一元一次方程填空选择题
- 格式:doc
- 大小:273.00 KB
- 文档页数:13
《一元一次方程 》选择题填空题 姓名:一、常规问题1、若x =2是方程ax -3=x +1的解,那么a 等于( B ) A .4 B .3 C .﹣3 D .12、如图,数轴上A 、B 、C 三点所表示的数分别是a ,6,c ,已知AB = 8,a+c = 0,且c 是关于x 的方程(m -4)x +16 = 0的一个解,则m 的值为( A )A .﹣4B .2C .4D .63、某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为 125133=-x4、若(m +2)x |m |﹣1=5是一元一次方程,则m 的值为 25、若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,则a= 0,b= 11的值.6、在数学中,规定b a bc ad d c -=。
若13-x x 2=3,则x 的值为 17、若关于x 的方程156)1(|3|=+--+x xa a 是一元一次方程,则a 的值是-4,-3,-2,1 .8、若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为(B)A.2 B.﹣2 C.2或﹣2 D.19、把六张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a cm,宽为b cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( A )A.4bB.(3a+b) cmC.(2a+2b) cmD.(a+3b) cm10、设关于x的方程ax+3+bx+b = 0 有无穷多个解,则a b= -2711、设关于x的方程a(x-a)+b(x+b)=0有无穷多个解,则a+b = 012、如图所示,用三种大小不同的六个正方形和一个缺角的长方形拼成大长方形ABCD,其中GH=1,GK=1,设BF=x.(1)用含a的代数式表示CD=(__3a+2_)_cm.(2)用含a的代数式表示大长方形ABCD的面积.13、鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得(A)A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只14、一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分,有人得了80分,问此人答对了21道题.15、一个底面半径为10cm、高为30cm的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为10 cm16、成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是(A)A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x17、如图,宽为50cm的长方形图案由10个大小相等的小长方形拼成,其中一个小长方形的面积为()A.4000cm2B. 600cm2C. 500cm2D. 400cm218、小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x的代数式表示厨房的面积3x m2,卧室的面积3x+6 m2(2)设此经济适用房的总面积为y m2,请你用含x的代数式表示y:626+=xy(3)已知厨房面积比卫生间面积多3 m2,且铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为6720元19、已知:3x+y+z =28 , x+3y+z =14 , x+y+3z =13 , 则x代表的数字是_____217____ 20、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm,此时木桶中水的深度是___20_____cm.二、行程问题50cm1、轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距 504 千米.2、A 、B 两地相距900千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是 4或5 小时3、小明与小彬骑自行车去郊外游玩,事先决定早晨8点出发,预计每小时骑7.5千米,上午10时可到达目的地.出发前他们决定上午9点到达目的地,那么实际每小时要骑 15 千米.4、长江上有A 、B 两个港口,一艘轮船从A 到B 顺水航行要用时2h ,从B 到A (航线相同)逆水航行要用时3.5h .已知水流的速度为15km /h ,求轮船在静水中的航行速度是多少?若设轮船在静水中的航行速度为xkm /h ,则可列方程为( A ) A .(x ﹣15)×3.5=(x +15)×2 B .(x +15)×3.5=(x -15)×2 C .2155.315+=-x x D .