高考物理总复习题型练习:基础回扣练5万有引力定律及应用
- 格式:doc
- 大小:694.51 KB
- 文档页数:4
训练5 万有引力定律及应用一、单项选择题1.(2012·湖北黄岗等七市4月联考15题)美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒—22b”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于 ( )A .3.3×103m/s B .7.9×103m/s C .1.2×104 m/sD .1.9×104m/s2.(2012·山东理综·15)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v 1v 2等于 ( )A.R 31R 32B. R 2R 1C.R 22R 21 D.R 2R 13.(2012·福建理综·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常数为G ,则这颗行星的质量为( )A.mv 2GN B.mv 4GN C.Nv 2GmD.Nv 4Gm4.(2012·丹东市四校协作体一模16题)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”.该行星的质量是地球的5倍,直径是地球的1.5倍.设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为E k1,在地球表面绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则E k1/E k2为 ( ) A .0.13 B .0.3 C .3.33D .7.55.(2012·陕西师大附中第四次模拟18题)星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的1/6,不计其他星球的影响,则该星球的第二宇宙速度为 ( )A.grB. 16gr C.13gr D.13gr 二、双项选择题6.(2012·海南琼海市第一次模拟第7题)万有引力定律的发现实现了物理学史上的第一次大统一:“地上力学”和“天上力学”的统一.它表明天体运动和地面上物体的运动遵循相同规律.牛顿在发现万有引力定律的过程中将行星的椭圆轨道运动假想成圆周运动;另外,还应用到了其它的规律和结论,其中有 ( )A .欧姆流行的“地心说”B .牛顿第二定律C .牛顿第三定律D .卡文迪许通过扭秤实验得出的引力常量7.(2012·陕西省师大附中等五校第三次模拟17题)我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T .若以R 表示月球的半径,则( )A .卫星运行时的向心加速度为4π2R +hT 2B .物体在月球表面自由下落的加速度为4π2RT2C .卫星运行时的线速度为2πRTD .月球的第一宇宙速度为2πR R +h 3TR8.(2012·河北石家庄市第一次模拟17题)美国国家科学基金会2010年9月29日宣布,天文学家发现一颗迄今为止与地球最类似的行星,该行星绕太阳系外的红矮星Gliese581做匀速圆周运动.这颗行星距离地球约20光年,公转周期约为37天,它的半径大约是地球的1.9倍,表面重力加速度与地球相近.下列说法正确的是 ( )A .该行星的公转角速度比地球大B .该行星的质量约为地球质量的3.61倍C .该行星第一宇宙速度为7.9 km/sD .要在地球上发射航天器到达该星球,发射速度只需达到地球的第二宇宙速度即可9.(2012·浙江嘉兴市质量检测二16题)2011年12月24日,美国宇航局宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、适合居住的行星“开普勒—22b(Kepler —22b)”.该行星距离地球约600光年,体积是地球的2.4倍,质量约是地球的18.5倍.它像地球绕太阳运行一样每290天环绕一恒星运行.由于恒星风的影响,该行星的大气不断被吸引到恒星上.据估计,这颗行星每秒丢失至少10 000 t 物质.已知地球半径为6 400 km ,地球表面的重力加速度为9.8 m/s 2,引力常数G 为6.67×10-11N·m 2·kg -2,则由上述信息( )A .可估算该恒星密度B .可估算该行星密度C .可判断恒星对行星的万有引力减小D .可判断该行星绕恒星运行周期大小不变 三、简答题10.