安徽省六安市舒城中学2018年高二理科数学下册暑假作业题2
- 格式:doc
- 大小:285.50 KB
- 文档页数:5
2017-2018学年安徽省六安市舒城中学高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A、B是两个集合,定义A﹣B={x|x∈A,且x∉B},若M={x||x+1|≤2},N={x|x=|sinα|,α∈R},则M﹣N=()A.[﹣3,1] B.[﹣3,0)C.[0,1]D.[﹣3,0]2.设复数z满足,则|z|=()A.B.C.D.3.不等式log3(2x﹣3)>log3(x﹣2)成立的一个充分不必要条件是()A.x>2 B.x>4 C.1<x<2 D.x>14.若某程序框图如图所示,则该程序运行后输出的值是()A.2 B.3 C.4 D.55.某三棱锥的三视图如图所示,则该三棱锥的外接球的表面积是()A.2πB.4πC.πD.5π6.每逢节假日,在微信好友群发红包逐渐成为一种时尚.某女士每月发红包的个数y(个)与月收入x(千元)具有线性相关关系,用最小二乘法建立回归方程为=8.9x+0.3,则下列说法不正确的是()A.y与x具有正线性相关关系B.回归直线必过点(,)C.该女士月收入增加1000元,则其发红包的数量约增加9个D.该女士月收入为3000元,则可断定其发红包的数量为27个7.已知数列{a n}的前n为S n满足S n=a n,且a2≠0,则等于()A.B.C.2015 D.20168.如图所示,A,B,C是圆O上的三个点,CO的延长线与线段AB交于圆内一点D,若,则()A.0<x+y<1 B.x+y>1 C.x+y<﹣1 D.﹣1<x+y<09.已知函数f(x)=,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•x3•x4的取值范围是()A.(7,)B.(21,)C.[27,30)D.(27,)10.已知点A是抛物线y=的对称轴与准线的交点,点B为该抛物线的焦点,点P在该抛物线上且满足|PB|=m|PA|,当m取最小值时,点P恰好在以A,B为焦点的双曲线上,则该双曲线的离心率为()A.B.C.D.11.在平面区域{(x,y)||x|≤2,|y|≤2}上恒有ax+3by≤4,则动点P(a,b)所形成的平面区域的面积是()A.B.C.1 D.12.已知函数f(x)=(b∈R).若存在x∈[,2],使得f(x)+xf′(x)>0,则实数b的取值范围是()A.(﹣∞,)B.(﹣∞,)C.(﹣∞,3)D.(﹣∞,)二、填空题(本大题共4小题,每题5分,满分20分.)13.:“所有正数的平方都不大于0”的否定_______.14.在(x+)15的展开式中,系数是有理数的项共有_______项.15.x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则的最小值为_______.16.定义在(﹣1,1)上的函数f(x)满足:f(x)﹣f(y)=f(),当x∈(﹣1,0)时,有f(x)>0,且f(﹣)=1.设m=f()+f()+…+f()n≥2,n ∈N*,则实数m与﹣1的大小关系是_______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A、B、C的对边长分别为a、b、c,已知函数满足:对于任意x∈R,f(x)≤f(A))恒成立.(1)求角A的大小;(2)若,求BC边上的中线AM长的取值范围.18.在三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且AF=AB.(Ⅰ)求证:EF∥平面BDC1;(Ⅱ)求二面角E﹣BC1﹣D的余弦值.19.甲、乙两位同学从A、B、C、D…共n(n≥2,n∈N+)所高校中,任选两所参加自主招生考试(并且只能选两所高校),但同学甲特别喜欢A高校,他除选A高校外,再在余下的n﹣1所中随机选1所;同学乙对n所高校没有偏爱,在n所高校中随机选2所.若甲同学未选中D高校且乙选中D高校的概率为.(1)求自主招生的高校数n;(2)记X为甲、乙两名同学中未参加D高校自主招生考试的人数,求X的分布列和数学期望.20.已知F1,F2分别为椭圆C1:=1的上、下焦点,F1是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=(1)求椭圆C1的方程;(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t),kt≠0交椭圆C1于A,B,若椭圆C1上一点P满足+=λ,求实数λ的取值范围.21.已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.(1)求证:AC•BC=AD•AE;(2)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.23.在直角坐标系xOy中,直线l的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为ρ=﹣4cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|•|MB|的值.24.已知f(x)=|ax﹣1|+|ax﹣3a|(a>0).(1)当a=1时,求不等式f(x)≥5的解集;(2)若不等式f(x)≥5的解集为R,求实数a的取值范围.2016年安徽省六安市舒城中学高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A、B是两个集合,定义A﹣B={x|x∈A,且x∉B},若M={x||x+1|≤2},N={x|x=|sinα|,α∈R},则M﹣N=()A.[﹣3,1] B.[﹣3,0)C.[0,1]D.[﹣3,0]【考点】交、并、补集的混合运算.【分析】先分别求出集合M和集合N,然后根据A﹣B={x|x∈A,且x∉B}的定义进行求解即可.【解答】解:M={x||x+1|≤2}={x|﹣3≤x≤1}N={x|x=|sinα|,α∈R}={x|0≤x≤1}∵A﹣B={x|x∈A,且x∉B},∴M﹣N=[﹣3,0)故选B2.设复数z满足,则|z|=()A.B.C.D.【考点】复数求模.【分析】化简,求出复数z,再计算|z|的值.【解答】解:∵复数z满足,∴1﹣z=(1+z)i,解得z=;∴z==﹣i,∴|z|=.故选:D.3.不等式log3(2x﹣3)>log3(x﹣2)成立的一个充分不必要条件是()A.x>2 B.x>4 C.1<x<2 D.x>1【考点】必要条件、充分条件与充要条件的判断.【分析】根据log3(2x﹣3)>log3(x﹣2)等价于x>2,要找出它的一个充分不必要条件,只要找出由条件可以推出x>2,反之不成立的条件,即要找出一个是不等式x>2表示的集合的真子集即可【解答】解:∵log3(2x﹣3)>log3(x﹣2),∴,解得x>2,要找出它的一个充分不必要条件,只要找出由条件可以推出x>2,反之不成立的条件,即要找出一个范围比不等式的范围{x|x>2}小的真子集即可,只有B选项合格.故选:B.4.若某程序框图如图所示,则该程序运行后输出的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.【解答】解:当输入的值为n=6时,n不满足上判断框中的条件,n=3,i=2,n不满足下判断框中的条件,n=3,n满足上判断框中的条件,n=4,i=3,n不满足下判断框中的条件,n=4,n不满足上判断框中的条件,n=2,i=4,n满足下面一个判断框中的条件,退出循环,即输出的结果为i=4,故选C.5.某三棱锥的三视图如图所示,则该三棱锥的外接球的表面积是()A.2πB.4πC.πD.5π【考点】由三视图求面积、体积.【分析】几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入球的表面积公式计算即可.