黑龙江省大庆市喇中材料——空间几何体的三视图和直观练习
- 格式:doc
- 大小:384.00 KB
- 文档页数:12
直观图的画法与三视图的形成
1. 根据平行投影原理绘制的、用来表示空间图形的平面图形,叫做空间图形的直观图.
2. 将空间图形向三个互相垂直的平面作正投影,并按照一定的布局放在同一平面内构成的图形叫做空间图形的三视图.
画直观图的的规则、步骤
1.建系(画轴):
在空间图形中建立直角坐标系;画直观图时,使x'轴与y'轴成450或1350角(这样的x'o'y'平面表示水平平面),z'轴与x'轴垂直.
2.平行性不变:
在空间图形中互相平行的直线或线段,在直观图中仍然平行.
3.横竖长不变、纵向长减半:
在直观图中,与x'轴、z'轴平行的线段的长度与空间图形中保持不变;与y'轴平行的线段的长度缩短为原空间图形中的一半.
4.擦去辅助线(包括x'y'z'轴)
三视图的对应规律(1)主视图和俯视图
----长对正
(2)主视图和左视图
----高平齐
(3)俯视图和左视图
----宽相等
例1、画出下例几何体的三视图
例2、画出下例几何体的三视图
上部正六棱柱的底面边长为3cm,
高为1.2cm;下部圆柱的底面半径
为0.8cm,高为2cm。
练习3. 画出下面三视图所表示的几何体的直观图
练习4. 画出下面几何体的三视图。
1-2 空间几何体的三视图和直观图同步练习一、选择题1.一条直线在平面上的正投影是( ).A.直线 B.点 C.线段 D.直线或点解析当直线与平面垂直时,其正投影为点,其他位置关系时的正投影均为直线.答案 D2.如图所示图形中,是四棱锥的三视图的是( ).解析A中俯视图为圆不正确;C中正侧视图不是三角形,也不正确;而D中俯视图为三角形,显然不是四棱锥.答案 B3.针对柱、锥、台、球,给出下列命题①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台其中正确的是( ).A.①② B.③ C.③④ D.①③解析①不正确,因为球也是三视图完全相同的几何体;②不正确,因为一个横放在水平位置的圆柱,其正视图和俯视图都是矩形;③正确;④不正确,因为有些四棱台的正视图和侧视图也都是等腰梯形.答案 B4.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).A.①② B.①③ C.①④ D.②④解析①的三个三视图都是正方形;②的正视图与侧视图都是等腰三角形,俯视图是圆及圆心;③的三个视图都不相同;④的正视图与侧视图相同,都是等腰三角形,俯视图为正方形.答案 D5.如图所示,在这4个几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③ C.①④D.②④解析:①正方体的正视图、侧视图、俯视图都是正方形;②圆锥的正视图、侧视图、俯视图依次为:三角形、三角形、圆及圆心;③三棱台的正视图、侧视图、俯视图依次为:梯形、梯形(两梯形不同)、三角形(内外两个三角形,且对应顶点相连);④正四棱锥的正视图、侧视图、俯视图依次为:三角形、三角形、正方形及中心.答案:D6.若某几何体的三视图如图所示,则这个几何体可以是( ).解析A中正视图、俯视图不对,故A错.B中正视图、侧视图不对,故B错.C中侧视图、俯视图不对,故C错,故选D.答案 D二、填空题7.一个图形的投影是一条线段,这个图形不可能是下列图形中的________(填序号).①线段;②直线;③圆;④梯形;⑤长方体.解析②的投影是直线或点,对于③④,当图形所在面与投影面垂直时,其投影为线段,而⑤的投影显然不可能是平面图形.答案②⑤8.如图所示为一个简单组合体的三视图,它的上部是一个________,下部是一个________.解析 这是一个组合体,上部为圆锥.下部为圆柱. 答案 圆锥 圆柱9.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,对角线AC 1在六个面上的投影长度总和是________. 解析 正方体的体对角线在各个面上的投影是正方体各个面上的对角线,因而其长度都是2,所以其和为6 2. 答案 6 210.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的高为________m ,底面面积为________m 2.解析 由三视图可知,该几何体为三棱锥(如图),AC =4,BD =3,高为2.S △ABC =12AC ·BD =12×4×3=6.答案 2 6 三、解答题11.画出如图所示的空间图形的三视图(阴影部分为正面).解 该几何体是在一正方体上面放一个圆台,其三视图如图所示.综合提高 限时25分钟12.说出下列三视图表示的几何体,并画出该几何体.解该三视图表示的几何体是截去一角的正方体.如图所示.选作题如图所示,图(2)是图(1)中实物的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出它的侧视图.解图(1)是由两个长方体组合而成的,正视图正确,俯视图错误.俯视图应该画出不可见轮廓(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如下图所示.。
专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。
空间几何体的三视图和直观练习的值是,则正视图中的1、某几何体的三视图如图所示,且该几何体的体积是3 )(D.3C. A.2 B.3、一空间几何体按比例绘制的三视图如图所示,则该几何体的体积为()m2. D C .. B A.的正三角形,俯视图是一23、如右图,一个空间几何体的正视图和侧视图都是边长为个圆,那么该几何体的体积是。