设想宇航员完成了对火星的考察,乘坐返回舱返回绕火星做圆周运动的轨道舱,为了安全,返回舱与轨道舱对接时必须具有相同的速度,已知返回舱返回时需要克服火星的引力做功为W =mgR (1-Rr),返回舱与人的总质量为m ,火星表面的重力加速度为g ,火星的半径为R ,轨道舱中心到火星中心的距离为r ,不计火星表面的空气及火星自转的影响,则宇航员乘坐返回舱从火星表面返回轨道舱至少需要获得多少能量? 11.(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a 的三次方与它的公转周期T 的二次方成正比,即a 3T2=k ,k 是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k 的表达式.已知引力常数为G ,太阳的质量为M 太.(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月地距离为3.84×108m ,月球绕地球运动的周期为2.36×106s ,试计算地球的质量M 地.(G =6.67×10-11N·m 2/kg 2,结果保留一位有效数字)12.(2012·湖北省百校联考14题)宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,其运行周期为T 2,而第四颗星刚好位于三角形的中心不动,试求两种形式下,星体运动的周期之比T 1T 2.答案1.D 2.B 3.B 4.C 5.C 6.BC 7.AD 8.AB 9.BC10.mgR 22r +mgR (1-R r)11.(1)G4π2M 太 (2)6×1024kg12. 6+634+2。
万有引力定律与航天1.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的状况下,须要验证A. 地球吸引月球的力约为地球吸引苹果的力的1/602B. 月球公转的加速度约为苹果落向地面加速度的1/602C. 自由落体在月球表面的加速度约为地球表面的1/6D. 苹果在月球表面受到的引力约为在地球表面的1/60【来源】2024年全国一般高等学校招生统一考试物理(北京卷)【答案】 BD、苹果在月球表面受到引力为:,由于月球本身的半径大小未知,故无法求出苹果在月球表面受到的引力与地球表面引力之间的关系,故选项D错误。
点睛:本题考查万有引力相关学问,驾驭万有引力公式,知道引力与距离的二次方成反比,即可求解。
2.2024年2月,我国500 m口径射电望远镜(天眼)发觉毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms,假设星体为质量匀称分布的球体,已知万有引力常量为。
以周期T稳定自转的星体的密度最小值约为()A. B.C. D.【来源】2024年一般高等学校招生全国统一考试物理(全国II卷)【答案】 C点睛:依据万有引力供应向心力并结合密度公式求解即可。
3.为了探测引力波,“天琴安排”预料放射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。
P与Q的周期之比约为A. 2:1B. 4:1C. 8:1D. 16:1【来源】2024年全国一般高等学校招生统一考试物理(全国III卷)【答案】 C【解析】试题分析本题考查卫星的运动、开普勒定律及其相关的学问点。
解析设地球半径为R,依据题述,地球卫星P的轨道半径为R P=16R,地球卫星Q的轨道半径为R Q=4R,依据开普勒定律,==64,所以P与Q的周期之比为T P∶T Q=8∶1,选项C正确。
点睛此题难度不大,解答此题常见错误是:把题述的卫星轨道半径误认为是卫星距离地面的高度,陷入误区。
高考物理万有引力定律的应用解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=.(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m ′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.4.一颗绕地球做匀速圆周运动的人造卫星,离地高度为h .已知地球半径为R ,地球表面的重力加速度为g ,万有引力常量为G .求: (1)地球的质量;(2)卫星绕地球运动的线速度.【答案】(1) 2gR G(2)g R h +【解析】 【详解】(1)地表的物体受到的万有引力与物体的重力近似相等即:2 GMmmg R= 解得:M =2gR G(2)根据22Mm v G m r r = 其中GgR M 2=,r=R+h解得gv R h=+5.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='6.地球同步卫星,在通讯、导航等方面起到重要作用。
