一元一次方程填空题13-11-16
- 格式:doc
- 大小:165.45 KB
- 文档页数:3
一元一次方程一、单选题1.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4 2.若2x =是关于x 的一元一次方程3ax b -=的解,则421a b -+的值是( ) A .7 B .8 C .7- D .8- 3.关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .54.下列说法中,正确的是( )A .若ac bc =,则a b =B .若22a b =,则a b =C .若a b c c =,则a b =D .若163x -=,则2x = 5.若关于x ,y 的多项式23237654x y mxy y xy -++化简后不含二次项,则m =( ) A .17 B .67 C .67- D .06.若代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,则有( ) A .1m = B .1m =- C .12m = D .1 2m =- 7.在四个数1,2,3,4中,是方程|x ﹣5|=2的解的是( )A .1B .2C .3D .48.下面是一个被墨水污染过的方程:23x x -=-,答案显示此方程的解是1x =,被墨水遮盖的是一个常数,则这个常数是( )A .2B .-2C .12-D .129.已知k 为非负整数,且关于x 的方程()33x kx -=的解为正整数,则k 的所有可能取值为( )A .2,0B .4,6C .4,6,12D .2,0,610.已知1x =是方程122()3-=-x x a 的解,那么关于y 的方程(4)24+=+a y ay a 的解是( ).A .y =1B .y =-1C .y =0D .方程无解11.若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解12.若关于x 的方程()()20192017620191k x x --=-+的解是整数,则整数k 的取值个数是( )A .5B .3C .6D .213.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .237230x xB .327230x xC .233072x xD .323072x x14.我国“DF -41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF -41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x 分钟能打击到目标,可以得到方程( )A .263406012000x ⨯⨯=B .2634012000x ⨯=C .26340120001000x ⨯=D .2634060120001000x ⨯⨯= 15.为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .17 二、填空题16.关于x 的方程220x bx a ++=(a 、b 为实数且0a ≠),a 恰好是该方程的根,则a b +的值为_______.17.若 x =3 是关于 x 的一元一次方程 mx - n =3 的解,则代数式 10 - 3m + n 的值是___.18.已知2x ﹣3y ﹣5=0,则9y ﹣6x +16=________.19.如果212m ab -与23m ab +-是同类项,那么m 等于______.20.已知关于x 的方程32()mx x m +=-的解满足230x --=,则m 的值是____________. 21.已知关于x 的方程22()mx m x +=-的解满足1102x --=,则m 的值是_________. 22.已知关于x 的方程21132--=-x x a 的解为10x =-,则a 的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x =______. 23.当a 取整数________时,关于x 的方程411633x ax ---=有正整数解.24.若关于x的方程234k x-=与方程1302x-=的解相同,则k的值为____________.25.当m取___ 时,关于x的方程mx+m=2x无解.三、解答题26.小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?27.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.28.小王看到两个超市的促销信息如图所示.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物标价198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?29.丹尼斯经销甲、乙两种商品,甲种商品每件售价60元,利润20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)丹尼斯同时购进甲、乙两种商品共50件,总进价为2100元,求购进甲种商品多少件?(3)在“春节”期间,该商场对所有商品进行如下的优患促销话动:按上述优惠条件,若小丽一次性购买乙种商品实际付款504元,求小丽购买商品的原价是多少?参考答案:1.C2.A解:将x =2代入ax -b =3中,得2a -b =3,∴421a b -+=2(2a -b )+1=231⨯+=7,3.C 方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,4.C解:A 、若ac =bc ,当c ≠0,则a =b ,故此选项错误; B 、若22a b =,则a b =±,故此选项错误;C 、若a b c c=,则a b =,故此选项正确; D 、若163x -=,则18x =-,故此选项错误; 5.B解:∴23237654x y mxy y xy -++ =()23236754x y m xy y +-+, ∴不含二次项,∴6﹣7m =0,解得m =67.6.C解:()()226251x y mx y -+-+-=226251x y mx y ---++=()21267m x y --+∴代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,∴120m -= 解得:12m =7.C当x -5≥0,则原式方程可变为:x -5=2,解得:x=7,当x -5<0,则原式方程可变为:x -5=-2,解得:x=3,8.A解:设这个常数为a ,则把1x =代入方程,得:2131a ⨯-=-,解得:2a =,9.A解:方程去括号得:3x −9=kx ,移项合并得:(3−k )x =9,解得:x =93k -, 由x 为正整数,k 为非负整数,得到k =2,0,10.C解:∴1x =是方程122()3-=-x x a 的解, ∴122(1)3a -=-, 解得1a =,将1a =代入(4)24+=+a y ay a 得:424y y +=+,解得0y =.11.D解:解方程3m (2x ﹣1)﹣n =3(2﹣n )x可得:(6m +3n ﹣6)x =3m +n∴有至少两个不同的解,∴6m +3n ﹣6=3m +n =0,即m =﹣2,n =6,把m =﹣2,n =6代入(m +n )x +3=4x +m 中得:4x +3=4x +m , ∴方程(m +n )x +3=4x +m 无解.12.C解:()()20192017620191k x x --=-+,(2019)2017620192019k x x --=--,(2019)2019620192017k x x -+=-+,4kx =, 解得:4x k=, ∴方程的解是整数,k 也是整数,∴k 可以为-4或-2或-1或1或2或4,共有6个数,故C 正确.13.D14.D解:因为1分钟60=秒,1公里1000=米, 所以可列方程为2634060120001000x ⨯⨯=, 15.B解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,16.-2解:由题意可得(0)x a a =≠,把x a =代入原方程可得:220a ab a ++=,等式左右两边同时除以a ,可得:20a b ++=, 即2a b +=-,故答案为:2-.17.7解:把x =3代入关于 x 的一元一次方程 mx - n =3得 3m - n =3-3m +n =-310 - 3m + n =10-3=7故答案为:7.18.1解:∴2x ﹣3y ﹣5=0,∴2x ﹣3y =5,∴9y ﹣6x +16=﹣3(2x ﹣3y )+16=﹣3×5+16=1,故答案为:1.19.320.5或-1解:230x --=,23x -=,23x -=±,解得:x =5-1或。