1起辅ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,4、如图所示,四面体的正视图,左视图,俯视图依次是(用①②③④⑤⑥代表图形)助作用),则四面体ABCD )(.③④⑤ D.④⑤⑥ B.①②③ C.①②⑥A的平行四边形,侧、一个几何体的三视图如图所示,已知正(主)视图是底边长为15的正方形拼成的矩形,的矩形,俯视图为两个边长为1(左)视图是一个长为,宽为1 )则该几何体的体积V是((D)2 (C) (A)1 (B)的等腰4BCED、已知几何体A-的三视图如图所示,其中俯视图和侧视图都是腰长为616.的体积为-直角三角形,正视图为直角梯形,已知几何体ABCED 2(1)求实数a的值;(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.7、某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )8、一只蚂蚁从正方体ABCD﹣ABCD的顶点A处出发,经正方体的表面,按最短路线爬1111行到达顶点C位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()1A.①② B.①③ C.②④ D.③④9、某几何体的三视图如图所示,则它的体积是()3.. C8﹣2πA B. D.10 .、若某几何体的三视图如图所示,则此几何体的体积是、某几何体的三视图如图所示,则该几何体的体积为()1148 .. 12 B 24 C. 30 D. A)、一个几何体的三视图如图所示,则该几何体的体积的是(12 47D C.. B A..、一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是右图.图中圆13 1的正方形.则这个四面体的外接球的表面积是()内有一个以圆心为中心边长为π. 6π 3π C. 4 Dπ A. B.)、如图是一个几何体的三视图,则该几何体体积为(1418 .. 17 D 16 C A . 15 B.则这个几的圆,一个几何体的三视图如图所示,、其中俯视图与侧视图均为半径为215 )何体的表面积是(5. D C. A . B.16、某三棱锥的三视图如图所示) ,则该三棱锥的各个面中,最大的面积是D. C. B.1 A.) 17、某几何体的三视图如图所示,则该几何体的表面积为(240 . D. C220 ..A180 B200)如右图所示,其中侧视图是一个边长为2、某几何体的三视图(单位:18的正三角形,则这个几何体的体积是()D. A.B. C.) 19、已知一个几何体的三视图如图所示,则该几何体的体积为(. D C . BA ..) cm)如图所示,则该几何体的体积是( 20、若某个几何体的三视图(单位:. Dcm . C. A cm . Bcm3333 cm答案D、1 72、A、 3B 、4C 5、6、 (1)由该几何体的三视图知AC⊥平面BCED,且EC=BC=AC=4,BD=a,故该旋转体的表面积为D7、当几何体上、下两部分都是圆柱时,俯视图为A;当上部为正四棱柱,下部为圆柱时,俯视图为B;当几何体的上部为直三棱柱,其底面为直角三角形,下部为正四棱柱时,俯视图为C;无论何种情形,俯视图不可能为D.8、解:由点A经正方体的表面,按最短路线爬行到达顶点C位置,共有6种展开方式,若1和平面BCC展到同一个平面内,把平面ABA11在矩形中连接AC会经过BB的中点,故此时的正视图为②.11 8若把平面ABCD和平面CDDC展到同一个平面内,在矩形中连接AC会经过CD的中点,此时111正视图会是④.其它几种展开方式对应的正视图在题中没有出现或者已在②④中了,故选C9、解:三视图复原的几何体是棱长为:2的正方体,除去一个倒放的圆锥,圆锥的高为:2,底面半径为:1;= ﹣所以几何体的体积是:8故选A.10、解:由图知此几何体为边长为2的正方体裁去一个三棱锥(如右图),=.所以此几何体的体积为:2×故答案为:.11、解:由三视图可知其直观图如下所示,9其由三棱柱截去一个三棱锥所得,V=×4×3×5=30,三棱柱的体积××4×3×3=6三棱锥的体积V,= 1故该几何体的体积为24;故选B.12、解:由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,正方体的棱长为2,故体积为:2×2×2=8,××1×1三棱锥的底面是一个直角边长为1的等腰直角三角形,高为1×,故体积为:1=,=,﹣故几何体的体积V=8A 故选:13、解:由三视图可知:该四面体是正方体的一个内接正四面体.∴此四面体的外接球的直径为正方体的对角线长为.∴此四面体的外接球的表面积为表面积为=3π..故选:B14、解:由题意,在长方体ABCD﹣A′B′C′D′中,由题意可得到所求几何体的几何直观图.由题意可知:多面体ADD′﹣EFC即为所求的几何体.由题意作EM⊥DC于M,则由已知得MC=1,EM=3.FM=3,DM=3.DM ×+V则V=V=S EMFFMEADD三棱柱′﹣三棱锥E△﹣FMC 10.= 故选A.A 15、A 16、D 、17B 18、G2【知识点】利用三视图求几何体的体积解析:由图知几何体的体积为B 19、G2【知识点】柱体、椎体的体积所解析:由几何体的三视图可知原几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,B.,故选以体积为、解:由题意,该几何体是以俯视图为底面,有一条侧棱垂直于底面的三棱锥,20cm=所以V= B故选:.11 3,。
空间几何体的三视图和直观练习
1、某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是()
A.2
B.