高考物理万有引力定律的应用的技巧及练习题及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.一名宇航员抵达半径为R、密度均匀的某星球表面,做以下实验:用不行伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽视各样阻力.求:(1)星球表面的重力加快度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)(F1 F2)R F1 F2【答案】(1)g6m (3)6m8 GmR【分析】【剖析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mv22mg①l在最低点:F1mv12mg②l由机械能守恒定律,得1mv12mg 2l 1mv22③22由①②③,解得F1 F2 g6m(2)GMmmg R2GMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④M星球密度:⑤V由④⑤,解得F1F2 8 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳索的拉力与重力的协力供给向心力,由牛顿第二定律能够求出重力加快度;万有引力等于重力,等于在星球表面飞翔的卫星的向心力,求出星球的第一宇宙速度;而后由密度公式求出星球的密度.3.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为常量为 G,行星半径为求:r,周期为T,引力(1)行星的质量M;(2)行星表面的重力加快度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【分析】【详解】(1)设宇宙飞船的质量为m,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】1s 2 g0(3)T1s2(1) g星= g0 (2) v04H[1] mg0 4L42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0ts2g0解得v0H L4v2(3)由牛顿定律,在最低点时:T mg星= mL1s2解得:T1mg042( H L)L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.5.在地球大将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体 P 置于弹簧上端,用力压到弹簧形变量为3x0 处后由静止开释,从开释点上涨的最大高度为4.5x0,上涨过程中物体 P 的加快度 a 与弹簧的压缩量 x 间的关系如图中实线所示。
考前基础回扣练五万有引力定律及其应用建议用时20分钟1.关于开普勒对于行星运动规律的认识,下列说法正确的是( )A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.所有行星的轨道半长轴的二次方跟公转周期的三次方的比值都相同D.所有行星的公转周期与行星的轨道半径成正比【解析】选A。
由开普勒第一定律知所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上,选项A正确,B错误;由开普勒第三定律知所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等,选项C、D错误。
2.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的( )A.0.25倍B.0.5倍C.2倍D.4倍【解析】选C。
根据万有引力定律得:宇航员在地球上所受的万有引力F1=,在星球上受的万有引力F2=,所以==×22=2,故C正确。
3.某人造地球卫星在离地面高为h的轨道上飞行,其运动视为匀速圆周运动。
已知地球质量为M,地球半径为R,地球表面的重力加速度为g,引力常量为G。
则卫星的( )A.线速度v=B.角速度ω=C.运行周期T=2πD.向心加速度a=【解析】选B。
根据万有引力提供卫星做圆周运动的向心力=m,r=R+h,得v=,又因为万有引力等于重力=mg,得GM=gR2,所以v=,故A错误;根据ω=,得ω=,故B正确;根据T=,得T=2π,故C错误;根据万有引力提供向心力,=ma,所以a==,故D错误。
4.(多选)假如地球自转速度增大,关于物体的重力,下列说法中正确的是( )A.放在赤道地面上物体的万有引力不变B.放在两极地面上物体的重力不变C.放在赤道地面上物体的重力减小D.放在两极地面上物体的重力增大【解析】选A、B、C。