【解答】解:由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为1,底面为等腰直角三角形,斜边长为2,如图:∴△ABC的外接圆的圆心为斜边AC的中点D,OD⊥AC,且OD⊂平面SAC,∵SA=1,AC=2,∴SC的中点O为外接球的球心,∴半径R=,∴外接球的表面积S=4π×=5π.故选:D.6.每逢节假日,在微信好友群发红包逐渐成为一种时尚.某女士每月发红包的个数y (个)与月收入x (千元)具有线性相关关系,用最小二乘法建立回归方程为=8.9x +0.3,则下列说法不正确的是( )A .y 与x 具有正线性相关关系B .回归直线必过点(,)C .该女士月收入增加1000元,则其发红包的数量约增加9个D .该女士月收入为3000元,则可断定其发红包的数量为27个 【考点】线性回归方程.【分析】根据回归方程为=8.9x +0.3,8.9>0,可知A ,B ,C 均正确,对于D 回归方程只能进行预测,但不可断定.【解答】解:对于A ,8.9>0,所以y 与x 具有正的线性相关关系,故正确;对于B ,回归直线过样本点的中心(,),故正确;对于C ,∵回归方程为=8.9x +0.3,∴该女士月收入增加1000元,则其发红包的数量约增加9个,故正确;对于D ,x=3000时,y=8.9×3+0.3=27,但这是预测值,不可断定其发红包的数量为27个,故不正确. 故选D .7.已知数列{a n }的前n 为S n 满足S n =a n ,且a 2≠0,则等于( )A .B .C .2015D .2016【考点】等差数列的前n 项和.【分析】S n =a n ,可得:n=2时,a 1+a 2=a 2,解得a 1=0.n ≥2时,a n =S n ﹣S n ﹣1,化为:=,利用“累乘求积”可得a n .即可得出.【解答】解:∵S n =a n ,∴n=2时,a 1+a 2=a 2,解得a 1=0.n ≥2时,a n =S n ﹣S n ﹣1=a n ﹣a n ﹣1,化为:=,∴a n =•…••a 2=•…•••a 2=(n ﹣1)a 2,∴===.故选:B.8.如图所示,A,B,C是圆O上的三个点,CO的延长线与线段AB交于圆内一点D,若,则()A.0<x+y<1 B.x+y>1 C.x+y<﹣1 D.﹣1<x+y<0【考点】向量的加法及其几何意义.【分析】如图所示由=,可得x<0 y<0,故x+y<0,故排除A、B.再由=x2+y2+2xy•,得1=x2+y2+2xy•cos∠AOB.当∠AOB=120°时,由(x+y)2=1+3xy>1,可得x+y<﹣1,从而得出结论.【解答】解:如图所示:∵=,∴x<0,y<0,故x+y<0,故排除A、B.∵|OC|=|OB|=|OA|,∴=x2+y2+2xy•,∴1=x2+y2+2xy•cos∠AOB.当∠AOB=120°时,x2+y2﹣xy=1,即(x+y)2﹣3xy=1,即(x+y)2=1+3xy>1,故x+y<﹣1,故选C.9.已知函数f(x)=,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•x3•x4的取值范围是()A.(7,)B.(21,)C.[27,30)D.(27,)【考点】函数的值.【分析】画出分段函数的图象,求得(3,1),(9,1),令f(x l)=f(x2)=f(x3)=f(x4)=a,作出直线y=a,通过图象观察,可得a的范围,运用对数的运算性质和余弦函数的对称性,可得x1x2=1,x3+x4=12,再由二次函数在(3,4.5)递增,即可得到所求范围.【解答】解:画出函数f(x)的图象,令f(x l)=f(x2)=f(x3)=f(x4)=a,作出直线y=a,由x=3时,f(3)=﹣cosπ=1;x=9时,f(9)=﹣cos3π=1.由图象可得,当0<a<1时,直线和曲线y=f(x)有四个交点.由图象可得0<x1<1<x2<3<x3<4.5,7.5<x4<9,则|log3x1|=|log3x2|,即为﹣log3x1=log3x2,可得x1x2=1,由y=﹣cos(x)的图象关于直线x=6对称,可得x3+x4=12,则x1•x2•x3•x4=x3(12﹣x3)=﹣(x3﹣6)2+36在(3,4.5)递增,即有x1•x2•x3•x4∈(27,).故选:D.10.已知点A是抛物线y=的对称轴与准线的交点,点B为该抛物线的焦点,点P在该抛物线上且满足|PB|=m|PA|,当m取最小值时,点P恰好在以A,B为焦点的双曲线上,则该双曲线的离心率为()A.B.C.D.【考点】抛物线的简单性质;双曲线的简单性质.【分析】过P作准线的垂线,垂足为N,则由抛物线的定义,结合||PB|=m|PA|,可得=m,设PA的倾斜角为α,则当m取得最小值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可求得双曲线的离心率.【解答】解:过P作准线的垂线,垂足为N,则由抛物线的定义可得|PN|=|PB|,∵|PB|=m|PA|,∴|PN|=m|PA|,则=m,设PA的倾斜角为α,则sinα=m,当m取得最小值时,sinα最小,此时直线PA与抛物线相切,设直线PA的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,1),∴双曲线的实轴长为|PA|﹣|PB|=2(﹣1),∴双曲线的离心率为=+1.故选:C.11.在平面区域{(x,y)||x|≤2,|y|≤2}上恒有ax+3by≤4,则动点P(a,b)所形成的平面区域的面积是()A.B.C.1 D.【考点】简单线性规划的应用.【分析】欲求平面区域的面积,先要确定关于a,b的约束条件,根据恒有ax+3by≤4成立,a≥0,b≥0,确定出ax+3by的最值取到的位置从而确定关于a,b约束条件.【解答】解:平面区域{(x,y)||x|≤2,|y|≤2},如图:当a≥0,b≥0t=ax+3by最大值在区域的右上取得,即一定在点(2,2)取得,∴2a+6b≤4,作出:的可行域如图蓝色的三角形的区域,∴以a,b为坐标点P(a,b)所形成的平面区域是一个三角形,面积为:=.由a≤0,b≥0;a≤0,b≤0;a≥0,b≤0;三种情况可知可行域类似a≥0,b≥0的情况,分别为红色三角形区域;黑色三角形区域;黄色三角形区域;以a,b为坐标点P(a,b)所形成的平面区域的面积是:4×=故选:D.12.已知函数f(x)=(b∈R).若存在x∈[,2],使得f(x)+xf′(x)>0,则实数b的取值范围是()A.(﹣∞,)B.(﹣∞,)C.(﹣∞,3)D.(﹣∞,)【考点】导数的运算.【分析】求导函数,确定函数的单调性,进而可得函数的最大值,故可求实数a的取值范围.【解答】解:∵f(x)=f(x)=,x>0,∴f′(x)==,∴f(x)+xf′(x)=﹣=,∵存在x∈[,2],使得f(x)+xf′(x)>0,∴1+2x(x﹣b)>0∴b<x+,设g(x)=x+,∴b<g(x)max,∴g′(x)=1﹣=,当g′(x)=0时,解的x=,当g′(x)>0时,即<x≤2时,函数单调递增,当g′(x)<0时,即≤x<2时,函数单调递减,∴当x=2时,函数g(x)取最大值,最大值为g(2)=2+=∴b<,故选:B.二、填空题(本大题共4小题,每题5分,满分20分.)13.:“所有正数的平方都不大于0”的否定存在正数的平方大于0.【考点】的否定.【分析】直接利用全称的否定是特称写出结果即可.【解答】解:因为全称的否定是特称,所以:“所有正数的平方都不大于0”的否定:存在正数的平方大于0.故答案为:存在正数的平方大于0.14.在(x+)15的展开式中,系数是有理数的项共有2项.【考点】二项式系数的性质.【分析】(x+)15的展开式中,通项公式T r+1=.(0≤r≤15,r∈N).令k=,对r取值即可得出结论.【解答】解:(x+)15的展开式中,通项公式T r+1==.(0≤r≤15,r∈N).令k=,则只有r=1,5时,k=3,0为自然数.系数是有理数的项共有2项.故答案为:2.15.x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则的最小值为.【考点】函数的最值及其几何意义.