(x +15)×2+(x -15)×3.5=1三、销售问题1、一件商品提价25%后发现销路不畅,欲恢复原价,则应降价____20%____(用百分数表示)2、某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a %增长为(a +10)%,则原利润率为____15%______3、一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%.若卖出这两件衣服商店共亏损8元,则a 的值为_________ 604、一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则售货员出售此商品最低可打 七 折5、(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( B ) A .8x +3=7x ﹣4 B .8x ﹣3=7x +4 C .8x ﹣3=7x ﹣4 D .8x +3=7x +46、小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( A )A.5x+4(x+2)=44 B.5x+4(x﹣2)=44C.9(x+2)=44 D.9(x+2)﹣4×2=447、商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是(C)A. B.C. D.8、一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是(B)A.(1+50%)x×80%=x-20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x-20 D.(1+50%x)×80%=x+209、已知某商店有甲、乙两个进价不同的计算器都卖了240元,其中一个盈利20%,另一个亏损20%,在这次买卖中,该家商店的盈亏情况是亏20元.10、某个体商贩在一次买卖中,同时卖出两件衣服,售价都是120元,若按成本计,其中一件盈利50%,另一件亏损20%,在这次买卖中他(盈利或亏损)10元11、一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利18元,则这件夹克衫的成本价为_______90__ 元。
初一一元一次方程试卷一、选择题(每题3分,共30分)1. 下列方程是一元一次方程的是()A. x^2-2x = 3B. 2x - 5 = 3x + 1C. x + y = 0D. x+(1)/(x)=12. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-33. 若x = 2是方程ax - 3 = 1的解,则a的值为()A. 2B. -2C. 1D. -14. 把方程(x)/(2)-(x - 1)/(3)=1去分母后,正确的是()A. 3x-2(x - 1)=1B. 3x - 2(x - 1)=6C. 3x-2x - 2 = 6D. 3x-2x+2 = 15. 若关于x的方程2x + m = 3x - 1的解是x = 3,则m的值为()A. -2B. -1C. 0D. 16. 解方程4x - 3(20 - x)=6x - 7(9 - x),去括号正确的是()A. 4x - 60+3x = 6x - 63+7xB. 4x - 60 - 3x=6x - 63 - 7xC. 4x - 60+3x = 6x - 63 - 7xD. 4x - 60 - 3x = 6x - 63+7x7. 某班有x名学生,分成y个学习小组,若每组7人,则余下3人;若每组8人,则不足5人,由此可得方程组()A. 7y=x - 3 8y=x+5B. 7y=x+3 8y=x - 5C. 7x+3=y 8x - 5=yD. 7y=x+3 8y=x+58. 甲、乙两人从相距24千米的A、B两地同时出发相向而行,甲的速度是2千米/小时,乙的速度是4千米/小时,两人经过x小时相遇,则可列方程()A. 2x+4x = 24B. 2x - 4x = 24C. 2x+4x=-24D. 4x - 2x = 249. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,设原数的十位数字为x,则可列方程为()A. 10x+(9 - x)+9 = 10(9 - x)+xB. 10x+(9 - x)-9 = 10(9 - x)+xC. 10(9 - x)+x-(10x+(9 - x))=9D. 10(9 - x)+x = 10x+(9 - x)+910. 关于x的方程3x + 5 = 0与3x + 3k = 1的解相同,则k的值为()A. -2B. (4)/(3)C. 2D. -(4)/(3)二、填空题(每题3分,共15分)1. 方程2x - 1 = 3x + 2的解是x=_ 。
