1-3 相对运动3-4
- 格式:ppt
- 大小:994.00 KB
- 文档页数:17
高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零;②阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
⑷频率f :振动物体单位时间内完成全振动的次数。
⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T f =1,T ωπ2=. ⑹相位ϕ:表示振动步调的物理量。
4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。
在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
一、选择题1、以下说法正确的是______A. 光导纤维有很多的用途,它由内芯和外套两层组成,外套的折射率比内芯的要大B. 做简谐运动的物体,当物体的位移为负值时,速度一定为正值,加速度一定为正值C. 在狭义相对论中,真空中光速在不同的惯性参考系中都是相同的,与光源、观察者间 的相对运动没有关系D. 在无线电波的接收中,使接收电路产生电谐振的过程叫做调谐2、以下物理学知识的相关叙述,其中正确的是(A.用透明的标准样板和单色光检查平面的平整度是利用了光的偏振B.变化的电场周围不一定产生变化的磁场C.交警通过发射超声波测量车速是利用了波的干涉原理D.狭义相对论认为,在惯性参照系中,光速与光源、观察者间的相对运动无关E.在“用单摆测重力加速度”的实验中,测量n次全振动的总时间时,计时的起始位置应选在小球运动到最低点时为宜。
3、关于狭义相对论,下列说法正确的是A.在不同的惯性参考系中,一切物理规律都是相同的B.真空中的光速在不同的惯性参考系中都是相同的C.一条沿自身长度方向运动的杆,其长度总比静止时的长D.地面上的人发现,坐在高速离开地球的火箭里的人新陈代谢变慢了,而火箭里的人发现地面上的人新陈代谢也变慢了4、根据狭义相对论下列说法正确的是A.一根竹竿沿着垂直于竹竿方向高速运动时,竹竿的长度会缩短B.对于确定的物体,无论运动速度有多大,物体的质量都不会改变C.宇宙飞船高速经过地球附近时,地球上的人观察飞船上的时钟变慢了D.宇宙飞船高速经过地球附近时,飞船上的人观察飞船上的时钟变慢了5、以下物理学知识的相关叙述,其中正确的是A.用透明的标准样板和单色光检查平面的平整度是利用了光的偏振B.变化的电场周围不一定产生变化的磁场C.交警通过发射超声波测量车速是利用了波的干涉原理D.狭义相对论认为,在惯性参照系中,光速与光源、观察者间的相对运动无关E.在“用单摆测重力加速度”的实验中,测量n次全振动的总时间时,计时的起始位置应选在小球运动到最低点时为宜。
《机械设计基础》部分习题答案第一章1-1.各种机器尽管有着不同的形式、构造和用途,然而都具有下列三个共同特征:①机器是人为的多种实体的组合;②各部分之间具有确定的相对运动;③能完成有效的机械功或变换机械能。
机器是由一个或几个机构组成的,机构仅具有机器的前两个特征,它被用来传递运动或变换运动形式。
若单纯从结构和运动的观点看,机器和机构并无区别,因此,通常把机器和机构统称为机械。
1-2. 都是机器。
1-3.①杀车机构;有手柄、软轴、刹车片等。
②驱动机构;有脚踏板、链条、链轮后轴,前轴等。
第二章2-2.问题一:绘制机构运动简图的目的是便于机构设计和分析。
问题二:(1)分析机构的运动原理和结构情况,确定其原动件、机架、执行部分和传动部分。
(2)沿着运动传递路线,逐一分析每个构件间相对运动的性质,以确定运动副的类型和数目。
(3)选择视图平面,通常可选择机械中多数构件的运动平面为视图平面,必要时也可选择两个或两个以上的视图平面,然后将其画到同一图面上。
(4)选择适当的比例尺,定出各运动副的相对位置,并用各运动副的代表符号、常用机构的运动简图符号和简单的线条来绘制机构运动简图。
(5)从原动件开始,按传动顺序标出各构件的编号和运动副的代号。
在原动件上标出箭头以表示其运动方向。
问题三:机构具有确定运动的条件是:F>0,机构原动件的数目等于机构自由度的数目。
2-3.答:铰链四杆机构有三种类型:它们是曲柄摇杆机构、双曲柄机构和双摇杆机构。
铰链四杆机构具有曲柄的条件是:(1)最短杆与最长杆长度之和小于或等于其余两杆长度之和;(2)连架杆和机架中必有一杆是最短杆。
根据曲柄存在条件还可得到如下推论:1)当最短杆与最长杆长度之和大于其余两杆长度之和时,则不论取何杆为机架,都只能得到双摇杆机构。
2)若四杆机构中最短杆与最长杆之和小于或等于其余两杆之和,当最短杆的邻边是机架时,机构成为曲柄摇杆机构;当最短杆本身为机架时成为双曲柄机构;当最短杆是连杆时成为双摇杆机构。
第一章 质点运动学一、 基本要求1.掌握位矢、位移、速度、加速度,角速度和角加速度等描述质点运动和运动变化的物理量。
2. 能借助于直角坐标计算质点在平面内运动时的速度、加速度。
3.能计算质点作圆周运动时的角速度和角加速度,切向加速度和法向加速度。
4.理解伽利略坐标,速度变换。
二、 基本内容1.位置矢量(位矢)位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段r 表示。
r 的端点表示任意时刻质点的空间位置。
r同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标系的方位。
位矢是描述质点运动状态的物理量之一。
注意:(1)瞬时性:质点运动时,其位矢是随时间变化的,即()t r r=;(2)相对性:用r描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r 可以是不相同的。