【分析】先将圆的方程配方得出圆心坐标与半径,根据x2+y2+2ax+a4﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,得出两圆外切,圆心距等于两半径之和,得出a,b的关系式;a2+4b2=25,再利用基本不等式即可求得的最小值.【解答】解:∵x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,∴两圆外切,∴圆心距等于两半径之和,即得:a2+4b2=9,∴=(5++)≥(5+4)=1当且仅当a=2b时取等号,则的最小值为1故答案为:116.定义在(﹣1,1)上的函数f(x)满足:f(x)﹣f(y)=f(),当x∈(﹣1,0)时,有f(x)>0,且f(﹣)=1.设m=f()+f()+…+f()n≥2,n∈N*,则实数m与﹣1的大小关系是m>﹣1.【考点】抽象函数及其应用;函数的值.【分析】化简可得f(x)在(﹣1,1)为奇函数,单调减函数且在(﹣1,0)时,f(x)>0,从而可得f()=﹣1,且f()=f()=f()﹣f(),从而利用裂项求和法求得.【解答】解:∵函数f(x)满足,令x=y=0得f(0)=0;令x=0得﹣f(y)=f(﹣y).∴f(x)在(﹣1,1)为奇函数,单调减函数且在(﹣1,0)时,f(x)>0,则在(0,1)时f(x)<0.又f()=﹣1,∵f()=f()=f()﹣f(),∴m=f()+f()+…+f()=[f()﹣f()]+[f()﹣f()]+…+[f()﹣f()]=f()﹣f()=﹣1﹣f()>﹣1,故答案为:m>﹣1.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A、B、C的对边长分别为a、b、c,已知函数满足:对于任意x∈R,f(x)≤f(A))恒成立.(1)求角A的大小;(2)若,求BC边上的中线AM长的取值范围.【考点】余弦定理的应用;三角函数的最值.【分析】(1)由题意可得f(A)为函数f(x)的最大值,即=1,由此求得角A 的值.(2)利用余弦定理可得AM2=﹣+,3=b2+c2﹣bc,从而得到3<b2+c2≤6,由此求得BC边上的中线AM长的取值范围.【解答】解:(1)由题意可得f(A)为函数f(x)的最大值,即=1,∴A=.(2)若,则BM=,△ABM中,由余弦定理可得c2=+AM2﹣2×cos∠AMB ①.在△ACM中,由余弦定理可得b2=+AM2﹣2×cos∠AMC=+AM2+2×cos∠AMB ②.把①、②相加可得AM2=﹣.△ABC中,再由余弦定理可得3=b2+c2﹣2bc•cosA=b2+c2﹣bc,故有b2+c2=3+bc>3,且b2+c2﹣bc=3≥b2+c2﹣,化简可得3<b2+c2≤6,∴AM∈(,].18.在三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且AF=AB.(Ⅰ)求证:EF∥平面BDC1;(Ⅱ)求二面角E﹣BC1﹣D的余弦值.【考点】用空间向量求平面间的夹角;直线与平面平行的判定.【分析】(Ⅰ)利用直线和平面平行的判定定理,只需要证明EF∥BD,即可证明EF∥平面BDC1;(Ⅱ)建立空间直角坐标系,利用空间向量法求二面角的大小.【解答】解:(Ⅰ)证明:取AB的中点M,∵AF=AB.∴F为AM的中点,又∵E为AA1的中点,∴EF∥A1M,在三棱柱ABC﹣A1B1C1中,D,E分别为A1B1、AA1的中点,∴A1D∥BM,且A1D=BM,则四边形A1DBM为平行四边形,∴A1M∥BD,∴EF∥BD,又∵BD⊂平面BC1D,EF⊄平面BC1D,∴EF∥平面BC1D.(Ⅱ)连接DM,分别以MB,MC,MD所在直线为x轴、y轴、z轴,建立如图空间直角坐标系,则B(1,0,0),E(﹣1,0,1),D(0,0,2),C1(0,),∴=(﹣1,0,2),=(﹣2,0,1),=(﹣1,).设面BC1D的一个法向量为,面BC1E的一个法向量为,则由,得,取,又由,得,取,则,故二面角E﹣BC1﹣D的余弦值为.19.甲、乙两位同学从A、B、C、D…共n(n≥2,n∈N+)所高校中,任选两所参加自主招生考试(并且只能选两所高校),但同学甲特别喜欢A高校,他除选A高校外,再在余下的n﹣1所中随机选1所;同学乙对n所高校没有偏爱,在n所高校中随机选2所.若甲同学未选中D高校且乙选中D高校的概率为.(1)求自主招生的高校数n;(2)记X为甲、乙两名同学中未参加D高校自主招生考试的人数,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差.【分析】(1)由已知得甲同学选中D高校的概率为,乙同学选中D高校的概率p2==,甲同学未选中D高校且乙同学选取中D高校的概率为p=(1﹣p1)p2=(1﹣)×=,由此能求出自主招生的高校数n.(2)X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由已知得甲同学选中D高校的概率为,乙同学选中D高校的概率p2==,∴甲同学未选中D高校且乙同学选取中D高校的概率为:p=(1﹣p1)p2=(1﹣)×=,整理,得﹣23n+40=0,∵n≥2,n∈N*,解得n=5,故自主招生的高校数为5所.(2)X的所有可能取值为0,1,2,P(X=0)==,P(X=1)=,P(X=2)=,XEX==.20.已知F1,F2分别为椭圆C1:=1的上、下焦点,F1是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=(1)求椭圆C1的方程;(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t),kt≠0交椭圆C1于A,B,若椭圆C1上一点P满足+=λ,求实数λ的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的简单性质.【分析】(1)利用抛物线的方程和定义即可求出点M的坐标,再利用椭圆的定义即可求出;(2)根据直线与圆相切则圆心到直线距离等于半径,可得k=,联立直线与椭圆方程,结合椭圆上一点P满足+=λ,可得到λ2的表达式,进而求出实数λ的取值范围.【解答】解:(Ⅰ)由题知F1(0,1),所以a2﹣b2=1,又由抛物线定义可知MF1=y M+1=,得y M=,于是易知M(﹣,),从而MF1==,由椭圆定义知2a=MF1+MF2=4,得a=2,故b2=3,从而椭圆的方程为+=1;(Ⅱ)设A(x1,y1),B(x2,y2),P(x0,y0),则由+=λ知,x1+x2=λx0,y1+y2=λy0,且+=1,①又直线l:y=k(x+t),kt≠0与圆x2+(y+1)2=1相切,所以有=1,由k≠0,可得k=(t≠±1,t≠0)②又联立消去y得(4+3k2)x2+6k2tx+3k2t2﹣12=0,且△>0恒成立,且x1+x2=﹣,x1x2=,所以y1+y2=k(x1+x2)+2kt=,所以得P(,),代入①式得+=1,所以λ2=,又将②式代入得,λ2=,t≠0,t≠±1,易知()2++1>1,且()2++1≠3,所以λ2∈(0,)∪(,4),所以λ的取值范围为{λ|﹣2<λ<2且λ≠0,且λ≠±}.21.已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)若a=,求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.【解答】解:(1)若a=,f(x)=(x2+bx+1)e﹣x,则f′(x)=(2x+b)e﹣x﹣(x2+bx+1)e﹣x=﹣[x2+(b﹣2)x+1﹣b]e﹣x=﹣(x﹣1)[x﹣(1﹣b)]e﹣x,由f′(x)=0得﹣(x﹣1)[x﹣(1﹣b)]=0,即x=1或x=1﹣b,①若1﹣b=1,即b=0时,f′(x)=﹣(x﹣1)2e﹣x≤0,此时函数单调递减,单调递减区间为(﹣∞,+∞).