一元一次方程一、选择题(共10小题,每小题3分,共30分) 1.下列等式变形正确的是( )A.如果s=12ab,那么b=2sa B.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my,那么x=y 2.已知关于x的方程的解是,则m的值是().A.2 B.-2 C.27D.-27.3.关系x的方程(2k-1)x2-(2k+1)x+3=0是一元一次方程,则k值为( )A.0B.1C.12 D.24.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a的值为( ) A.12 B.6 C.-6 D.-125.下列解方程去分母正确的是( )A.由113,得2x-1=3-3x B.由232得2(x-2)-3x-2=-4C.由131得3y+3=2y-3y+1-6y D.由4415,得12x-1=5y+20 6.某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为( ) A.0.92aB.1.12aC.1.12aD.0.81a7、已知y=1是关于y的方程2-31(m-1)=2y的解,则关于x的方程m(x-3)-2=m的解是()A.1 B.6 C.34 D.以上答案均不对8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x米/分,则所列方程为() A. B.C.D.9、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是()A.54B.27C.72D.45 10、某专卖店2007年的营业额统计发现第二个月比第一个月增长10%,第三个月比第二个月减少10%,那么第三个月比第一个月()A.增加10%B.减少10%C.不增不减D.减少1% 二、填空题(共8小题,每小题3分,共24分)11. x=3和x=-6中,________是方程x-3(x+2)=6的解. 12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k的值是1,则k=_________.14.当x=________时,代数式12x与1的值相等.15.5与x的差的13比x的2倍大1的方程是__________.16.若4a-9与3a-5互为相反数,则a2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______. 18、请阅读下列材料:让我们来规定一种运算:bcaddc,例如:5432=2×5-3×4=10-12=-2. 按照这种运算的规定,当x=______时,2121xx.三、解答题(共7小题,共66分) 19.(7分)解方程:11220. (7分)解方程:432.50.221. (8分)已知2y+m=my-m. (1)当m=4时,求y的值.(2)当y=4时,求m的值.22. (8分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (10分)23. (9分)请你联系你的生活和学习,编制一道实际问题,使列的方程为51-x=45+x.24. (9分)(探究题)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.(11分) 25.(10分)振华中学在“众志成城,抗震救灾”捐款活动中,甲班比乙班多捐了20%,乙班捐款数比甲班的一半多10元,若乙班捐款m元.(1)列两个不同的含m的代数式表示甲班捐款数.(2)根据题意列出以m为未知数的方程.(3)检验乙班、甲班捐款数数是不是分别为25元和35元.1.C2.A 3.C 4.D 5.C 6.D 7.B 8.C 9.D 10.D 11.x=-6 12.a=13.k=-4 14.x=-1 [点拔]列方程12x15.13(5-x)=2x+1或13(5-x)-2x=1 [点拨]由5与x的差得到5-x,5与x的差的13表示为13(5-x).16.1 17.x+(x-2)+(x-4)=1818、27[点拨]对照示例可得2x-(21-x)=23。
中考数学总复习《一元一次方程》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.过去时全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为( )A.12x(x−1)=380B.x(x−1)=380C.2x(x−1)=380D.x(x+1)=3802.若关于x的方程2x+a−4=0的解是x=−2,则a的值等于( )A.−8B.0C.2D.83.如果x=2是方程12x+a=−1的解,那么a的值是( )A.−2B.2C.0D.−64.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场5.解方程x−16=3−2x−14,去分母时,方程两边乘各分母的最小公倍数( )A.10B.12C.24D.66.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )A.96里B.48里C.24里D.12里7.如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是( )A.402B.406C.410D.4208.一元一次方程x−2=0的解是( )A.x=2B.x=−2C.x=0D.x=1二、填空题(共5题,共15分)9.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.10.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y−12y=12−■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y=−53,于是,他很快知道了这个常数,他补出的这个常数是.11.若x=−2是方程m(x+3)−3m−x=6的解,则m的值为.12.关于x的一元一次方程x2022−1=2022x+m的解为x=−2019,则关于y的方程3−y2022−1=2022(3−y)+m的解为.13.−113的倒数的相反数是。
第三章 一元一次方程 单元训练题 (16)一、单选题1.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度3千米/时,求甲乙两码头的距离.设甲乙两码头的距离为x 千米.则可列方程为( )A .2(3) 2.5(3)x x +=-B .23 2.53x x +=-C .332 2.5x x -=+D .332 2.5x x +=- 2.某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .151512530x ++=B .151513025x ++=C .151513025x -+=D .151513025x -+= 3.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了( )A .250元B .200元C .150元D .100元 4.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣8 5.长江上有A ,B 两个港口,一艘轮船从A 到B 顺水航行要用时2h ,从B 到A (航线相同)逆水航行要用时3.5h ,己知水流的速度为15km/h ,求轮船在静水中的航行速度是多少?若设轮船在静水中的航行速度为km/h x ,则可列方程为( )A .(15) 3.5(15)2x x -⨯=+⨯B .(15) 3.5(15)2x x +⨯=-⨯C .15153.52x x -+= D .15153.52x x +-= 6.关于x 的一元一次方程2ax+m=4的解为x=1,则2a+m 的值为( ) A .-4 B .8 C .4D .6 7.运用等式性质进行的变形,不正确的是( )A .如果a=b ,那么a ﹣c=b ﹣cB .如果a ﹣c=b ﹣c ,那么a=bC .如果ac 2=bc 2,那么a=bD .如果a (c 2+1)=b (c 2+1),那么a=b8.如果am =an ,那么下列等式不.一定成立的是 A .am -3=an -3 B .m =n C .5+am =5+an D .-12am =-12an 9.下列方程中,一元一次方程的个数是( )①5x-2y=0②m-3=60③1653n n -=④236y -=⑤m=0 A .1个B .2个C .3个D .4个10.