地球自转角速度增大,物体受到的万有引力不变,选项A正确;在两极,物体受到的万有引力等于其重力,则其重力不变,选项B正确,D错误;而对放在赤道地面上的物体,F万=G+mω2R,由于ω增大,则G减小,选项C正确。
高考物理复习考前基础回扣练五万有引力定律及其应用建议用时20分钟1.下列说法中正确的是( )A.哥白尼首先提出了地球是宇宙中心的所谓“地心说”B.伽利略最早建立了太阳是宇宙中心的所谓“日心说”C.卡文迪许第一个用扭秤实验测量出了静电力常数kD.密立根首先利用油滴实验测得了元电荷e的数值【解析】选D。
哥白尼建立了日心说,太阳是太阳系的中心,不是宇宙的中心,故A错误,B错误;卡文迪许用扭秤实验测出万有引力常量,并把该实验说成是“称量地球的重量”,故C错误;密立根首先利用油滴实验测得了元电荷e的数值,故D正确。
2.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为( )A.0B.C. D.【解析】选B。
“天宫一号”飞船绕地球飞行时与地球之间的万有引力F引=G,由于“天宫一号”飞船绕地球飞行时重力与万有引力相等,即mg=G,故飞船所在处的重力加速度g=G,故B正确,A、C、D错误。
3.(多选)为了对火星及其周围的空间环境进行探测,我国发射了一颗火星探测器“萤火一号”。
假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2。
火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G。
仅利用以上数据,可以计算出( )A.火星的质量B.“萤火一号”的质量C.火星对“萤火一号”的引力D.火星表面的重力加速度【解析】选A、D。
“萤火一号”在两个不同圆轨道上运动时,由万有引力定律和牛顿第二定律得G=m(R+h1),G=m(R+h2),联立以上两式可求得火星的质量和半径,但无法求解“萤火一号”的质量,故A正确,B错误;由于“萤火一号”的质量未知,故无法求解火星对“萤火一号”的引力,故C错误;在火星表面有G=mg,解得g=,故D正确。
4.(多选)“超级地球”是指围绕恒星公转的类地行星,科学家们发现有3颗未知质量的“超级地球”环绕同一颗体积比太阳略小的恒星公转,公转周期分别为4天、10天和20天。
5.万有引力定律及应用1.(多选)(2018·南京市金陵中学模拟)天文社的同学长期观测一颗绕地球做圆周运动的人造卫星,测得其绕行周期是T ,已知地球表面重力加速度为g ,地球半径为R ,由此可以求出( )A .卫星受到的地球的引力B .卫星运动的向心加速度C .卫星运动的机械能D .卫星的轨道离地面的高度答案 BD2.(2018·无锡市高三期末)如图1所示,2017年9月25日至9月28日期间,微信启动新界面,其画面视角从人类起源的非洲(左)变为华夏大地中国(右).新照片由我国新一代静止轨道卫星(同步卫星)“风云四号”拍摄,见证着科学家15年的辛苦和努力.下列说法正确的是( )图1 A .“风云四号”可能经过无锡正上空B .“风云四号”的向心加速度大于月球的向心加速度C .与“风云四号”同轨道的卫星运动的动能都相等D .“风云四号”的运行速度大于7.9 km/s答案 B3.(多选)(2018·南京市、盐城市二模)某试验卫星在地球赤道平面内一圆形轨道上运行,每5天对某城市访问一次(即经过其正上方),下列关于该卫星的描述中正确的是( )A .角速度可能大于地球自转角速度B .线速度可能大于第一宇宙速度C .高度一定小于同步卫星的高度D .向心加速度一定小于地面的重力加速度答案 AD解析 设卫星的周期为T ,地球自转的周期为T 0,则有2πT ×5T 0=2πT 0×5T 0+2π,或者2πT ×5T 0+2π=2πT 0×5T 0,可解得卫星的周期T =56T 0或者T =54T 0,即卫星的角速度可能大于地球自转角速度,也可能小于地球自转角速度,A 正确;由卫星的线速度v =GM r可知,所有卫星的速度小于等于第一宇宙速度,B 错误;卫星的高度越高,周期越大,由A 选项解析可知,卫星的周期可能大于也能小于同步卫星的周期,所以卫星的高度可能大于也可能小于同步卫星的高度,C 错误;根据牛顿第二定律GMm r 2=ma ,向心加速度a =GMr2,卫星的高度高于地面,所以其向心加速度小于地面的重力加速度,D 正确.4.(多选)(2018·苏锡常镇一调)如图2所示,我国自主研发的北斗卫星导航系统由35颗卫星组成,包括分布于a 类型轨道的5颗同步轨道卫星、分布于b 类型轨道的3颗倾斜轨道卫星(与同步卫星轨道半径相同,轨道倾角55°)和分布于c 类型轨道的27颗中轨道卫星(轨道半径小于同步卫星的),中轨道卫星运行在3个互成120°的轨道面上做圆周运动,预计2020年全部建成.