②若1﹣b>1,即b<0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x﹣1)[x﹣(1﹣b)]<0,即1<x<1﹣b,此时函数单调递增,单调递增区间为(1,1﹣b),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1,或x >1﹣b,此时函数单调递减,单调递减区间为(﹣∞,1),(1﹣b,+∞),③若1﹣b<1,即b>0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x﹣1)[x﹣(1﹣b)]<0,即1﹣b<x<1,此时函数单调递增,单调递增区间为(1﹣b,1),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1﹣b,或x>1,此时函数单调递减,单调递减区间为(﹣∞,1﹣b),(1,+∞).(2)若f(1)=1,则f(1)=(2a+b+1)e﹣1=1,即2a+b+1=e,则b=e﹣1﹣2a,若方程f(x)=1在(0,1)内有解,即方程f(x)=(2ax2+bx+1)e﹣x=1在(0,1)内有解,即2ax2+bx+1=e x在(0,1)内有解,即e x﹣2ax2﹣bx﹣1=0,设g(x)=e x﹣2ax2﹣bx﹣1,则g(x)在(0,1)内有零点,设x0是g(x)在(0,1)内的一个零点,则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,设h(x)=g′(x),则h(x)在(0,x0)和(x0,1)上存在零点,即h(x)在(0,1)上至少有两个零点,g′(x)=e x﹣4ax﹣b,h′(x)=e x﹣4a,当a≤时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,当a≥时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,当<a<时,令h′(x)=0,得x=ln(4a)∈(0,1),则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,h(ln(4a))=4a﹣4aln(4a)﹣b=6a﹣4aln(4a)+1﹣e,<a<,设φ(x)=x﹣xlnx+1﹣x,(1<x<e),则φ′(x)=﹣lnx,令φ′(x)=﹣lnx=0,得x=,当1<x<时,φ′(x)>0,此时函数φ(x)递增,当<x<e时,φ′(x)<0,此时函数φ(x)递减,则φ(x)max=φ()=+1﹣e<0,则h(ln(4a))<0恒成立,由h(0)=1﹣b=2a﹣e+2>0,h(1)=e﹣4a﹣b>0,得<a<,当<a<时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,在(x1,x2)上递减,在(x2,1)递增,则g(x1)>g(0)=0,g(x2)<g(1)=0,则g(x)在(x1,x2)内有零点,综上,实数a的取值范围是(,).四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.(1)求证:AC•BC=AD•AE;(2)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)首先连接BE,由圆周角定理可得∠C=∠E,又由AD是△ABC的高,AE是△ABC的外接圆的直径,可得∠ADC=∠ABE=90°,则可证得△ADC∽△ABE,然后由相似三角形的对应边成比例,即可证得AC•AB=AD•AE;(Ⅱ)证明△AFC∽△CFB,即可求AC的长.【解答】(Ⅰ)证明:连接BE,∵AD是△ABC的高,AE是△ABC的外接圆的直径,∴∠ADC=∠ABE=90°,∵∠C=∠E,∴△ADC∽△ABE.∴AC:AE=AD:AB,∴AC•AB=AD•AE,又AB=BC…故AC•BC=AD•AE…(Ⅱ)解:∵FC是⊙O的切线,∴FC2=FA•FB…又AF=4,CF=6,从而解得BF=9,AB=BF﹣AF=5…∵∠ACF=∠CBF,∠CFB=∠AFC,∴△AFC∽△CFB…∴…∴…23.在直角坐标系xOy中,直线l的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为ρ=﹣4cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|•|MB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)圆C的极坐标方程为ρ=﹣4cosθ,即ρ2=﹣4ρcosθ,由极坐标与直角坐标互化公式得圆的直角坐标方程.(2)直线l的普通方程为y=x+3,点M在直线l上,过点M的直线l的参数方程为,代入圆方程得:.利用一元二次方程的根与系数的关系、参数的几何意义即可得出.【解答】解:(1)圆C的极坐标方程为ρ=﹣4cosθ,即ρ2=﹣4ρcosθ,由极坐标与直角坐标互化公式得圆的直角坐标方程式为(x+2)2+y2=4.(2)直线l的普通方程为y=x+3,点M在直线l上,过点M的直线l的参数方程为,代入圆方程得:.设A、B对应的参数方程分别为t1、t2,则,于是|MA|•|MB|=|t1|•|t2|=|t1t2|=3.24.已知f(x)=|ax﹣1|+|ax﹣3a|(a>0).(1)当a=1时,求不等式f(x)≥5的解集;(2)若不等式f(x)≥5的解集为R,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)当a=1时,利用绝对值的几何意义,求不等式f(x)≥5的解集;(2)若不等式f(x)≥5的解集为R,求出f(x)的最小值,即可求实数a的取值范围.【解答】解:(1)当a=1时,,易得f(x)≥5解集为.(2)f(x)=|ax﹣1|+|ax﹣3a|≥|ax﹣1﹣(ax﹣3a)|=|3a﹣1|.∵f(x)≥5解集为R,∴|3a﹣1|≥5恒成立,∵a>0,∴a≥2.2016年9月9日。
第二十三天 圆锥曲线【课标导航】1:圆锥曲线的定义与标准方程的求法; 2:圆锥曲线的几何性质; 3:圆锥曲线的综合问题。
一、选择题1错误!未指定书签。
.已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅u u u u r u u u r u u u r,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线2. 双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45C .255D .4553.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,4.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等5.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12B 3C .1D 36.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A , 分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .26 B .3C .23 D .27.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =u u u r u u u rg ,则k =( )A .12B .2 C .2D .28错误!未指定书签。
.设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为 ( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =二、填空题9错误!未指定书签。