若关于x 的方程的解是x=2,则a 的值是( ) A .6 B .-6 C .4 D .411.解方程-=1去分母正确的是( )A .2(x -1)-3(4-x )=1B .2x -1-12+x =1C .2(x -1)-3(4-x )=6D .2x -2-12-3x =6 12.下列等式变形,符合等式性质的是( )A .若237x x -=,则273x x =-B .若321x x -=+,则 312x x +=+C .若27x -=,则72x =+D .若113x -=,则3x =- 二、填空题13.运动会入场式上,某班队列为m 行n 列的矩形方阵.当队伍行进到表演区时,队列进行变形,行数增大2,列数减小3,恰好组成正方形方阵,则该班同学有_____人.14.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为__________________.15.已知x =2是关于x 的一元一次方程mx ﹣2=0的解,则m 的值为_____.16.当x =﹣1时,代数式ax 3+bx +1的值为﹣2014,则当x =1时,代数式ax 3+bx +1的值为_____.17.若方程630x +=与关于y 的方程315y m +=的解互为相反数,则m =________.18.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题19.设一列匀速行驶的火车,通过长860m 的隧道时,整个火车都在隧道里的时间是22秒,该列火车以同样的速度穿过长790m 的铁桥时,从车头上桥到车尾下桥,共用时33秒,求车长?20.苏宁易购为了提高某品牌家电的销售量,2019年10月份开始对销售员采取新奖励办法.已知销售员小李在新奖励办法出台前一个月共售出这种家电的A 型和B 型共200台,新奖励办法出台后的第一个月售出这两种型号的家电共246台,其中A 型和B 型家电的销售量分别比新奖励办法出台前一个月增长25%和20%.(1)在新奖励办法出台后第一个月里,该销售员分别销售了A 型和B 型家电多少台? (2)若A 型家电每台售价为3000元,B 型家电每台售价为5000元.新奖励办法是:每销售一台A 型家电按每台A 型家电售价的%a 给予奖励,每销售一台B 型家电按每台B 型家电售价的5%给予奖励.新奖励办法出台后的第二个月,A 型家电的销售量比出台后的第一个月增加了10%;而B 型家电受到某问题零件召回的影响,销售量比出台后的第一个月减少了5%4a,新奖励办法出台后的第二个月该销售员共得到奖励金额117000元,求a的值.21.在国庆节社会实践活动中,盐城某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少? 22.阅读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表:如某户居民去年用水量为190立方米,则其应缴纳水费为180×5+(190﹣180)×7=970元.(1)若小明家去年用水量为100立方米,则小明家应缴纳的水费为________元;(2)若截止10月底,小明家今年共纳水费1145元,则小明家共用水_______立方米;(3)若小明家全年用水量x不超过270立方米,则应缴纳的水费为多少元?(用含x的代数式表示)23.“*”是新规定的这样一种运算法则:a*b=a2﹣2ab,比如3*(﹣2)=32﹣2×3×(﹣2)=21(1)试求(﹣2)*3的值;(2)若(﹣2)*(1*x)=x﹣1,求x的值.24.青竹湖湘一外国语学校初2019级全体学生从学校统一乘车去市科技馆参观学习,然后又统一乘车原路返回,需租用客车若干辆.现有甲、乙两种座位数相同的客车可以租用,甲种客车每辆的租金为300元,另按实际行程每千米加收8元;乙种客车每辆按每千米14元收费.(1)当行程为多少千米时,租用两种客车的费用相同?(2)青竹湖湘一外国语学校距市科技馆约30公里,如果你是年级组杨组长,为节省费用,你会选择哪种客车?25.儿子12岁那年,父亲的年龄是37岁.()1经过______年后父亲的年龄是儿子年龄的2倍.()2能否算出几年后父亲年龄是儿子年龄的6倍?如果能,请算出结果;如果不能请说明理由.26.某校在开学期间,打算购置一批办公桌和椅子,现在同一款式的办公桌每张定价200元,椅子每张40元.国庆节期间,有两个商店决定开展促销活动,活动期间向客户提供优惠如下:甲商店:买一张办公桌送一张椅子;乙商店:办公桌和椅子都按定价的九折付款.x>).现在学校要购买20张办公桌和x张椅子(20(1)用含x的代数式表示学校分别在这两个商店购买这一批桌椅所需的费用;(2)购买椅子多少张时,两个商店的费用相等?(3)现在学校要购买30张椅子,通过计算说明选择在哪个商店购买较为合算.【答案与解析】一、单选题1.C解析:C根据题意列出方程求解即可.由题意得332 2.5x x -=+故答案为:C .【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.2.D解析:D根据甲、乙工作量和为1列方程即可. 甲工作效率是130,工作时间是(x-15)天;乙的工作效率是125,工作时间是15天, ∴151513025x -+=, 故选:D.【点睛】此题考查工作问题的一元一次方程,正确理解题意是解题的关键.3.B解析:B设商品的标价是x 元,根据全场商品一律打八折,比标价少付了50元,可列方程求解. 解:设商品的标价是x 元,根据题意得x-80%x=50,解得x=250,250×80%=200.【点睛】本题考查了一元一次方程的应用,关键是设出标价,根据少花的钱数列出方程求解,最后求出花了多少钱.4.B解析:B把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.把x =1代入方程3x ﹣m =5得:3﹣m =5,解得:m =﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.5.A解析:A设轮船在静水中的航行速度为xkm/h,则轮船顺水航行的速度为(x+15)km/h,轮船逆水航行的速度为(x-15)km/h,由路程=速度×时间结合A,B两个港口之间距离不变,即可得出关于x的一元一次方程.解:设轮船在静水中的航行速度为xkm/h,则轮船顺水航行的速度为(x+15)km/h,轮船逆水航行的速度为(x-15)km/h,依题意,得:2(x+15)=3.5(x-15).故选:A【点睛】此题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.C解析:C把x=1代入2ax+m=4即可得答案.∵关于x的一元一次方程2ax+m=4的解为x=1,∴2a+m=4,故选C.【点睛】本题考查方程的解的定义,使方程两边成立的未知数的值叫做方程的解,熟练掌握定义是解题关键.7.C解析:C根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.解:A、等式两边同时减去c,故A正确;B、等式两边同时加上c,故B正确;C、当c=0时,等式变形错误,故C错误;D、两边同时除以c2+1,那么a=b,故D正确;故选择:C.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.B解析:B已知等式利用等式的性质变形得到结果,即可做出判断.解:如果am=an中a=0,那么m=n不一定成立,其余各等式均成立,故选:B.【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.9.C解析:C根据一元一次方程的定义解答.解:①5x-2y=0, 是二元一次方程,故错误;②m-3=60, 含有一个未知数,是一元一次方程,故正确;③1653n n-=,含有一个未知数,是一元一次方程,故正确;④236y-=,是一元二次方程,故错误;⑤m=0, 含有一个未知数,是一元一次方程,故正确.故选:C.【点睛】本题考查一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.B解析:B把x=2代入方程,即可得到一个关于a的方程,从而求得a的值.把x=2代入方程,得:2a+6+6=0,解得:a=-6.故选B.【点睛】本题考查了方程的解的定义,理解定义是关键.11.C解析:C方程两边同时乘以最小公倍数6,即可得答案.-=1两边同时乘以6得:2(x-1)-3(4-x)=6故选C.【点睛】本题考查一元一次方程去分母的方法,去分母是指:在方程两边都乘以各分母的最小公倍数,把含有分数的式子化成整数的过程,它的依据是等式的性质.12.D解析:D根据等式的性质依次判断即可求解.A. 若237x x -=,则273x x =+,故错误;B. 