一元一次方程练习题及答案1.判断题:1)判断下列方程是否是一元一次方程:①-3x-6x^2=7.(不是)②x+1=3.(是)③5x+1-2x=3x-2.(是)④3y-4=2y+1.(不是)2)判断下列方程的解法是否正确:①解方程3y-4=y+3,解:3y-y=3+4,2y=7,y=7/2.(错误,应为2y-4=1,y=5/2)②解方程:0.4x-3=0.1x+2,解:0.4x-0.1x=2+3,0.3x=5,x=50/3.(正确)③解方程-(x+3)/(x-1)=1,解:-x-3=x-1,2x=4,x=2.(错误,应为-2x-6=x-1,-3x=5,x=-5/3)④解方程(x+2)/2=1-x,解:x+2=2-2x,3x=-1,x=-1/3.(正确)2.填空题:1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠3.2)关于x的方程ax=3的解是自然数,则整数a的值为:1或3.3)方程5x-2(x-1)=17的解是4.4)x=2是方程2x-3=m-x的解,则m=7.5)若-2x+1=0是关于x的一元一次方程,则m=1/2.6)当y=2时,代数式5y+6与3y-2互为相反数.7)当m=0时,方程-m=0的解为0.8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为3b/a.3.选择题:1)方程ax=b的解是().A.有一个解x=b/aB.有无数个解C.没有解D.当a≠0时,x=b/a2)解方程(x-1)/4=3,下列变形中,较简捷的是()A.方程两边都乘以4,得(x-1)=12B.去括号,得4(x-1)=12C.两边同乘以4,得(x-1)=12D.整理,得x=13/43)方程2/(x-3)=-3/6的去分母得(x-3)/2=1/2,解得x=4. 4)若代数式(4x-3)/(x+15)比1大1,则x的值是-18.5)x=1是方程5x+1/(x-0.5)=9-4x/(1.3-3x)的解.1.解方程:1) 7(2x-1)-3(4x-1)=4(3x+2)-1;2) (5y+1)+(1-y)=(9y+1)+(1-3y);3) [(x-1)-4]=x+2;4) x-1=-x;5) 3-(2.5x+1.5)+2x-5=1;6) -2x-3=-2x;7) 6/(3y-4)+3y=1;8) 20%+(1-20%)(320-x)=320×40%.改写:1) 解方程:14x-10=-8x+7;2) 解方程:5y=2y;3) 解方程:x=-1;4) 解方程:x=-1/2;5) 化简方程:-0.5x+0.5=0;6) 解方程:无解;7) 化简方程:6y^2-13y+4=0;8) 解方程:x=80.2.解答下列各题:1) 当x等于1时,代数式的值相等;2) 当y等于4时,代数式的值少3;3) 当m等于4时,代数式2m-的值与代数式-3的值的和等于5;4) 解方程:(3m+1)x=m(x-4)^3;① ax+b=bx+a;(a≠b)时,解得x=(a-b)/(a-b)=1;②解方程:x^2+mx-m=0,得x=1或x=-m;5) 填空:1) x=3;2) 1/6;3) y=-2;4) a=8;5) -1;6) x=1;7) 10;8) a=2;9) 1/2;10) a+b=0.3.选择题:1) 解得h=4cm;2) 由题意得a/b=3/(x-1),化简得3x-a=b,为一元一次方程,故选C;3) 解方程得x=-2;4) 解方程得x=2/7;5) 解得x=2,故选B.4)下列方程共有几个一元一次方程:2x+3x/12x+63x-1=2(x+1)+3=3(2x+5)-2(x-1)=4x+6.答案:共有4个。
一元一次方程一、选择题1.下列等式变形正确的是( )A.如果s=12ab,那么b=2s aB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my,那么x=y2.已知关于x 的方程432x m -=的解是x m =,则m 的值是( ).A.2 B .-2 C .27 D .-27. 3.关系x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为( ) A.0 B.1 C.12 D.24.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值为( )A.12B.6C.-6D.-125.下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y D.由44153x y +-=,得12x-1=5y+206.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12a D.0.81a 7、已知y=1是关于y 的方程2-31(m -1)=2y 的解,则关于x 的方程m (x -3)-2=m 的解是( )A .1 B .6 C .34 D .以上答案均不对 8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x 米/分,则所列方程为( )A .)50(2.18)50(15x x -=+B .)50(2.18)50(15x x +=-C .)50(355)50(15x x -=+D .)50(355)50(15x x +=- 9、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是( )A.54B.27C.72D.4510、某专卖店2007年的营业额统计发现第二个月比第一个月增长10%,第三个月比第二个月减少10%,那么第三个月比第一个月( )A.