下列说法正确的是( )图2A .a 类型轨道上的卫星相对于地面静止且处于平衡状态B .a 类型轨道上的卫星运行速率等于b 类型轨道上的卫星运行速率C .b 类型轨道上的卫星也与地球保持相对静止D .三类卫星相比,c 类卫星的向心加速度最大答案 BD解析 卫星做匀速圆周运动,万有引力提供向心力,不是处于平衡状态,故A 错误;人造地球卫星绕地球做匀速圆周运动,由地球的万有引力提供向心力,则有:G Mm r 2=m v 2r ,解得:v =GM r,由于a 类型轨道上的卫星运行半径等于b 类型轨道上的卫星运行半径,则a 类型轨道上的卫星运行速率等于b 类型轨道上的卫星运行速率,选项B 正确;b 类型卫星不能与地球保持相对静止,只有同步轨道卫星才能与地球保持相对静止,故C 错误;a =GM r2,由题知中轨道卫星c 的轨道半径小于同步卫星a ,半径小的向心加速度大,故D 正确. 5.(多选)某卫星绕地球做匀速圆周运动,周期为T .已知地球半径为R ,地球表面重力加速度为g ,引力常量为G ,假设地球的质量分布均匀,忽略地球自转.以下说法正确的是( )A .卫星运行半径r =3gR 2T 24π2 B .卫星运行半径r =RT 2π3g C .地球平均密度ρ=3g 4πGRD .地球平均密度ρ=3gR 4πG答案 AC解析 由万有引力提供向心力有: G mM r 2=m 4π2T 2r ,G Mm ′R2=m ′g联立解得:r=3gR 2T 24π2,故A 正确,B 错误;地球的质量M =gR 2G, 地球的体积V =4πR 33, 所以地球的密度为ρ=M V =gR 2G 4πR 33=3g 4πGR, 故C 正确,D 错误.6.(多选)如图3所示,2018年5月21日,我国成功发射嫦娥四号任务“鹊桥”中继星,该卫星由地面发射后,进入地月转移轨道,经多次变轨后进入圆形工作轨道Ⅲ,为在月球背面软着陆做准备,下列说法错误的是( )图3 A .卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度大B .卫星在轨道Ⅲ上经过P 点时的加速度比在轨道Ⅰ上经过P 点时的加速度小C .卫星在轨道Ⅲ上运行的周期比在轨道Ⅰ上短D .卫星在轨道Ⅳ上的机械能比在轨道Ⅱ上大答案 ABD7.(2018·江苏省联盟大联考)已知质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-G Mm r ,其中G 为引力常量,M 为地球质量.先从地面赤道某处发射一质量m 0的卫星至离地球表面h 高处的轨道上,使其绕地球做匀速圆周运动,则至少需对卫星做功(忽略地球自转影响,设地球半径为R )( )A .G Mm 0R -G Mm 02(R +h )B .G Mm 0R -G Mm 0R +hC .G Mm 02(R +h )D .G Mm 02R -G Mm 0R +h 答案 A解析 根据万有引力提供向心力:G Mm 0(R +h )2=m 0v 2R +h ,所以卫星的动能:E k =12m 0v 2=GMm 02(R +h ),从地面发射到离地面高h 处,引力势能增加ΔE p =GMm 0R -GMm 0R +h ,根据能量守恒,至少需对卫星做功W =E k +ΔE p =GMm 0R -GMm 02(R +h ),所以A 正确.8.(多选)(2018·泰州中学月考)2016年2月11日,科学家宣布激光干涉引力波天文台(LIGO)探测到由两个黑洞合并产生的引力波信号,这是在爱因斯坦提出引力波概念100周年后,引力波被首次直接观测到.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图4所示,黑洞A、B可视为质点,它们围绕连线上O点做匀速圆周运动,且AO大于BO,不考虑其他天体的影响.下列说法正确的是( )图4A.黑洞A的向心力大于B的向心力B.黑洞A的线速度大于B的线速度C.黑洞A的质量大于B的质量D.两黑洞之间的距离越大,A的周期越大答案BD解析双星靠相互间的万有引力提供向心力,根据牛顿第三定律可知,A对B的作用力与B对A的作用力大小相等,方向相反,则黑洞A的向心力等于B的向心力,故A错误;双星靠相互间的万有引力提供向心力,具有相同的角速度,由题意可知A的半径比较大,根据v=ωr可知,黑洞A的线速度大于B的线速度,故B正确;在匀速转动时的向心力大小关系为:m Aω2r A=m Bω2r B,由于A的半径比较大,所以A的质量小,故C错误,双星系统的周期公式为:T=4π2L3G(m A+m B),所以两黑洞之间的距离越大,A的周期越大,故D正确.。