若321x x -=+,则 312x x -=+,故错误;C. 若27x -=,则72x =-,故错误; D. 若113x -=,则3x =-,正确故选D. 【点睛】此题主要考查等式的性质判断,解题的关键是熟知等式的性质.二、填空题13.{解析}设组成正方形方队时有x 行和x 列则根据题意可知队列变换前为(x ﹣2)行(x+3)列根据总人数不变列出方程解方程即可求出x 的值然后可求总人数设组成正方形方队时有x 行和x 列则队列变换前为(x ﹣2)解析:{解析}设组成正方形方队时有x 行和x 列,则根据题意可知队列变换前为(x ﹣2)行,(x +3)列,根据总人数不变列出方程,解方程即可求出x 的值,然后可求总人数.设组成正方形方队时有x 行和x 列,则队列变换前为(x ﹣2)行,(x +3)列,根据题意得:(x ﹣2)(x +3)=x 2,解得:x =6,所以共有6×6=36人,故答案为:36.【点睛】本题考查一元一次方程的应用,能表示变形前、后的人数,并根据总人数不变列出方程是解决此题的关键.14.8x=50-38解析:8x=50-38试题解析:设每个莲蓬的价格为x 元,根据题意得8x+38=50.考点:由实际问题抽象出一元一次方程.15.1解析:1根据方程的解的概念,将x=2代入原方程,得到关于m 的一元一次方程,解方程可得m 的值.解:将x =2代入mx ﹣2=02m ﹣2=0m =1故答案为:1【点睛】本题主要考查方程的解的定义及解一元一次方程的能力,将方程的解代入原方程是关键. 16.2016解析:2016把x=1代入求出a+b 的值,再把x=-1代入求解即可.解:x=-1时,-a-b+1=-2014,所以,a+b=2015,x=1时,ax 3+bx+1=a+b+1=2015+1=2016.故答案为2016.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.17.5解析:5试题解析:解方程630,x += 解得:1.2x =- 则方程315y m +=的解为:1.2y = 把12y =代入方程315y m +=, 315.2m +=13.5.m =故答案为:13.5.18.1000解析:1000。
校 班级 考号 姓名_________________考试时间 ______________ 装订线内不要答题 ◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆2013-2014学年度七年级数学练习三十七4.2 解一元一次方程(1)命题:朱学范 审题:朱学范 2013-11-16一、选择题.1.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 2.下列说法中正确的是( )A.在等式bx ax =两边除以x ,可得b a =B. 由等式22b a =,一定有b a =C.在等式33ba =两边除以3,得到b a = D. 由等式145+=x x ,可得1=x 3.下列变形是根据等式的性质的是( ) A .由2x ﹣1=3得2x=4 B.由x 2=x 得 x=1 C .由x 2=9得 x=3 D.由2x ﹣1=3x 得5x=﹣14.已知等式523+=b a ,则下列等式中不一定...成立的是( ) A.;253b a =- B.;6213+=+b a C.;523+=bc ac D..3532+=b a 5.下列等式变形正确的是( )A.如果s =12ab ,那么b = 2sa; B.如果12x = 6,那么x = 3; C.如果x -3 = y -3,那么x -y = 0; D.如果mx = my ,那么x = y 6.下列判断错误的是( )A. 若b a =,则33-=-b aB. 若b a =,则1515+=+b aC. 若b a =,则1122+=+c b c a D.若22bc ac =,则b a = 7.解方程41x=31,正确的是 ( )A .41x=31=x=34; B .41x=31, x=121 C .41x=31, x=34; D .41x=31, x= 43 8.方程312-x =x -2的解是( )A .5B .-5C .2D .-2 9.2=x 是下列方程( )的解.A.11-=-x ;B.02=+x ;C.513=-x ;D.421=x 10.已知方程①3x -1=2x + 1 ②x x =-123 ③x x x )31(3231-=+④413743127+-=++x x 中,解为x=2的是方程 ( ) A.①、②和③; B.①、③和④ C.②、③和④; D.①、②和④二、填空题.11.如果457+=x x ,那么.4_______7=-x12.用适当的数或整式填空,使所得结果仍为等式,并说明其根据.(1) 如果753=-x ,那么_______73+=x ;_______________________________. (2) 如果231-=-x ,那么________=x ;__________________________________. 13.若732=-a ,则__________14=-a .14.关于x 的方程06=+ax 的解为2=x ,则__________=a . 已知21=x 是方程a x x a +=+2)56(的解,那么_________=a . 15.判断:方程6x=4x+5,变形得6x+4x =5( )改正:________________________________________________. 16.求作一个方程,使它的解为-5,这个方程为__________. 17.当m= __________时,方程2x+m=x+1的解为x=-4. 当a= ____________时,方程3x 2a-2=4是一元一次方程. 18.3)1(=-nxn 是关于x 的一元一次方程,则_________=n .19.若单项式xba 233与24331-x b a 是同类项,则_________=x .三、解答题.20.解下列方程(1)35-=+x (2) 513=-x (3)261-=-x (4) 1274=-x(5) 132-=+x x (6) 832+-=-x x(7)6x=3x -12 (8)2y ―21=21y ―3(9)-2x=-3x+8 (10)56=3x+32-2x(11)3x ―7+6x=4x ―8 (12)7.9x+1.58+x=7.9x -8.4221.122=-x a 是关于x 的方程,在解这个方程时,粗心的小虎误将x -看做了x ,得到方程的解为3=x ,请你帮助小虎求出原方程的解.22.2a —3x=12是关于x 的方程.在解这个方程时,粗心的小虎误将-3x 看做3x ,得方程的解为x=3.请你帮助小虎求出原方程的解.。
一元一次方程测试题(含答案)一、选择题1.对等式x 2=y 3进行变形,则下列等式成立的是( ) A .2x =3y B .3x =2y C .x 3=y 2 D .x =32y 2.如果方程x 2n−5−2=0是关于x 的一元一次方程,则n 的值为( )A .2B .3C .4D .53.下列方程的变形正确的是( )A .x 5+1=x 2,去分母,得2x +1=5xB .5−2(x −1)=x +3,去括号,得5−2x −1=x +3C .5x +3=8,移项,得5x =8+3D .3x =−7,系数化为1,得x =−734.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即12+3=15.如图①,当y =505时,b 的值为( )A .205B .305C .255D .3155.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .48=2(42﹣x )B .48+x =2×42C .48﹣x =2(42+x )D .48+x =2(42﹣x )6.方程|x|+|x −2022|=|x −1011|+|x −3033|的整数解共有( )A .1010B .1011C .1012D .20227.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3208.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为()A.21B.24C.27D.36二、填空题9.写出一个以x=−2为解的一元一次方程:(任写一个即可).10.定义运算:a⊗b=a2−2ab,例如3⊗1=32−2×3×1=3,则关于x的方程(−3)⊗x=2的解是.11.已知非负实数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5,设S=5a+4b+7c的最大值为m,最小值为n,则n−m等于.12.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.