增加10%B.减少10%C.不增不减D.减少1%二、填空题11. x=3和x=-6中,________是方程x-3(x+2)=6的解.12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k --的值是1,则k=_________. 14.当x=________时,代数式12x -与113x +-的值相等. 15.5与x 的差的13比x 的2倍大1的方程是__________. 16.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.18、请阅读下列材料:让我们来规定一种运算:bc ad d c ba -=,例如:243525432-=⨯-⨯=按照这种运算的规定,当x=______时,232121=-x x. 三、解答题19.(7分) 解方程:1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦;20. (7分) 解方程:432.50.20.05x x ---=.21. (8分) 已知2y +m=my-m. (1)当m=4时,求y 的值.(2)当y=4时,求m 的值.22. (10分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米?23. (10分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.24.(12分)振华中学在“众志成城,抗震救灾”捐款活动中,甲班比乙班多捐了20%,乙班捐款数比甲班的一半多10元,若乙班捐款m元.(1)列两个不同的含m的代数式表示甲班捐款数.(2)根据题意列出以m为未知数的方程.(3)检验乙班、甲班捐款数数是不是分别为25元和35元.。
第五章一元一次方程综合练习一、选择题1. 在方程3x−2=0,x=1x ,12x=12,x2−2x−3=0中,一元一次方程的个数为 ( ).(A) 1个 (B) 2个 (C) 3个 (D) 4个2. 若x=1是方程3x-m+1=0的解, 则m的值为 ( ).(A) -4 (B) 4 (C) 2 (D) -23. 下列变形中,不一定正确的是 ( ).(A) 若a=b,则a+c=b+c (B) 若a2−1=b2,则a-2=b(C) 若a=b, 则ac2+1=bc2+1(D) 若 ac= bc, 则a=b4. 若代数式4x-7与5(x−25)的值互为相反数,则x的值为 ( ).(A) -9 (B) 1 (C) -5 (D) 35. 如图所示,小红将一个正方形纸片剪去一个宽为4 cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等. 这个正方形的边长应为多少?设正方形的边长为x cm,则可列方程为 ( ).(A) 4x=5(x--4) (B) 5(x-4)=4(x-5)(C) 4x=5(x+4) (D) 5x+20=4x6. 按下面的程序计算:教辅公众号→【全科A+】例如, 当输入x=100时, 输出结果是299; 当输入x=50时, 输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有( ).(A) 1个 (B) 2个 (C) 3个 (D) 4个二、填空题7. 若(m−2)x|m|−1=3是关于x的一元一次方程,则m的值是 .8. 若关于x的方程3x=2x+a的解是方程4x+2=7-x的解的3倍, 则a的值为 .9. 故宫博物院的一些文创产品深受顾客喜爱,某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的 2 倍少 700 件,二者销量之和为 5900件,用x表示珐琅书签的销量,则可列出一元一次方程 .10. 在如图所示的3×3方阵图中,处于同一横行、同一竖列、同一斜对角线上的3个数之和都相等. 现在方阵图中已填写了一些数和代数式(其中每个代数式都表示一个数),则x的值为 ,空白处应填写的3个数的和为 .11. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2 240元,则这种商品的进价是 元.12. 等式 ax —3x=3中, 若x 是整数, 则整数a 的取值是 .三、解方程13. x-4=2-5x. 14.x −x−12=x+25−2.四、解答题15. 阅读下面一段文字:问题:0.7能化为分数形式吗?探求: 步骤①: 设.x=0.7;步骤②: 10x =10×0.7;步骤③:10x=7.7, 则 10x =7+0.7;步骤④: 10x=7+x, 解得 x =79.根据你对这段文字的理解,回答下列问题:(1) 步骤①到步骤②的依据是 ;(2) 仿照上述探求过程,请你尝试把 0.37化为分数形式.步骤①:设 x =0.37; 步骤②: 100x =100×0.37;步骤③: ;步骤④: ,解得:x=_.