C.
D.3
2、一空间几何体按比例绘制的三视图如图所示,则该几何体的体积为
()m3
A. B. C. D.
3、如右图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视图是一个圆,那么该几何体的体积是。
4、如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的正视图,左视图,俯视图依次是(用①②③④⑤⑥代表图形)()
A.①②⑥ B.①②③ C.④⑤⑥ D.③④⑤
5、一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形,则该几何体的体积V是()
(A)1 (B) (C) (D)2
6、已知几何体A-BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A-BCED的体积为16.
(1)求实数a的值;
(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.
7、某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )
8、一只蚂蚁从正方体ABCD﹣A
1B
1
C
1
D
1
的顶点A处出发,经正方体的表面,按
最短路线爬行到达顶点C
1
位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()
A.①② B.①③ C.②④ D.③④
9、某几何体的三视图如图所示,则它的体积是()
A. B. C.8﹣2π D.
10、若某几何体的三视图如图所示,则此几何体的体积是.
11、某几何体的三视图如图所示,则该几何体的体积为()
A. 12 B. 24 C. 30 D. 48
12、一个几何体的三视图如图所示,则该几何体的体积的是()
A. B. C. D. 7
13、一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是右图.图中圆内有一个以圆心为中心边长为1的正方形.则这个四面体的外接球的表面积是()
A.π B. 3π C. 4π D. 6π
14、如图是一个几何体的三视图,则该几何体体积为()
A. 15 B. 16 C. 17 D. 18
15、一个几何体的三视图如图所示,其中俯视图与侧视图均为半径为2的圆,则这个几何体的表面积是()
A. B. C. D.
16、某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是()
A. B.1 C. D.
17、某几何体的三视图如图所示,则该几何体的表面积为()
A.180 B.200 C.220 D.240
18、某几何体的三视图(单位:)如右图所示,其中侧视图是一个边长为2的正三角形,则这个几何体的体积是()
A. B. C. D.
19、已知一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.
20、若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是()
A.cm3 B.cm3 C.cm3 D.cm3
答案
1、D
2、A
3、
4、B
5、C
6、(1)由该几何体的三视图知AC⊥平面BCED,且EC=BC=AC=4,BD=a,
故该旋转体的表面积为
7、 D
当几何体上、下两部分都是圆柱时,俯视图为A;当上部为正四棱柱,下部为圆柱时,俯视图为B;当几何体的上部为直三棱柱,其底面为直角三角形,下部为正四棱柱时,俯视图为C;无论何种情形,俯视图不可能为D.
8、解:由点A经正方体的表面,按最短路线爬行到达顶点C
1
位置,共有6种展
开方式,若把平面ABA
1和平面BCC
1
展到同一个平面内,
在矩形中连接AC
1会经过BB
1
的中点,故此时的正视图为②.
若把平面ABCD和平面CDD
1C
1
展到同一个平面内,在矩形中连接AC
1
会经过CD的
中点,此时正视图会是④.
其它几种展开方式对应的正视图在题中没有出现或者已在②④中了,
故选C
9、解:三视图复原的几何体是棱长为:2的正方体,除去一个倒放的圆锥,圆锥的高为:2,底面半径为:1;
所以几何体的体积是:8﹣=
故选A.
10、解:由图知此几何体为边长为2的正方体裁去一个三棱锥(如右图),
所以此几何体的体积为:2×=.
故答案为:.
11、解:由三视图可知其直观图如下所示,
其由三棱柱截去一个三棱锥所得,
三棱柱的体积V=×4×3×5=30,
=××4×3×3=6,
三棱锥的体积V
1
故该几何体的体积为24;
故选B.
12、解:由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,
正方体的棱长为2,故体积为:2×2×2=8,
三棱锥的底面是一个直角边长为1的等腰直角三角形,高为1,故体积为:××1×1×1=,
故几何体的体积V=8﹣=,
故选:A
13、解:由三视图可知:该四面体是正方体的一个内接正四面体.
∴此四面体的外接球的直径为正方体的对角线长为.
∴此四面体的外接球的表面积为表面积为=3π.
故选:B.
14、解:由题意,在长方体ABCD﹣A′B′C′D′中,由题意可得到所求几何体的几何直观图.
由题意可知:多面体ADD′﹣EFC即为所求的几何体.由题意作EM⊥DC于M,则由已知得MC=1,EM=3.FM=3,DM=3.
则V=V
三棱柱ADD′﹣FME +V
三棱锥E﹣FMC
=S
△EMF
×DM
=.
故选A.
15、A
16、A
17、D
18、B
【知识点】利用三视图求几何体的体积G2 解析:由图知几何体的体积为
19、B
【知识点】柱体、椎体的体积G2
解析:由几何体的三视图可知原几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以体积为,故选B.
20、解:由题意,该几何体是以俯视图为底面,有一条侧棱垂直于底面的三棱锥,
所以V==cm3,
故选:B.。