三、计算题13.解方程:x+13−x−32=1.14.在数学实践课上,小明在解方程2x−15+1=x+a2时,因为粗心,去分母时方程左边的1没有乘10,从而求得方程的解为x=4,试求a的值及原方程正确的解.四、解答题15.五一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.求甲、乙两种商品的每件进价分别是多少元?16.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?17.若|x+3|=6,|y−4|=2,且|x|−|y|≥0,求|x−y|的值.五、综合题18.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3−1|可以理解为数轴上表示3 和 1 的两点之间的距离;|3+1|可以理解为数轴上表示3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为:4-(-3).根据以上阅读材料探索下列问题:(1)数轴上表示3 和9 的两点之间的距离是;数轴上表示 2 和﹣5 的两点之间的距离是;(直接写出最终结果)(2)①若数轴上表示的数x 和﹣2 的两点之间的距离是4,则x 的值为;①若x 为数轴上某动点表示的数,则式子|x+1|+|x−3|的最小值为.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】D6.【答案】C7.【答案】C8.【答案】C9.【答案】2x=−4(答案不唯一)10.【答案】−7611.【答案】-212.【答案】76.8或4813.【答案】解:2(x+1)−3(x−3)=62x+2−3x+9=62x−3x=6−2−9−x=−5x=5 14.【答案】解:把x=4代入2(2x−1)+1=5(x+a),可得2×(2×4−1)+1=5(4+a)20+5a=15a=−1把a=−1代入原方程,可得2x−15+1=x−1 22(2x−1)+10=5(x−1) 4x−2+10=5x−54x−5x=−5+2−10−x=−13x=13∴a=−1,x=1315.【答案】解:设乙种商品每件进价为x元.由题意可得,7(x−20)+2x=760解得x=100100−20=80元答:甲商品的每件进价是80元,乙商品的每件进价100元.16.【答案】解:设初一(1)班有x人,则初一(2)班有(x-5)人,初一(3)班有[101-x-(x-5])人.①初一(1)班有20多人,不足30人,①(1)班最多29人,(2)班最多24人,则(3)班最少48人;(1)班最少21人,(2)班最少16人,则(3)班最多64人.根据题意,①当初一(3)班的人数不超过60人时,有15x+15(x −5)+12[101 −x −(x −5)]=1365;解得:x=28.①x −5=23,101 −x −x+5= 50;①当初一(3)班的人数超过60人时,有15x+15(x −5)+10[101 −x −(x −5)]=1365解得:x= −38.①人数不能为负,①这种情况不存在;答:初一(1)班有28人.初一(2)班有23人.初一(3)班有50人.17.【答案】解:由|x+3|=6可知若x+3>0,则有x+3=6,解得x=3,|x|=3若x+3<0,则有-3-x=6,解得x=-9,|x|=9由|y−4|=2可知若y-4>0,则有y-4=2,解得y=6,|y|=6若y-4<0,则有4-y=2,解得y=2,|y|=2①|x|−|y|≥0①当|x|=3时,|y|=2满足条件则|x−y|=|3−2|=1当|x|=9时,|y|=6满足条件则|x−y|=|−9−6|=|−15|=15当|x|=9时,|y|=2满足条件则|x−y|=|−9−2|=|−11|=11综上所述|x−y|的值为1,11,15 18.【答案】(1)6;7(2)-6或2;4。
人教五四学制版七年级上册数学第11章一元一次方程含答案一、单选题(共15题,共计45分)1、方程3x-1=5的求解过程中,使用等式的性质的顺序是()A.先在等式两边同加上1,再在等式两边同除以3B.先在等式两边同减去1,再在等式两边同乘以C.先在等式两边同除以3,再在等式两边同加上1D.先在等式两边同乘以,再在等式两边同减去12、在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3B.4C.5D.63、已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1B.1C.0或1D.﹣14、下列式子的变形中,正确的是()A.由6+ =10得=10+6B.由3 +5=4 得3 -4 =-5C.由8 =4-3 得8 -3 =4D.由2( -1)= 3得2 -1=35、下列等式中不是方程的是A.x 2+2x-3=0B.x+2y=12C.x+1=3xD.5+8=136、已知x=3是关于x的方程x+2a=1的解,则a的值是( )A.﹣1B.﹣5C.1D.57、若关于的方程的解是,则代数式的值为()A.-6B.0C.12D.188、若关于的方程的解不小于方程的解,则a 的取值范围是()A. B. C. D.9、若方程:的解互为相反数,则a的值为()A. B. C. D.-110、已知a=b,下列等式不一定成立的是()A.a﹣c=b﹣cB.ac=bcC.a 2=b 2D. =111、下列四个方程中,是一元一次方程的是()A. B. C. D.12、若方程的解为-1,则的值为()A.10B.-4C.-6D.-813、已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为()A.a≥1B.a>1C.a≤1D.a<114、一次函数y= x﹣b与y= x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4B.2或﹣4C.4或﹣6D.﹣4或615、下列四组变形中,正确的是()A.由2x﹣3=1,得2x=1﹣3B.由﹣2x=1,得x=﹣2C.由2(x﹣3)=1,得2x﹣3=1D.由8﹣x=x﹣5,得﹣x﹣x=﹣5﹣8二、填空题(共10题,共计30分)16、小明在解一元一次方程■x﹣3=2x+9时,不小心把墨汁滴在作业本上,其中未知数x前的系数看不清了,他便问邻桌,但是邻桌只告诉他,方程的解是x=﹣2(邻桌的答案是正确的),小明由此知道了被墨水遮住的x的系数,请你帮小明算一算,被墨水遮住的系数是________17、若关于x的方程(k+2)x2+4kx﹣5k=0是一元一次方程,则k=________,方程的解x=________.18、若方程的解与关于的方程的解互为相反数,则________.19、已知关于x、y的二元一次方程组的解为,则=________.20、若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是________.21、在等式﹣x=两边都________ ,得到x=________22、关于x的方程mx+2=2(m﹣x)的解是x=1,则m的值为________.23、如果是关于的一元一次方程,则________.24、如果x=2是方程mx+1=9的解,那么m=________25、已知关于x的方程7﹣kx=x+2k的解是x=2,则k = ________.三、解答题(共5题,共计25分)26、解方程:5(x+8)-5=6(2x-7)27、小明在解方程时,方程左边的“+1”没有乘以10,因此求得方程的解为,试求a的值及方程的正确解?28、在做解方程练习时,学习卷中有一个方程“2y–= y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?29、求如图的Rt△ABC的面积.30、今年父子的年龄之和是50,且父亲的年龄是儿子的4倍,求儿子今年多少岁?参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、B5、D6、A7、A8、C9、A10、D11、D12、C13、A14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
精心整理一元一次方程试题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是( ) A.0127=+y B.082=+y x C 103=z D.0232=-+x x 2.已知ax=ay ,下列等式中成立的是()34.这A .5A 6A 7.分钟,A .8让利40元销售,仍可获利10%,则x 为( )A .约700元B .约773元C .约736元D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有()A .1105.06+=x x ??B .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A .15%??B .17%C .22%D .80% 二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。