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL= (2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =3.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.4.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g =2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2Mmmg G R =联立解得6T =; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π,所以100222t T V ===πππωωω--;5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.地球同步卫星,在通讯、导航等方面起到重要作用。
高中物理万有引力定律的应用技巧和方法完整版及练习题及解析一、高中物理精讲专题测试万有引力定律的应用1.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
5.万有引力定律及应用
1.(多选)(2018·南京市金陵中学模拟)天文社的同学长期观测一颗绕地球做圆周运动的人造卫星,测得其绕行周期是T ,已知地球表面重力加速度为g ,地球半径为R ,由此可以求出( ) A .卫星受到的地球的引力 B .卫星运动的向心加速度 C .卫星运动的机械能 D .卫星的轨道离地面的高度
答案 BD
2.(2018·无锡市高三期末)如图1所示,2017年9月25日至9月28日期间,微信启动新界面,其画面视角从人类起源的非洲(左)变为华夏大地中国(右).新照片由我国新一代静止轨道卫星(同步卫星)“风云四号”拍摄,见证着科学家15年的辛苦和努力.下列说法正确的是( )
图1
A .“风云四号”可能经过无锡正上空
B .“风云四号”的向心加速度大于月球的向心加速度
C .与“风云四号”同轨道的卫星运动的动能都相等
D .“风云四号”的运行速度大于7.9 km/s 答案 B
3.(多选)(2018·南京市、盐城市二模)某试验卫星在地球赤道平面内一圆形轨道上运行,每5天对某城市访问一次(即经过其正上方),下列关于该卫星的描述中正确的是( ) A .角速度可能大于地球自转角速度 B .线速度可能大于第一宇宙速度 C .高度一定小于同步卫星的高度 D .向心加速度一定小于地面的重力加速度 答案 AD
解析 设卫星的周期为T ,地球自转的周期为T 0,则有2πT ×5T 0=2πT 0×5T 0+2π,或者2πT
×5T 0
+2π=2πT 0×5T 0,可解得卫星的周期T =56T 0或者T =54T 0,即卫星的角速度可能大于地球自转
角速度,也可能小于地球自转角速度,A 正确;由卫星的线速度v =
GM
r
可知,所有卫星的速度小于等于第一宇宙速度,B 错误;卫星的高度越高,周期越大,由A 选项解析可知,卫
星的周期可能大于也能小于同步卫星的周期,所以卫星的高度可能大于也可能小于同步卫星的高度,C 错误;根据牛顿第二定律
GMm r 2=ma ,向心加速度a =GM
r
2,卫星的高度高于地面,所以其向心加速度小于地面的重力加速度,D 正确.
4.(多选)(2018·苏锡常镇一调)如图2所示,我国自主研发的北斗卫星导航系统由35颗卫星组成,包括分布于a 类型轨道的5颗同步轨道卫星、分布于b 类型轨道的3颗倾斜轨道卫星(与同步卫星轨道半径相同,轨道倾角55°)和分布于c 类型轨道的27颗中轨道卫星(轨道半径小于同步卫星的),中轨道卫星运行在3个互成120°的轨道面上做圆周运动,预计2020年全部建成.下列说法正确的是( )
图2
A .a 类型轨道上的卫星相对于地面静止且处于平衡状态
B .a 类型轨道上的卫星运行速率等于b 类型轨道上的卫星运行速率
C .b 类型轨道上的卫星也与地球保持相对静止
D .三类卫星相比,c 类卫星的向心加速度最大 答案 BD
解析 卫星做匀速圆周运动,万有引力提供向心力,不是处于平衡状态,故A 错误;人造地
球卫星绕地球做匀速圆周运动,由地球的万有引力提供向心力,则有:G Mm r 2=m v 2
r
,解得:v
=
GM
r
,由于a 类型轨道上的卫星运行半径等于b 类型轨道上的卫星运行半径,则a 类型轨道上的卫星运行速率等于b 类型轨道上的卫星运行速率,选项B 正确;b 类型卫星不能与地球保持相对静止,只有同步轨道卫星才能与地球保持相对静止,故C 错误;a =GM r
2,由题知中轨道卫星c 的轨道半径小于同步卫星a ,半径小的向心加速度大,故D 正确.