2017-2018学年第 19 天三角函数与解三角形【课标导航】1、三角函数的定义、图像及性质;2、三角恒等变换;3、解三角形 一、选择题1. sin(1920)-的值为( )A .B .12-C D .122. 已知角α的终边经过点P (m,-3),且4cos 5α=-,则m 等于( )A .114-B .114C .4-D .43. 要得到函数sin()3y x π=-的图象,只需将函数sin()6y x π=-的图象( )A.向左平移6π个单位 B 向右平移6π单位 C.向左平移2π个单位 D 向右平移2π个单位4. 已知3sin 25α=(2)2παπ<<,1tan()2αβ-=,则tan()αβ+=( ) A .-2B .-1C .211-D .2115. 已知函数()sin()f x A x ωϕ=+ (0,0,0)A ωϕπ>><<,其导函数'()f x 的部分图像如图所示,则函数f (x )的解析式可能为( )A .1()2sin()24f x x π=+B. 13()4sin()24f x x π=+C. ()2sin()4f x x π=+D. 1()4sin()24f x x π=+6. 在ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫⎝⎛+πB C .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫⎝⎛+πB 7. 在ABC ∆中,角A ,B ,C 所对边分别为a,b,c ,且4524==B c ,,面积2=S ,则b 等于( ) A.2113B.5C.41D.258. 函数2()sin2f x x x =+,函数()cos(2)23(0)6g x m x m m π=--+>,若存在12,[0,]4x x π∈,使得12()()f x g x =成立,则实数m 的取值范围是( )A .(0,1]B .[1,2]C .2[,2]3D .24[,]33二、填空题9. sin163sin 223sin 253sin 313︒︒+︒︒= .10.当0<x <2π时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为 .11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a -b)sinB =asinA -csin C.,且a 2+b 2-6(a+b)+18=0,则AB BC BC CA CA AB ++= .12.已知函数x x x f sin cos )(=,给出下列四个说法:①若)()(21x f x f -=,则21x x -=; ②)(x f 的最小正周期是2π; ③)(x f 在区间]4,4[ππ-上是增函数; ④)(x f 的图象关于直线43π=x 对称.其中正确说法的序号是 . 三、解答题13. 已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(1) 求()f x 的最小正周期;(2) 求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.14.已知错误!未找到引用源。
舒城中学2017——2018学年度第二学期期末考试高二理数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合要求的,请你将符合要求的项的序号填在括号内)1. 设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.【答案】A【解析】为纯虚数,所以,故选A.2. 下列说法中正确的是()①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越弱;②回归直线一定经过样本点的中心;③随机误差满足,其方差的大小用来衡量预报的精确度;④相关指数用来刻画回归的效果,越小,说明模型的拟合效果越好.A. ①②B. ③④C. ①④D. ②③【答案】D【解析】【分析】运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【详解】①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误②回归直线一定经过样本点的中心,故正确③随机误差满足,其方差的大小用来衡量预报的精确度,故正确④相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是②③故选【点睛】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题3. 某校为了解高三学生学习的心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到的号码为18,抽到的40人中,编号落在区间[1,200]的人做试卷A,编号落在[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为()A. 10B. 12C. 18D. 28【答案】B【解析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.4. 某程序框图如图所示,则该程序运行后输出的值是()A. 0B. -1C. -2D. -8【答案】B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出 .本题选择B选项.5. 在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A. 四边形一定为菱形B. 四边形在底面内的投影不一定是正方形C. 四边形所在平面不可能垂直于平面D. 四边形不可能为梯形【答案】D【解析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B,四边形在底面内的投影一定是正方形,故B错误;对于C,当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D6. 已知随机变量满足,,且,若,则()A. ,且B. ,且C. ,且D. ,且【答案】B【解析】分析:求出,,从而,由,得到,,从而,进而得到.详解:随机变量满足,,,,,,解得,,,,,,故选B.点睛:本题主要考查离散型随机变量的分布列、期望公式与方差公式的应用以及作差法比较大小,意在考查学生综合运用所学知识解决问题的能力,计算能力,属于中档题.7. 某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为.考点:三视图.8. 有一个偶数组成的数阵排列如下:2 4 8 14 22 32 …6 10 16 24 34 … …12 18 26 36 … … …20 28 38 … … … …30 40 … … … … …42 … … … … … …… … … … … … …则第20行第4列的数为()A. 546B. 540C. 592D. 598【答案】A【解析】分析:观察数字的分布情况,可知从右上角到左下角的一列数成公差为2的等差数列,想求第20行第4列的数,只需求得23行第一个数再减去即可,进而归纳每一行第一个数的规律即可得出结论.详解:顺着图中直线的方向,从上到下依次成公差为2的等差数列,要想求第20行第4列的数,只需求得23行第一个数再减去即可.观察可知第1行的第1个数为:;第2行第1个数为:;第3行第1个数为:.……第23行第1个数为:.所以第20行第4列的数为.故选A.点睛:此题考查归纳推理,解题的关键是通过观察得出数字的排列规律,是中档题.9. 已知一袋中有标有号码的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.10. 已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.【答案】A【解析】建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11. 已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. 1 D.【答案】B【解析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.12. 