12.若3522-m b a 与n m n b a +--313是同类项,则m = ,n = 。
13.方程456,x y -=用含x 的代数式表示y 得y=,用含y 的代数式表示x 得x=。
14.当x=________时,代数式12x-与113x +-的值相等.年前女0的解43223.43(1)323322x x ⎡⎤---=⎢⎥⎣⎦24.2233554--+=+-+x x x x25.方程23(1)0x -+=的解与关于x 的方程3222k xk x +--=的解互为倒数,求k 的值。
26.先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2解:①当x+3≥0时,原方程可化为:x+3=2,解得x=-1;②当x+3<0时,原方程可化为:x+3=-2,解得x=-5③所以原方程的解是x=-1,x=-5(1)解方程:|3x-2|-4=0(2)探究:当b为何值时,方程|x-2|=b+1①无解;②只有一个解;③有两个解.四、列方程解应用题27.一份数学试卷有20道选择题,规定做对一题得5分,不做或做错倒扣1分,结果某学生得分为76分,问他做对了几(1)请根据配A种刹车片的赛车的实验数据规律推算出5秒后的车速并填入相应表格中。
一、填空题1.完成下列的解题过程: 用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________.去括号,得_________________.移项、合并同类项,得________________.系数化为1,得_____________.(2)解法二:去括号,得______________.去分母,得________________.移项、合并同类项,得____________. 系数化为1,得_______________.【解析】【分析】解一元一次方程的一般步骤是:去分母去括号移项合并同类项系数化1但步骤也并不是固定不变的要灵活掌握【详解】两种方法解方程:解法1:去分母得去括号得9x -3=12-4x -12移项合并同类解析:3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--, 9312412x x -=--, 133x =, 313x = 【解析】【分析】解一元一次方程的一般步骤是:去分母,去括号,移项合并同类项,系数化1,但步骤也并不是固定不变的,要灵活掌握.【详解】 两种方法解方程:11(31)1(3)43x x -=-+ 解法1:去分母,得3(31)124(3)x x -=-+. 去括号,得9x -3=12-4x -12移项、合并同类项,得13x=3.系数化为1,得313x =. 解法2:去括号,得31111443x x -=-- 去分母,得9312412x x -=--移项、合并同类项,得13x=3系数化为1,得313x =故答案为:(1) 3(31)124(3)x x -=-+(2) 9312412x x -=--(3) 133x = (4) 313x =(5) 31111443x x -=-- (6) 9312412x x -=--(7) 133x = (8) 313x =. 【点睛】 本题考查解方程,熟练掌握解方程的步骤及计算法则是解题关键.2.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M 结合m 的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M ,结合m 的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键3.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.3【解析】【分析】设调往甲处的人数为x 则调往乙处的人数为20-x 根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x 人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x,则调往乙处的人数为20-x,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.4.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.12【解析】【分析】找到关键描述语进而找到所求的量的等量关系得到不等式6x-2(15-x)>60求解即可【详解】设答对x道故6x-2(15-x)>60解得:x>所以至少要答对12道题成绩才能在60分解析:12【解析】【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x)>60,求解即可.【详解】设答对x道.故6x-2(15-x)>60解得:x>90 8.所以至少要答对12道题,成绩才能在60分以上.【点睛】考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.5.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.4【解析】【分析】直接设每千克苹果的售价是x元则每千克香蕉售价2x元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x元则每千克香蕉售价2x元根据题意可得:解析:4【解析】【分析】直接设每千克苹果的售价是x元,则每千克香蕉售价2x元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.设每千克苹果的售价是x元,则每千克香蕉售价2x元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键.6.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g.17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg则一个果冻质量为2xg再根据图②列出关于x的方程求解即可【详解】解:由图①设一块巧克力质量为xg则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg,则一个果冻质量为2xg,再根据图②列出关于x的方程求解即可.【详解】解:由图①设一块巧克力质量为xg,则一个果冻质量为2xg,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.7.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】设甲队胜了x 场,则平了12x 场,负了112x -场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】 设甲队胜了x 场,则平了12x 场,负了112x -场, 根据题意可得: 1131102122x x x ⎛⎫+⨯+-⨯= ⎪⎝⎭, 解得:x =6, 所以132x =,1122x -=, 故答案为:6,3,2.【点睛】 本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.8.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.9.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】 根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.10.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.11.将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 12.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.13.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.【解析】【分析】根据题意先设中间一个的数字为x即可解答【详解】设中间一个的数字为x其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x,即可解答.