五、列方程解应用题16.《九章算术》是我国古代数学著作,卷七“盈不足”中有一题目译文如下:今有人合伙买羊,每人出5钱,还差45钱; 每人出7钱,还差3钱. 问合伙人数、羊价各是多少? -2 -4 3x+6 4 x -x-617. 服装厂要生产一批某种型号的学生服装,已知3m 长的某种布料可做2件上衣或3条裤子(一件上衣和一条裤子为一套),库内存有这种布料600m,问应分别用多少米布料做上衣,多少米布料做裤子才能恰好配套.18. 旅行团到某景区游览,下表所示为景区内的两种交通方式及费用. 已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人乘车,回程有10人乘车. 如果他们乘车的总花费为410元,那么此旅行团共有多少人?交通方式乘车费用去程及回程均搭乘电瓶车30元单程搭乘电瓶车,单程步行20元19. 某种绿色食品,若直接销售,每吨可获利润0.1万元;若粗加工后销售,每吨可获利润0.4万元;若精加工后销售,每吨可获利润0.7万元. 某公司现有这种绿色产品140 t,该公司的生产能力是:如果进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6t,但两种加工方式不能同时进行. 受相关条件限制,公司必须在15天内将这批绿色产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么? 最多可获利润多少元?。
初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
一元一次方程测试题(含答案)一、选择题1.对等式x 2=y 3进行变形,则下列等式成立的是( ) A .2x =3y B .3x =2y C .x 3=y 2 D .x =32y 2.如果方程x 2n−5−2=0是关于x 的一元一次方程,则n 的值为( )A .2B .3C .4D .53.下列方程的变形正确的是( )A .x 5+1=x 2,去分母,得2x +1=5xB .5−2(x −1)=x +3,去括号,得5−2x −1=x +3C .5x +3=8,移项,得5x =8+3D .3x =−7,系数化为1,得x =−734.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即12+3=15.如图①,当y =505时,b 的值为( )A .205B .305C .255D .3155.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .48=2(42﹣x )B .48+x =2×42C .48﹣x =2(42+x )D .48+x =2(42﹣x )6.方程|x|+|x −2022|=|x −1011|+|x −3033|的整数解共有( )A .1010B .1011C .1012D .20227.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3208.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为()A.21B.24C.27D.36二、填空题9.写出一个以x=−2为解的一元一次方程:(任写一个即可).10.定义运算:a⊗b=a2−2ab,例如3⊗1=32−2×3×1=3,则关于x的方程(−3)⊗x=2的解是.11.已知非负实数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5,设S=5a+4b+7c的最大值为m,最小值为n,则n−m等于.12.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.三、计算题13.解方程:x+13−x−32=1.14.在数学实践课上,小明在解方程2x−15+1=x+a2时,因为粗心,去分母时方程左边的1没有乘10,从而求得方程的解为x=4,试求a的值及原方程正确的解.四、解答题15.五一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.求甲、乙两种商品的每件进价分别是多少元?16.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?17.若|x+3|=6,|y−4|=2,且|x|−|y|≥0,求|x−y|的值.五、综合题18.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3−1|可以理解为数轴上表示3 和 1 的两点之间的距离;|3+1|可以理解为数轴上表示3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为:4-(-3).根据以上阅读材料探索下列问题:(1)数轴上表示3 和9 的两点之间的距离是;数轴上表示 2 和﹣5 的两点之间的距离是;(直接写出最终结果)(2)①若数轴上表示的数x 和﹣2 的两点之间的距离是4,则x 的值为;①若x 为数轴上某动点表示的数,则式子|x+1|+|x−3|的最小值为.