5.(多选)某卫星绕地球做匀速圆周运动,周期为T .已知地球半径为R ,地球表面重力加速度为g ,引力常量为G ,假设地球的质量分布均匀,忽略地球自转.以下说法正确的是( )
A .卫星运行半径r =
3
gR 2T 2
4π
2
B .卫星运行半径r =
RT
2π
3
g
C .地球平均密度ρ=3g
4πGR
D .地球平均密度ρ=3gR
4πG
答案 AC
解析 由万有引力提供向心力有:
G mM r 2=m 4π2T 2r ,G Mm ′
R
2=m ′g 联立解得:r =
3
gR 2T 2
4π
2
,故A 正确,B 错误;
地球的质量M =gR 2
G
,
地球的体积V =4πR
3
3
,
所以地球的密度为ρ=M V =gR 2G 4πR 33
=
3g
4πGR
, 故C 正确,D 错误.
6.(多选)如图3所示,2018
年5月21日,我国成功发射嫦娥四号任务“鹊桥”中继星,该卫星由地面发射后,进入地月转移轨道,经多次变轨后进入圆形工作轨道Ⅲ,为在月球背面软着陆做准备,下列说法错误的是( )
图3
A .卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度大
B .卫星在轨道Ⅲ上经过P 点时的加速度比在轨道Ⅰ上经过P 点时的加速度小
C .卫星在轨道Ⅲ上运行的周期比在轨道Ⅰ上短
D .卫星在轨道Ⅳ上的机械能比在轨道Ⅱ上大 答案 ABD
7.(2018·江苏省联盟大联考)已知质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-G Mm
r
,其中G 为引力常量,M 为地球质量.先从地面赤道某处发射一质量m 0的卫星至离地球表面h 高处的轨道上,使其绕地球做匀速圆周运动,则至少需对卫星做功(忽略地球自转影响,设地球半径为R )( )
A .G
Mm 0R -G Mm 0
2(R +h ) B .G Mm 0R -G Mm 0
R +h C .G Mm 0
2(R +h )
D .G
Mm 02R -G Mm 0
R +h
答案 A
解析 根据万有引力提供向心力:G Mm 0(R +h )2
=m 0v 2R +h ,所以卫星的动能:E k =12m 0v 2=GMm 0
2(R +h )
,从地面发射到离地面高h 处,引力势能增加ΔE p =GMm 0R -GMm 0
R +h
,根据能量守恒,至少需对卫星做功W =E k +ΔE p =
GMm 0R -GMm 0
2(R +h )
,所以A 正确. 8.(多选)(2018·泰州中学月考)2016年2月11日,科学家宣布激光干涉引力波天文台(LIGO)探测到由两个黑洞合并产生的引力波信号,这是在爱因斯坦提出引力波概念100周年后,引力波被首次直接观测到.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图4所示,黑洞A 、B 可视为质点,它们围绕连线上O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响.下列说法正确的是( )
图4
A .黑洞A 的向心力大于
B 的向心力 B .黑洞A 的线速度大于B 的线速度
C .黑洞A 的质量大于B 的质量
D .两黑洞之间的距离越大,A 的周期越大 答案 BD
解析 双星靠相互间的万有引力提供向心力,根据牛顿第三定律可知,A 对B 的作用力与B 对A 的作用力大小相等,方向相反,则黑洞A 的向心力等于B 的向心力,故A 错误;双星靠相互间的万有引力提供向心力,具有相同的角速度,由题意可知A 的半径比较大,根据v =ωr 可知,黑洞A 的线速度大于B 的线速度,故B 正确;在匀速转动时的向心力大小关系为:
m A ω2r A =m B ω2r B ,由于A 的半径比较大,所以A 的质量小,故C 错误,双星系统的周期公式
为:T =4π2L
3
G (m A +m B )
,所以两黑洞之间的距离越大,A 的周期越大,故D 正确.。