【详解】设中间一个的数字为x,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.14.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.8人【解析】【分析】设张老师带的学生数为x人车费原价为a元/人则在甲车主处需要费用为08a(1+x)元在乙车主处需要09ax元根据两车的费用一样建立方程求出其解即可【详解】设张老师带的学生数为x人车解析:8人【解析】【分析】设张老师带的学生数为x人,车费原价为a元/人,则在甲车主处需要费用为0.8a(1+x)元,在乙车主处需要0.9ax元,根据两车的费用一样建立方程求出其解即可.【详解】设张老师带的学生数为x人,车费原价为a元/人,由题意,得0.8a(1+x)=0.9ax,解得:x=8,故答案为:8人.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据当两车主的费用一样建立方程是关键.15.解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.Y=3【解析】【分析】根据解一元一次方程的法则对应各个步骤即可【详解】去分母得5(y-1)=2(y+2)去括号得5y-5=2y+4移项得5y-2y=5+4合并同类项得3y=9系数化为1得y=3;【点 解析:5(1)2(2)y y -=+, 5524y y -=+, 5254y y -=+, 39y =, Y=3【解析】【分析】根据解一元一次方程的法则,对应各个步骤即可.【详解】去分母,得5(y-1)=2(y+2),去括号,得5y-5=2y+4,移项,得5y-2y=5+4,合并同类项,得3y=9,系数化为1,得y=3;【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.16.一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系解析:190【分析】设标价为x 元,根据题意列方程即可求解.【详解】解:设标价为x 元,由题意可知:0.812032x -=,解得:190x =,故答案为:190.【点睛】此题主要考查列一元一次方程解应用题,解题的关键是根据题意找出等量关系.17.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.5【解析】【分析】首先设乙班平均每人捐款x元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.18.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x元可列方程x⋅15×(30−20)=120解得:x=800则他的飞机解析:800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解.【详解】设他的飞机票价格是x元,可列方程x⋅1.5%×(30−20)=120解得:x=800则他的飞机票价格是800元.故答案为:800.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.19.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键. 20.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题解析:100【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.21.小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .-4;【分析】把x=-1代入中求出a 的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x 解得:故答案为:-4;【点睛】本题考查了一元一解析:-4; 87-【分析】把x=-1代入235a x x -=中求出a 的值,再求出原方程的解即可【详解】解:根据题意,得:x=-1是235a x x -=的解,∴把x=-1代入235a x x -=得:23(1)5(1)a -⨯-=⨯-解得:4a =-∴原方程为:-8-2x=5x 解得:87x 故答案为:-4;87-【点睛】 本题考查了一元一次方程,熟练掌握运算法则是解题的关键22.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a 的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代 解析:4或0 ≠-1【分析】 根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】 解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3,把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 23.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可.【详解】解:设今年产品C 的销售金额应比去年增加x ,由题意得,60%(1)(160%)(145%)1x ++--=,解得:30%x =.答:今年产品C 的销售金额应比去年增加30%.故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A 和B 的销售金额和C 的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程. 24.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时.18【分析】设轮船在静水中的速度为千米小时则水流速度为千米小时由逆水速度静水速度水流速度列出方程可求解【详解】解:设轮船在静水中的速度为千米小时则水流速度为千米小时由题意可得:解得:轮船在静水中的速解析:18【分析】设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时,由逆水速度=静水速度-水流速度,列出方程,可求解.【详解】解:设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时, 由题意可得:(20)16x x --=,解得:18x =,∴轮船在静水中的速度为18千米/小时,故答案为:18.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,掌握公式:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.25.如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)【分析】设一个苹果的重量为x 一个香蕉的重量为y 一个砝码的重量为z 分别用含z 的代数式表示xy 再求即可【详解】设一个苹果的质量为x 一个香蕉的质量为y 一个砝码的质量为z 由题意得则即则故故答案为:【点睛】此 解析:32【分析】设一个苹果的重量为x 、一个香蕉的重量为y 、一个砝码的重量为z ,分别用含z 的代数式表示x ,y ,再求x y即可. 【详解】设一个苹果的质量为x ,一个香蕉的质量为y ,一个砝码的质量为z .由题意得24x z =,则2x z =,32y z x =+,即3224y z z z =+=,则43y z =, 故23423x z y z ==. 故答案为:32 【点睛】此题主要考查了等式的性质,本题先通过用z 表示x ,y ,后通过求比值而求解. 26.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.20【分析】设王老师家三月份用水x 吨根据水费=10×2+超出10吨的部分×3及水费=50即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设王老师家三月份用水x 吨依题意:解得故答案为20【点睛解析:20【分析】设王老师家三月份用水x 吨,根据水费=10×2+超出10吨的部分×3及水费=50,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设王老师家三月份用水x吨.依题意:⨯+-⨯=,x102(10)350x,解得20故答案为20.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.28.