已知定义在R上的函数f(x)的导函数为,(为自然对数的底数),且当时,,则()A. f(1)<f(0)B. f(2)>e f(0)C. f(3)>e3f(0)D. f(4)<e4f(0)【答案】C【解析】【分析】构造新函数,求导后结合题意判断其单调性,然后比较大小【详解】令,,时,,则,在上单调递减即,,,,故选【点睛】本题主要考查了利用导数研究函数的单调性以及导数的运算,构造新函数有一定难度,然后运用导数判断其单调性,接着进行赋值来求函数值的大小,有一定难度二、填空题(本大题共4小题,每小题5分,共20分)13. 从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.14. 已知离散型随机变量服从正态分布,且,则__________.【答案】【解析】∵随机变量X服从正态分布,∴μ=2,得对称轴是x=2.∵,∴P(2<ξ<3)==0.468,∴P(1<ξ<3)=0.468=.故答案为:.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.15. 已知展开式中只有第4项的二项式系数最大,则展开式中常数项为_______.【答案】61【解析】分析:根据题设可列出关于的不等式,求出,代入可求展开式中常数项为.详解:的展开式中,只有第4项的二项式系数最大,即最大,,解得,又,则展开式中常数项为.点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式.16. 已知函数,存在,则的最大值为____.【答案】【解析】试题分析:由题意得,,因为存在,,所以,所以令,所以,所以函数在上单调递增,在上单调递减,所以时,函数取得最大值,所以的最大值为.考点:分段函数的性质及利用导数求解函数的最值.【方法点晴】本题主要考查了分段函数的图象与性质、利用导数研究函数的单调性与极值、最值,着重考查了学生分析、解答问题的能力,同时考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,先确定的范围,构造新函数,求解新函数的单调性及其极值、最值,即可求解结论的最大值.三、解答题(本大题共6个小题,共70分)17. 2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.【答案】(1)在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关. (2)【解析】分析:读懂题意,补充列联表,代入公式求出的值,对照表格,得出结论;(2)根据古典概型的特点,采用列举法求出概率。
舒城中学2018—2019学年度第二学期第二次统考高二理数一、单选题(每小题5分,共60分)1.复数,则的共轭复数在复平面内对应的点在( C )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设函数的导函数为,则区间为其定义域的子集,命题时, ”是“在区间上是增函数”的充分不必要条件,命题:“是的零点”是“是的极值点”的充要条件,则下列符合命题中的真命题是( B )A. B. C. D.3.若双曲线的一条渐近线方程为,则该双曲线的离心率是( C )A. B.. D.4.甲、乙、丙、丁四个孩子踢球打碎了玻璃。
甲说:“是丙或丁打碎的。
”乙说:“是丁打碎的。
”丙说:“我没有打碎玻璃。
”丁说:“不是我打碎的。
”他们中只有一人说了谎,请问是( D )打碎了玻璃。
A.甲 B.乙 C.丙 D.丁【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾,假设丙打碎了玻璃,丙、乙说了谎,矛盾,假设丁打碎了玻璃,只有丁说了谎,符合题意,所以是丁打碎了玻璃;故选:D5.已知向量,且,若实数,均为正数,则的最小值是( D )A.24 B. C. D.86.已知点是函数的对称中心,则函数的一个单调区间可以为( A )A.B.C.D.【详解】由题意知,点是函数的对称中心,所以,取,解得,即,令,整理得,令,得,即函数在区间单调递减,故选A.7.AA.B.C.D.【详解】,令,两边平方得,则有,所以,函数上的图象是圆的上半部分,所以,.所以,,故选A.8.一个几何体的三视图如图所示,该几何体的体积为( B )A.B.C.D.【详解】根据几何体的三视图得该几何体是四棱锥M-PSQN且四棱锥是棱长为2的正方体的一部分,直观图如图所示,由正方体的性质得,所以该四棱锥的体积为:,故B正确.三棱柱三棱锥9.将正奇数数列依次按两项、三项分组,得到分组序列如下:,称 为第1组, 为第2组, 依此类推,则原数列中的 位于分组序列中( D ) A .第 组 B .第 组 C .第 组 D .第 组【详解】正奇数数列1,3,5,7,9,的通项公式为 则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中第404组 选D .10.已知()f x 是定义域为()0,+∞的单调函数,若对任意的()0,x ∈+∞,都有()13log 4f f x x ⎡⎤+=⎢⎥⎣⎦,且方程()323694f x x x x a -=-+-+在区间(]0,3上有两解,则实数a 的取值范围是( A )A .05a <≤B .5a <C .05a <<D .5a ≥ 【解析】由题意知必存在唯一的正实数a ,满足()13l o g f x xa +=, ()4f a = ①,∴()13log f a a a += ②,由①②得: 13log 4a a =-,∴413a a -⎛⎫= ⎪⎝⎭,解得3a =.故()133log f x x =-,由方程()323694f x x x x a -=-+-+在区间(]0,3上有两解,即有3213log 694x x x x a =-+-+在区间(]0,3上有两解,由()32694g x x x x a =-+-+,可得()23129g x x x =-+',当13x <<时, ()0g x '<, ()g x 递减;当01x <<时,()0g x '>, ()g x 递增. ()g x 在1x =处取得最大值a , ()04g a =-, ()34g a =-,分别作出13log y x =,和32694y x x x =-+-的图象,可得两图象只有一个交点()1,0,将32694y x x x =-+-的图象向上平移,至经过点()3,1,有两个交点,由()31g =,即41a -=,解得5a =,当05a <≤时,两图象有两个交点,即方程两解.故选A .11.如图,焦点在 轴上的椭圆( )的左、右焦点分别为 , , 是椭圆上位于第一象限内的一点,且直线 与 轴的正半轴交于 点, 的内切圆在边 上的切点为 ,若 ,则该椭圆的离心率为( D )A .B .C .D .【解析】试题分析:如下图所示,设另外两个切点分别为 , ,由题意得, ,设 , ,根据对称性可知, ,∴ ,∴ ,离心率,故选D .12.定义在R 上的函数()f x 满足()()122f x f x +=,当[)0,2x ∈时,()231212,0122,12x x x f x x --⎧-≤<⎪=⎨⎪-≤<⎩,函数()323g x x x m =++,若[)[)4,2,4,2s t ∀∈--∃∈--,不等式()()0f s g t -≥成立,则实数m 的取值范围是( B ) A .(],12-∞- B .(],8-∞ C .(],4-∞- D .31,2⎛⎤-∞ ⎥⎝⎦【解析】试题分析:当[)0,2x ∈时,由单调性可求出12()2f x -≤≤.由()()122f x f x +=有()4(4)f x f x =+,当[)4,2s ∈-时,[)40,2s +∈,故8()2f s -≤<.()323g x x x m =++,2'()363(2)g x x x x x =+=+,故()g x 在[)4,2-为增函数,(4)()(2)g g t g -≤<-,即16()4m g t m -≤<+,由题意有min min ()()f s g t ≥,所以816m -≥-,8m ≤,故选B.二、填空题(每小题5分) 13.复数(i 是虚数单位)的虚部是_______.