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】D6.【答案】C7.【答案】C8.【答案】C9.【答案】2x=−4(答案不唯一)10.【答案】−7611.【答案】-212.【答案】76.8或4813.【答案】解:2(x+1)−3(x−3)=62x+2−3x+9=62x−3x=6−2−9−x=−5x=5 14.【答案】解:把x=4代入2(2x−1)+1=5(x+a),可得2×(2×4−1)+1=5(4+a)20+5a=15a=−1把a=−1代入原方程,可得2x−15+1=x−1 22(2x−1)+10=5(x−1) 4x−2+10=5x−54x−5x=−5+2−10−x=−13x=13∴a=−1,x=1315.【答案】解:设乙种商品每件进价为x元.由题意可得,7(x−20)+2x=760解得x=100100−20=80元答:甲商品的每件进价是80元,乙商品的每件进价100元.16.【答案】解:设初一(1)班有x人,则初一(2)班有(x-5)人,初一(3)班有[101-x-(x-5])人.①初一(1)班有20多人,不足30人,①(1)班最多29人,(2)班最多24人,则(3)班最少48人;(1)班最少21人,(2)班最少16人,则(3)班最多64人.根据题意,①当初一(3)班的人数不超过60人时,有15x+15(x −5)+12[101 −x −(x −5)]=1365;解得:x=28.①x −5=23,101 −x −x+5= 50;①当初一(3)班的人数超过60人时,有15x+15(x −5)+10[101 −x −(x −5)]=1365解得:x= −38.①人数不能为负,①这种情况不存在;答:初一(1)班有28人.初一(2)班有23人.初一(3)班有50人.17.【答案】解:由|x+3|=6可知若x+3>0,则有x+3=6,解得x=3,|x|=3若x+3<0,则有-3-x=6,解得x=-9,|x|=9由|y−4|=2可知若y-4>0,则有y-4=2,解得y=6,|y|=6若y-4<0,则有4-y=2,解得y=2,|y|=2①|x|−|y|≥0①当|x|=3时,|y|=2满足条件则|x−y|=|3−2|=1当|x|=9时,|y|=6满足条件则|x−y|=|−9−6|=|−15|=15当|x|=9时,|y|=2满足条件则|x−y|=|−9−2|=|−11|=11综上所述|x−y|的值为1,11,15 18.【答案】(1)6;7(2)-6或2;4。
一元一次方程一、选择题(共10小题,每小题3分,共30分) 1.下列等式变形正确的是( )A.如果s=12ab,那么b=2sa B.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my,那么x=y 2.已知关于x的方程432xm的解是xm,则m的值是().A.2 B.-2 C.27D.-27.3.关系x的方程(2k-1)x2-(2k+1)x+3=0是一元一次方程,则k值为( )A.0B.1C.12 D.24.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a的值为( ) A.12 B.6 C.-6 D.-125.下列解方程去分母正确的是( )A.由1132xx,得2x-1=3-3x B.由232124xx,得2(x-2)-3x-2=-4C.由131236yyyy,得3y+3=2y-3y+1-6y D.由44153xy,得12x-1=5y+20 6.某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为( ) A.0.92aB.1.12aC.1.12aD.0.81a7、已知y=1是关于y的方程2-31(m-1)=2y的解,则关于x的方程m(x-3)-2=m的解是()A.1 B.6 C.34 D.以上答案均不对8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x米/分,则所列方程为() A.)50(2.18)50(15xx B.)50(2.18)50(15xxC.)50(355)50(15xxD.)50(355)50(15xx9、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是()A.54B.27C.72D.45 10、某专卖店2007年的营业额统计发现第二个月比第一个月增长10%,第三个月比第二个月减少10%,那么第三个月比第一个月()A.增加10%B.减少10%C.不增不减D.减少1% 二、填空题(共8小题,每小题3分,共24分)11. x=3和x=-6中,________是方程x-3(x+2)=6的解. 12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k的值是1,则k=_________.14.当x=________时,代数式12x与113x的值相等.15.5与x的差的13比x的2倍大1的方程是__________.16.