论证明.4、已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)5、已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .6、已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .7、已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .8、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.A EB DC F B CDEF A AC BDE FO NM B A9、如图所示,ABC ∆绕顶点A 顺时针旋转(旋转角度不大于1800),若∠B =300,∠C =400,问:(1)顺时针旋转多少度时,旋转后的C B A ''∆的顶点C '与原ABC ∆的顶点B 和A 在同一条直线上?(2)再继续旋转多少度时,C 、A 、C ''在同一条直线上(原ABC∆是指开始位置)?10、如图,AC=AD,BC=BD.求证:∠C=∠D.11、如图,已知:AC ,BD 相交于O 点,且CD AB BD AC ==,.求证:∠B=∠C.12、如图,已知:BF CE DF AE CD AB ===,,.求证:(1)DE AF =;(2)AE ∥DF.13、如图,AB=AC,AD=AE,∠1=∠2.求证::ABD ∆≌ACE ∆.14、如图,已知:BF DE DC AB BC AD ===,,. 求证:DF BE =.15、 如图,已知: AO CO DO BO ==,,求证:OF OE =C C 'AC 'B B 'BDC A A DB CEAB C DE 12A FD BCE。
全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。
全等三角形指的是具有相等边长和相等内角的两个三角形。
在解决问题时,我们常常要运用全等三角形的性质。
本文将从这一角度出发,介绍全等三角形问题的培优方法。
一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。
在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。
1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。
2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。
3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。
利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。
二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。
利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。
例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。
如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。
2. 证明问题在几何证明中,全等三角形是常常被用到的工具。
通过找到一个或多个全等三角形,我们可以得到所求证的结论。
例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。
然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。
3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。
通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。
全等三角形培优关键信息项1、培优课程的目标和预期成果明确学生在全等三角形知识方面的掌握程度提升目标预期学生在相关考试和竞赛中的表现提升2、教学内容和方法涵盖全等三角形的定义、性质、判定定理等核心知识点采用讲解、练习、讨论、案例分析等多种教学方法3、教学时间和进度安排总课时数每周的上课时间和时长每个阶段的教学重点和进度计划4、学生的学习要求和责任按时参加课程,完成作业和练习积极参与课堂讨论和互动主动提出问题和寻求帮助5、教师的职责和教学质量保障具备专业知识和教学经验及时批改作业和答疑解惑定期进行教学评估和改进6、费用和退费政策课程费用的具体金额和支付方式退费的条件和流程7、保密和知识产权对教学资料和学生学习成果的保密规定知识产权的归属11 课程目标和预期成果111 本全等三角形培优课程旨在帮助学生深入理解全等三角形的概念、性质和判定方法,提高学生运用全等三角形知识解决复杂几何问题的能力。
通过本次培优课程,学生应能够熟练掌握全等三角形的各种证明技巧,能够准确快速地识别全等三角形,并能够运用全等三角形的知识解决综合性的几何难题。
112 预期成果方面,学生在完成本课程后,在学校的数学考试中有关全等三角形的题目得分率应显著提高,能够在数学竞赛中灵活运用所学知识取得较好的成绩。
同时,学生应具备较强的逻辑思维能力和空间想象能力,为后续学习更高级的几何知识打下坚实的基础。
12 教学内容和方法121 教学内容将全面涵盖全等三角形的各个方面,包括但不限于:全等三角形的定义、性质和判定定理(SSS、SAS、ASA、AAS、HL)的详细讲解和应用举例。
全等三角形与其他几何图形(如等腰三角形、直角三角形)的综合应用。
全等三角形在证明线段相等、角相等以及求解图形面积等问题中的应用。
复杂图形中全等三角形的识别和构造。
122 教学方法将多样化,以满足不同学生的学习需求:课堂讲解:由教师系统地讲解全等三角形的知识点,确保学生理解基本概念和原理。
全等三角形常见辅助线作法【知识导图】思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是 全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线, 构造全等三角形,利用的思维模式是全等变换中的 “平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长, 是之与特定线段相等, 再利用三角形全等的有关性质加以说明. 这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利 用三角形面积的知识解答.第二部分:例题剖析、倍长中线(线段)造全等概念三边之和大于等于第三边稳定性与三角形有关的线段中线角平分线高三角形内角和定理 三角形与三角形有关的角三角形的外角性质直角三角形判定多边形及其内角和【导学】全等三 角形第一部分:知 识点回顾—常见辅助线的作法 有以下几种:1) 遇到等腰三角形,可作底边 上的高,利用 “三线合一” 的性质解题,精准诊查已知,如图△ABC 中,AB=5, AC=3,贝忡线AD 的取值范围是 E 、F 分别在 AB AC 上, DEL DF , D 是中点,试比较 BE+CF 与 EF 的大小.例1、( “希望杯”试题) 例2、如图,△ ABC 中, 例3、如图,△ ABC 中, BD=DC=AC E 是DC 的中点,求证: AD 平分/ BAE.