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.29.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元【分析】设亏本的那双皮鞋的进价为x元则亏本的那双皮鞋的售价为(1-10)x元盈利的那双皮鞋的售价为200-(1-10)x元盈利的那双皮鞋的进价为元根据商贩在这次销售中要有盈利即可得出关于x的一元一次解析:150【分析】设亏本的那双皮鞋的进价为x元,则亏本的那双皮鞋的售价为(1-10%)x元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x--+元,根据商贩在这次销售中要有盈利,即可得出关于x的一元一次不等式,解之即可得出结论.【详解】解:设亏本的那双皮鞋的进价为x元,则亏本的那双皮鞋的售价为(1-10%)x元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x--+元,依题意,得:(1-10%)x-x+[200-(1-10%)x]200(110%)130%x---+>0,解得:x<150.故答案为:150.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.30.在公式5(32)9c f=-中,已知20c=,则f=_____________.68【解析】【分析】把C=20代入C与f之间的关系式解方程就可以求出f的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68【解析】【分析】把C=20代入C与f之间的关系式5(32)9c f=-,解方程就可以求出f的值.【详解】由题意,得当C=20时,20=5(32) 9f-,180=5f−160,−5f=−340,f=68.。
一元一次方程填空题练习
1、4|2|=x ,则=x ________.
2、已知0)3(|4|2
=-++-y y x ,则=+y x 2__________.
3、关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.
4、现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数表示为__________________.
5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.
6、某数的3倍比它的一半大2,若设某数为y ,则列方程为____.
7、当=x ___时,代数式24+x 与93-x 的值互为相反数. 8、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ___. 9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数 ,请用一个等式表示d c b a ,,,之间的关系______________. 10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8
㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.
11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.
12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).
13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛
跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而
乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.
14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元
15、52辆车排成两队,每辆车长a 米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a =__________.
二
1.在①21x -;②213x x +=;③π3π3-=-;④13t +=中,等式有_______,方程有_______.(填入式子的序号)
2.当x = 时,代数式2+x 与代数式
2
8x -的值相等3.关于方程543=+-x 的解为_______ 4.若关于x 的方程a x x -=+332的解是2x =-,则代数式21a a -的值是_________ 5.小李在解方程135=-x a (x 为未知数)时,误将x -看作x +,解得方程的解2-=x ,则原方程的解为___________________________.
日 一 二 三 四 五 六 1 2 3 4 5 6
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 a c b d
6.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.
5.某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是_________元
6.当x =_________时, 3
1--x x 的值与1互为相反数 7、(2009年)一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润______元.
7、(2009年)“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 元钱.
8.(2009年)五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠.
9.若方程03
1=--mx x 的根为正整数,求满足条件的所有整数m. 为______ 10.某工厂引进了一批设备,使今年单位成品的成本较去年降低了20%.已知今年单位成品的成本为8元,则去年单位成品的成本为_______元.
11.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么设每台彩电成本价为x 元,可列方程为______ _ 解得x = _____。
12.关于x 的方程729+=-kx x 的解是自然数,则整数k 的值为
13.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.
14.已知等式0352=++m x 是关于x 的一元一次方程,则m =____________.
15. 自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水_______吨.
16.已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________ .
17. 礼堂第一排有x 个座位,后面每排都比前一排多2个座位,则第n 排座位
有 个.
18,某企业存入银行甲、乙两种不同用途的存款20万元,甲种存款的年利率为5.5%,乙种存款的
年利率为4.5%,该企业一年可获利息9500元,则存款数目为甲_______元,乙_______元.
19..观察下列各式:① 21112⨯=+;② 32222⨯=+;③ 43332⨯=+;……请你将第)1(≥n n 个猜想到式子的规律表示出来:
20.一个两位数,十位上的数字比个位上的数字小1,十位上的数字的和是这个两位数的15
,则这两位数是_______.
21.甲水池有31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,_______小时后,甲池的水与乙池的水一样多.
22.在ax=b 中,当a ≠0时,方程有唯一解 ;当 时,方程无解;当 时,方程有无数解。
23、某种商品的进价为200元,标价为300元,折价销售时的利润为5%,则此商品是按____折销售的.
24。
已知等式2(2)10a x ax -++=是关于x 的一元一次方程(即x 未知),则这个方程的解为______ 25,一年期定期储蓄年利率为2.25%,所得利息交纳20%的利息税,已知某储户的一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入本金是___元.
26.一通讯员骑摩托车需在规定时间内,把文件送到某地,若每小时走60千米,就早到12分钟,若每小时走50千米,则要迟到7分钟,求路程长为_______千米。