若4a-9与3a-5互为相反数,则a2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______. 18、请阅读下列材料:让我们来规定一种运算:bcaddcba,例如:5432=2×5-3×4=10-12=-2. 按照这种运算的规定,当x=______时,2121xx=23.三、解答题(共7小题,共66分) 19.(7分)解方程:1122(1)(1)223xxxx;20. (7分)解方程:432.50.20.05xx21. (8分)已知2y+m=my-m. (1)当m=4时,求y的值.(2)当y=4时,求m的值.22. (8分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (10分)23. (9分)请你联系你的生活和学习,编制一道实际问题,使列的方程为51-x=45+x.24. (9分)(探究题)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.(11分) 25.(10分)振华中学在“众志成城,抗震救灾”捐款活动中,甲班比乙班多捐了20%,乙班捐款数比甲班的一半多10元,若乙班捐款m元.(1)列两个不同的含m的代数式表示甲班捐款数.(2)根据题意列出以m为未知数的方程.(3)检验乙班、甲班捐款数数是不是分别为25元和35元.1.C2.A 3.C 4.D 5.C 6.D 7.B 8.C 9.D 10.D 11.x=-6 12.a=16313.k=-4 14.x=-1 [点拔]列方程12x=113x15.13(5-x)=2x+1或13(5-x)-2x=1 [点拨]由5与x的差得到5-x,5与x的差的13表示为13(5-x).16.1 17.x+(x-2)+(x-4)=1818、27[点拨]对照示例可得2x-(21-x)=23。
一元一次方程练习题一元一次方程是数学中的基础内容,对于初学者来说,通过大量的练习题来巩固知识是非常重要的。
接下来,让我们一起通过一些练习题来加深对一元一次方程的理解和掌握。
一、选择题1、方程 3x + 6 = 0 的解是()A x = 2B x =-2C x = 3D x =-32、下列方程中,是一元一次方程的是()A x²+ 2x 3 = 0B 2x 3y = 5C 3x 4 = 2xD 4x 3 = 03、将方程 2x 1 = 3x + 2 移项后可得()A 2x 3x = 2 + 1B 2x + 3x =-2 + 1C 2x 3x =-2 1D 2x +3x = 2 14、若关于 x 的方程 2x + a 4 = 0 的解是 x =-2,则 a 的值为()A 8B 0C 2D -85、一个数的 3 倍加上 6 等于这个数的 5 倍减去 8,设这个数为 x,则可列出方程()A 3x + 6 = 5x 8B 3x 6 = 5x + 8C 3x + 6 = 8 5xD 5x + 8 =3x 6二、填空题1、若 x = 3 是方程 2x k = 1 的解,则 k =______。
2、方程 4x =-2 的解是 x =______。
3、已知方程 3x + m = 0 的解是 x = 1,则 m =______。
4、若代数式 2x 3 与 x + 9 的值互为相反数,则 x =______。
5、一个长方形的周长为 20cm,若长为 xcm,宽比长少 2cm,则可列出方程______。
三、解答题1、解方程:5x 7 = 3x + 11解:移项,得 5x 3x = 11 + 7合并同类项,得 2x = 18系数化为 1,得 x = 92、解方程:2(x 3) + 3(2x 1) = 7解:去括号,得 2x 6 + 6x 3 = 7移项,得 2x + 6x = 7 + 6 + 3合并同类项,得 8x = 16系数化为 1,得 x = 23、某班学生分成两组参加植树活动,甲组有 17 人,乙组有 25 人。
一元一次方程练习题(含答案)一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是()A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
A、B、C、D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A.B.C.D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m=。
12.若与是同类项,则m=,n=。
13.方程用含x的代数式表示y得y=,用含y的代数式表示x得x=。
14.当x=________时,代数式与的值相等.15.在400米的环形跑道上,男生每分钟跑320米,女生每分钟跑280米,男女生同时同地同向出发,t分钟第2次相遇,则t=。
7上一元一次方程填空选择题
一.选择题(共19小题)
D
如果=
.3(x﹣1)=2变形得3x﹣1=2 B
x﹣1=x变形得3x﹣6=2x x=
,那么=
=4
m﹣2
7.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程
|m|﹣2
变形得x=1
变形得3x=6.