二、截长补短 1、如图, 2、如图, ABC 中,AB=2AC AD 平分 BAC ,且 AD=BD 求证:CD L A(B AC// BD,EA,EB 分别平分/ CAB,/ DBA CD 过点 E ,求证;AB = AC B已知在VABC 内, BAC 60 , C求证P B > P A .例2如图,在厶ABC 的边上取两点 D 、E ,且BD=CE 求证:AB+AC>AD+AE. 四、借助角平分线造全等1、如图,已知在△ ABC 中,/ B=60°, △ ABC 的角平分线 AD,CE 相交于点O,求证:OE=OD2、如图,△ ABC 中,AD 平分/ BAC DGL BC 且平分 BC, DE! AB 于 E, DF L AC 于 F.(1)说明 BE=CF 的理由;(2)如果 AB=a , AC=b ,求 AE 、 BE 的长.五、旋转例1正方形ABCD 中 , E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF / EAF 的度数.FC如图,340° , P , Q例1 ADABC 的角平分线,直线MN L AD 于为MN 上一点,△ ABC 周长记为P A , △ EBC 周长记为F B .求例2如图,ABC是边长为3的等边三角形,BDC是等腰三角形,且BDC 1200,以D为顶点做一个600角,使其两边分别交AB于点M,交AC于点N,连接MN贝U AMN的周长为_________________ 例3设点E、F分别在正方形ABCD的边BC CD上滑动且保持/ EAF=4f,AP± EF 于点P,(1) 求证:AP=AB ( 2)若AB=5,求厶ECF的周长。
全等三角形判定(考试重点)姓名: 班级: 分数: 1.已知AC =BD ,AE =CF ,BE =DF ,证明:AE ∥CF 。
2、已知在四边形ABCD 中,AB =CD ,AD =CB ,证明:AB ∥CD 。
3、已知CD ∥AB ,DF ∥EB ,DF =EB ,证明:AF =CE 。
4、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,证明:BM =ME 。
ACBDEFBADC EF BAC M EFBD5、点C 是AB 的中点,CD ∥BE ,且CD =BE ,证明:∠D =∠E 。
6、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,证明:⊿BHD ≌⊿ACD 。
7已知AD =AE ,∠B =∠C ,证明:AC =AB 。
8、已知CE ⊥AB ,DF ⊥AB ,CE =DF ,AE =BF ,证明:⊿CEB ≌⊿DF A 。
ABCE HD ADEBCBACDEFD A ECB 129、如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。
求证:MN=AM+BN 。
10、已知,AC ⊥CE ,AC =CE , ∠ABC =∠DEC =900,求证:BD =AB +ED 。
11、已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证:BE =CF 。
12、已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证:ABD ≌⊿ACE 。
NMCBAABCDEABCD FEADEBC12【知识点梳理】知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质.(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法.(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边. ④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.。
第五讲全等三角形的判定(培优)
考试目标解读
本讲知识归纳
1.一般三角形全等的判定方法有SSS、SAS、ASA、AAS四种;
2.直角三角形的全等,除了上述四种判定方法外,还有独有的一种判定方法:斜边和一条直角边对应相等的两个直角三角形全等(简称“斜边、直角边”或“H L”).
基础回顾
例1 如图,△ABC中,D是BC上一点,DE⊥AB于E,DF⊥AC于F,且AE=AF.连接EF。
求证:AD垂直平分EF.
例2如图,△ABC的高BD、CE相交于O,且OD=OE.求证:AB=AC.
练习
1.如图,已知AD⊥BD,AE⊥EC,AD=AE,AB=AC,BD、CE交于点0.
求证:(1)BD=CE; (2)OE=OD; (3)BE=CD.
2. 如图,AD、BE是△ABC的两条高,它们交于点F,且BF=AC,CD=DF,ED平分∠BEC.
求证:∠ABE=∠ADE.
方法运用
例3 如图,正方形ABCD中,E和F分别是边BC和CD上的点,AG⊥EF于G,若∠EAF=45°,求证:AG=AD.
例4 如图,△ABC是边长为1的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形.以D为顶点作一个60°角,角的两边分别交AB、AC于M、N,连接MN,试求△AMN的周长.
练习
3.已知△ACB为等腰直角三角形,点P在AC上,连BP,过B点作BE⊥BP,BE=PB.连AE交BC于F.
(1)如图(1),问PA与CF有何数量关系,并证明;
(2)如图(2),若点P在CA的延长线上,问上结论是否仍成立,画图证明.
图(1) 图(2)
问题探究
例5 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么,在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,试证明它们全等.
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.
例6如图,已知A(-2,0).
(1)如图①,以A为顶点,AB为腰在第三象限作等腰Rt△ABC,若B(0,-4),求C点坐标;
(2)如图②,P为y轴负半轴上一个动点,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E
点.当P点沿y轴负半轴向下运动时,试问OP-DE的值是否发生变化?若不变,求其值;若变化,请说明理由.
(3)如图③,已知F点坐标为(-4,-4),G是y轴负半轴上一点,以FG为直角边作等腰Rt△FGH,H
点在x轴上,∠GFH=90°.设G(O,m),H(n,O),当G点在y轴负半轴上沿负方向运动时,m+n 的值是否变化?若不变,求其值;若变化,说明理由.
图①图② 图③
练习
4.如图,△ABC是等边三角形,△BDC是顶角∠BDC =120°的等腰三角形,∠MDN=60°,点M在AB的延长线上,点N在CA的延长线上,连接MN.试探求线段BM、MN、CN之间的数量关系,并予以证明.
5.如图,AC⊥CB,AD为△ABC的中线,CG为高,DE⊥AD,BC=2AC.
求证:AD=DF+DE.
6.如图,等腰Rt△ABC中,∠BAC= 90°,AB=AC,已知A(O,2)、C(5,0).
(1)如图①,求点B的坐标;
(2)如图②,BF在△ABC的内部且过B点的任意一条射线,过A作AM⊥BF于M,过C作CN ⊥BF于N点,
写出BN-NC与AM之间的数量关系,并证明你的结论.
图①图②。