【答案】-114.不难证明:一个边长为 ,面积为 的正三角形的内切圆半径,由此类比到空间,若一个正四面体的一个面的面积为 ,体积为 ,则其内切球的半径为_____________. 【解析】由题意得,故.将此方法类比到正四面体,设正四面体内切球的半径为 ,则,∴,即内切球的半径为.答案:15.三棱锥 中,侧棱 底面 , , , , ,则该三棱锥的外接球的表面积为___________.【解析】在 中,由余弦定理得, ,∴ .该三棱锥的外接球,即为以 为底面以 为高的直三棱锥的外接球,设 的外接圆半径为 ,则,∴由题意得,球心到 的外接圆圆心的距离 ,故球的半径=.∴该三棱锥的外接球的表面积为.16.定义在R 上的函数 的导函数为 ,若对任意实数x ,有 ,且 为奇函数,则不等式 的解集是______. 【详解】设则又因为对任意实数x ,有所以所以为减函数,因为定义在R上的函数满足为奇函数,由奇函数定义可知=0,即不等式所以,同时除以得,即因为为减函数,所以,即不等式的解集为三、解答题(共6大题,总分70分)17.设命题:实数满足,其中,命题:实数满足.(1)若且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.【详解】解:(1)当时,,,又为真,所以真且真,由,得所以实数的取值范围为(2)因为是的充分不必要条件,所以是的充分不必要条件,又,,所以,解得所以实数的取值范围为18.等差数列中,,。
第十一天 不等式与数学归纳法【课标导航】 1. 不等式2. 归纳法与学归纳法 一、选择题1. 若b a c b a >∈,R 、、,则下列不等式成立的是 ( )(A )b a 11< (B )22b a > (C )1122+>+c bc a(D)||||c b c a >. 2.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为( ) A .)3,0(B.)2,3(C .)4,3(D .)4,2( 3. 若a ,b , c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )(A )3-1 (B) 3+1 (C) 23+2 (D) 23-24 .若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有 ( )(A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M .5.用数学归纳法证明 ,从k 到1k +,左边需要增乘的代数式为 ( ) A.21k +B.2(21)k +C.211k k ++ D.231k k ++ 6. 若命题)(n p 对n=k 成立,则它对2+=k n 也成立,又已知命题)2(p 成立,则下列结论正确的是 ( ) A. )(n p 对所有自然数n 都成立. B. )(n p 对所有正偶数n 成立 C. )(n p 对所有正奇数n 都成立. D. )(n p 对所有大于1的自然数n 成立 7. 已知()f x 是定义域为正整数集的函数,对于定义域内任意的k ,若 ()2f k k ≥成立,则()()211f k k +≥+成立,下列命题成立的是( )A 、若()39f ≥成立,则对于任意1k ≥,均有()2f k k ≥成立;B 、若()416f ≥成立,则对于任意的4k ≥,均有()2f k k <成立;C 、若()749f ≥成立,则对于任意的7k <,均有()2f k k <成立;D 、若()425f =成立,则对于任意的4k ≥,均有()2f k k ≥成立。
2017-2018学年第二十三天 圆锥曲线【课标导航】1:圆锥曲线的定义与标准方程的求法; 2:圆锥曲线的几何性质; 3:圆锥曲线的综合问题。
一、选择题1错误!未指定书签。
.已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线2. 双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45C D 3.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦, B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,4.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等5.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12B .2C .1D 6.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A , 分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .26 B .3C .23 D .27.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12B.2CD .28错误!未指定书签。
.设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为 ( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =二、填空题9错误!未指定书签。
2017-2018学年第二十五天 空间点线面的位置关系【课标导航】1.学会判断空间点线面的位置关系;2.培养空间想象力. 一、选择题1.设l 是直线,a ,β是两个不同的平面 ( )A. 若l ∥a ,l ∥β,则a ∥βB. 若l ∥a ,l ⊥β,则a ⊥βC. 若a ⊥β,l ⊥a ,则l ⊥βD. 若a ⊥β, l ∥a ,则l ⊥β 2.设l ,m 是两条不同的直线,α是一个平面,则下列正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m //,则m α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m //2.已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l3.设n m ,是两条不同的直线,βα,是两个不同的平面,下列中正确的是 ( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5. ,则以该正方体各个面的中心为顶点的凸多面体的体积为 ( )A .3 B . 6C . 3D . 236. 如图所示,正方体1111ABCD A B C D -的棱长为1,BDAC O =,M 是线段1D O 上的动点,过点M 做平面1ACD 的垂线交平面1111A B C D 于点N ,则点N 到点A 距离的最小值为( )第6NMOD1C1B1A1D CBAA B.3C.1D7.四棱锥P-ABCD的底面是矩形,AB=3,AD=P A=2,PD=,∠P AB=60°,则异面直线PC与AD所成的角的余弦值为()A.12B C.32D.8.错误!未指定书签。
安徽省六安市舒城中学2017-2018学年高二数学下学期第二次统考试题理(时间:120分钟满分:150分)一. 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合要求的,请你将符合要求的项的序号填在括号内)1.若复数z满足z1i2i(i为虚数单位),则z=()A. 1B. 2C. 2D. 32.由y1,x=1,x=2,y=0所围成的平面图形的面积为()xA. ln2B. ln2-1C. 1+ln2D. 2ln23.数学归纳法证明成立时,从到左边需增加的乘积因式是()A. B. C. D.4.曲线:在点处的切线方程为()A. B. C. D.5.已知m、n为两不重合直线,α、β是两平面,给出下列命题:①若n//m,m⊥β,则n⊥β;②若n⊥β,α⊥β,则n//α;③若n//α,α⊥β,则n⊥β;④m,n,m//,n//,则//.其中真命题的有()个。