10.如图,天平中的物体a、b、c使天平处于平衡状态,则物体a与物体c的重量关系是()
11.若等式x=y可以变形为,则有()
由
C.
C.16.(2013•滨州)把方程变形为x=2,其依据是()
17.下面等式变形:
①若a=b,则=;②若=,则a=b;
③若4a=7b,则=;④若=,则4a=7b,
如果
,那么
19.根据下图所示,对a、b、c三种物体的质量判断正确的是()
二.填空题(共11小题)
20.关于x的方程x n+1﹣(2n﹣3)=0是一元一次方程,则这个方程的解是_________.21.已知(a﹣3)2+|b+6|=0,则方程ax=b的解为x=_________.
22.若x=﹣2是方程mx﹣6=15+m的解,则m=_________.
23.若x=1是方程a(x﹣2)=a+2x的解,则a=_________.
24.若2x3﹣2k+2k=41是关于x的一元一次方程,则x=_________.
25.下列方程中,一元一次方程的个数是_________个.
(1)2x=x﹣(1﹣x);(2)x2﹣x+=x2+1;(3)3y=x+;(4)=2;(5)3x﹣=2.
26.若方程ax2﹣2x+ax=5是关于x的一元一次方程,则a=_________.
27.方程(a﹣3)x2+2x﹣8=7是关于x的一元一次方程,则a=_________.
28.若关于x的方程(k﹣1)x2+kx﹣6k=0是一元一次方程,求k=_________,此方程为_________.29.若2x﹣3=0且|3y﹣2|=0,则xy=_________.
30.已知|x+1|=4,(y+2)2=0,则x﹣y=_________.
7上一元一次方程填空选择题
参考答案与试题解析
一.选择题(共19小题)
D
如果=
如果
.3(x﹣1)=2变形得3x﹣1=2 B
x﹣1=x变形得3x﹣6=2x x=
,故
,那么= =4
m﹣2
7.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程
①是分式方程,故
③
|m|﹣2
变形得x=1
变形得3x=6.
,求出结果即可判断
t=,两边都除以t=
、∵﹣
﹣
10.如图,天平中的物体a、b、c使天平处于平衡状态,则物体a与物体c的重量关系是()
11.若等式x=y可以变形为,则有()
由
C.
,
﹣
)
C.
16.(2013•滨州)把方程变形为x=2,其依据是()
解:把方程
17.下面等式变形:
①若a=b,则=;
②若=,则a=b;
③若4a=7b,则=;
④若=,则4a=7b,
如果,那么
19.根据下图所示,对a、b、c三种物体的质量判断正确的是()
a=
c=
、∵>
a=
、∵>
、∵
二.填空题(共11小题)
20.关于x的方程x n+1﹣(2n﹣3)=0是一元一次方程,则这个方程的解是x=﹣3.
21.已知(a﹣3)2+|b+6|=0,则方程ax=b的解为x=﹣2.
,
22.若x=﹣2是方程mx﹣6=15+m的解,则m=﹣7.
23.若x=1是方程a(x﹣2)=a+2x的解,则a=﹣1.
24.若2x3﹣2k+2k=41是关于x的一元一次方程,则x=.
x=
.
25.下列方程中,一元一次方程的个数是2个.
(1)2x=x﹣(1﹣x);(2)x2﹣x+=x2+1;(3)3y=x+;(4)=2;(5)3x﹣=2.
26.若方程ax2﹣2x+ax=5是关于x的一元一次方程,则a=0.
27.方程(a﹣3)x2+2x﹣8=7是关于x的一元一次方程,则a=3.
28.若关于x的方程(k﹣1)x2+kx﹣6k=0是一元一次方程,求k=1,此方程为x﹣6=0.
29.若2x﹣3=0且|3y﹣2|=0,则xy=1.
x=
y=
30.已知|x+1|=4,(y+2)2=0,则x﹣y=5或﹣3.。