A. 1 B.2 C.3 D.46.已知圆C方程为x y r r,若p:1≤r≤3;q:圆C上至多有3个点到10222直线x3y+30的距离为1,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.过抛物线y24x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|5,则△AOB的面积为- 1 -( )A.5B.5 2C.3 2 17 8D.8.已知 f x是定义在R 上的减函数,其导函数 f 'x满足f ' x1,则下列结论中正确的是 ( )A. fx 0 恒成立B. fx 0C. 当且仅当x ,1,fx 0 D. 当且仅当 x1,,fx 09.正四棱柱 CDAC D 中,1 1 1 1AA 12,则 CD 与平面所成角的正弦值等于DC1( )A .2 3B .3 3C .2 3D .1 3xy2210.过双曲线1(a0,b 0)ab22b的右焦点 F ,作渐近线 y x 的垂线与双曲线左右a两支都相交,则双曲线的离心率 e 的取值范围为 ()A .1 e 2B .1 e 2C . e 2D . e 211.把数列a 的各项按顺序排列成如下的三角形状,n记 A (m ,n )表示第 m 行的第 n 个数,若 A (m ,n )=a,则 m n2014( ) A.122B.123C.124D.12512.已知函数,在区间(0,1)内任取两个实数,,且,若不等式恒成立,则实数的取值范围是()A. (15,B. [15,- 2 -C. (,6)D. (,6二. 填空题(本大题共4小题,每小题5分,共20分.)113..计算1x2dx=_____________.14.记为有限集合的某项指标,已知,,,,运用归纳推理,可猜想出的合理结论是:若,(结果用含的式子表示).1215.已知AB=3,A,B分别在x轴和y轴上运动,O为原点,向量OPOA OB33,则点P的轨迹方程为__________.16.如图,椭圆Cx y (a2),圆22:1a42O:x y a 4222,椭圆C的左、右焦点分别为F F,1,2过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF ||PF |6,则|PM ||PN|的值为.12三、解答题(本大题共6小题,共70分.)17.在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC 平面ABC,SA=SC=23,M、N分别为AB、SB的中点。
第二十二天 直线和圆的方程
【课标导航】1:直线的倾角与斜率的概念; 2:直线平行与垂直的条件; 3:直线与圆的方程;4:直线与圆的位置关系。
. 一、选择题
1. 若方程x+y-6y x ++3k=0仅表示一条直线,则实数k 的取值范围是
( ) A (-∞,3)
B (-∞,0]或k=3 C
k=3
D (- ∞,0)或k=3
2. 在平面直角坐标系中,如果 x 与y 都是整数,就称点),(y x ,为整点,下列命题中正确的个数 ( )
①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果 k 与b 都是无理数,则直线b kx y +=不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点
④直线b kx y +=经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线 A.4
B.3
C.2
D.1
3. 平行四边形ABCD 的一条对角线固定在A(3,-1),C(2,-3)两点,D 点在直线3x-y+1=0上移动,则B 点轨迹所在的方程为
( )
A 3x-y-20=0
B 3x-y-10=0
C
3x-y-9=0
D 3x-y-12=0
4. 入射光线沿直线x-2y+3=0射向直线l : y=x 被直线反射后的光线所
在的方
程是
( )
A x+2y-3=0
B x+2y+3=0
C 2x-y-3=0
D 2x-y+3=0
5、若直线1x
y a b
+=通过点(cos sin )M αα,
,则
( )
A .221a b +≤
B .221a b +≥
C .
2
211
1a b
+≤ D .
2
211
1a b
+≥ 6.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c
的值为
( ) A .8或-2
B .6或-4
C .4或-6
D .2或-8
7.过点(3,1)作圆
22
(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )
A .230x y +-=
B .230x y --=
C .430x y --=
D .430x y +-=
8. 若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=
的距离为则直线l 的倾斜角的取值范围是 ( ) A.[
,
124ππ
] B.[
5,
1212ππ
] C.[,]63
ππ
D.[0,]2
π
二.填空题
9.若直线mx+y+2=0与线段AB 有交点,其中A(-2, 3),B(3,2),则实数m 的取值范围
10.已知方程22220x y kx y k ++++=所表示的圆有最大的面积,则直线
(1)2y k x =-+的倾斜角α=_______________.
11.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,
且两圆在点A 处的切线互相垂直,则线段AB 的长度是
12.设直线系
,对于下列四个命题:
.A .M 中所有直线均经过一个定点 B .存在定点P 不在M 中的任一条直线上 C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上 D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
三.解答题
13、已知n 条直线:,:011=+-C y x l ,:022=+-C y x l …,0=+-n n C y x l :
(其中1C =,n C C C <<< 21)这n 条平行直线中,每相邻两条直线之间的距离顺次为2、3、4 …、n . (1)求n C ;
(2)求0=+-n C y x 与x 轴,y 轴围成的图形的面积;
(3)求01=+--n C y x 与0=+-n C y x 及x 轴,y 轴围成的图形的面积.
14.在平面直角坐标系xoy 中,已知圆
221:(3)(1)4C x y ++-=和圆 222:(4)(5)4C x y -+-=
(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦
长为l 的方程;
(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线12l l 和,它们分别与圆1
C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.
15、已知点列),(n n n b a A 满足:),,(101A 2
2
11n
n n n b a a a ++
=+ ,2
2
1n
n n n b a b b +-
=+.
(1)求过321A A A ,,的圆的方程; (2)判断)(4≥n A n 与(1)中圆的关系.
第二十二天
1-8.D BAC D AAB 9. 4
3m <-或52m > 10.
34
π
11.4 12.B C
13.(1)n C =(2)22(1)4n n S += (3)3n
14 (1) 0y =或7
(4)24
y x =--,
(2)P 在以C 1C 2的中垂线上,且与C 1、C 2等腰直角三角形,利用几何
关系计算可得点P 坐标为313(,)22-或51
(,)22
-。
15(1)221
5()24
x y -+= (2)数学归纳法证明。