它表示了r的相对性,也反映了运动描述的相对性;(3)矢量性:r为矢量,它有大小,有方向,服从几何加法。
在直角坐标系Oxyz 中k z j y i x r++= 222z y x r r ++==r z r y r x ===γβαcos ,cos ,cos质点运动时, ()t r r= (运动方程矢量式)()()()⎪⎩⎪⎨⎧===t z z t y y t x x (运动方程标量式)。
2.位移()(),j y i x t r t t r r ∆+∆=-∆+=∆ r∆的模()()22y x r ∆+∆=∆ 。
注意:(1)r∆与r ∆:前者表示质点位置变化,是矢量,同时反映位置变化的大小和方位;后者是标量,反映质点位置离开坐标原点的距离的变化。
(2)r∆与s ∆:s ∆表示t —t t ∆+时间内质点通过的路程,是标量,只有质点沿直线运动时两者大小相同或0→∆t 时,s r ∆=∆。
3. 速度dtrd v =是描述位置矢量随时间的变化。
在直角坐标系中k v j v i v k dtdz j dt dy i dt dx dt r d v z y x++=++==222222z y x v v v dt dz dt dy dt dx v v ++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==v的方向:在直线运动中,v>0表示沿坐标轴正向运动,v <0表示沿坐标轴负向运动。
选 修3—4一、知识网络周期:g L T π2=机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F -= 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt 电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在 赫兹证实电磁波的存在电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率电磁波的发射和接收电磁波与信息化社会:电视、雷达等电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线二、考点解析考点80 简谐运动 简谐运动的表达式和图象 要求:I1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
简谐运动的回复力:即F = – kx注意:其中x 都是相对平衡位置的位移。
区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点)⑴回复力始终指向平衡位置,始终与位移方向相反⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数⑶F 回=-kx 是证明物体是否做简谐运动的依据2)简谐运动的表达式: “x = A sin (ωt +φ)”3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。
可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。
A 、简谐运动(关于平衡位置)对称、相等①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同.②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. 相对论简介 相对论的诞生:伽利略相对性原理狭义相对论的两个基本假设:狭义相对性原理;光速不变原理时间和空间的相对性:“同时”的相对性长度的相对性: 20)(1cv l l -= 时间间隔的相对性:2)(1cv t -∆=∆τ相对论的时空观狭义相对论的其他结论:相对论速度变换公式:21cv u vu u '+'= 相对论质量: 2)(1cv m m -= 质能方程2mc E =广义相对论简介:广义相对性原理;等效原理广义相对论的几个结论:物质的引力使光线弯曲引力场的存在使得空间不同位置的时间进程出现差别③对称段:经历时间相同④一个周期内,振子的路程一定为4A (A 为振幅);半个周期内,振子的路程一定为2A ;四分之一周期内,振子的路程不一定为A每经一个周期,振子一定回到原出发点;每经半个周期一定到达另一侧的关于平衡位置的对称点,且速度方向一定相反B 、振幅与位移的区别:⑴位移是矢量,振幅是标量,等于最大位移的数值⑵对于一个给定的简谐运动,振子的位移始终变化,而振幅不变思考:1、平衡位置的合力一定为0吗? (单摆)2、弹簧振子在对称位置弹性势能相等吗? (竖直弹簧振子)3、人的来回走动、拍皮球时皮球的运动是振动吗?考点81 单摆的周期与摆长的关系(实验、探究) 要求:Ⅰ1)单摆的等时性(伽利略);即周期与摆球质量无关,在振幅较小时与振幅无关2)单摆的周期公式(惠更斯)g l T π2=(l 为摆线长度与摆球半径之和;周期测量:测N 次全振动所用时间t ,则T=t/N )3)数据处理:(1)平均值法;(2)图象法:以l 和T 2为纵横坐标,作出224T gl π=的图象(变非线性关系为线性关系);4)振动周期是2秒的单摆叫秒摆摆钟原理:钟面显示时间与钟摆摆动次数成正比考点82 受迫振动和共振 要求:Ⅰ受迫振动:在周期性外力作用下、使振幅保持不变的振动,又叫无阻尼振动或等幅振动。
《运动的相对性》作业设计方案(第一课时)一、作业目标1. 巩固学生对运动相对性概念的理解。
2. 培养学生对运动现象的观察力和分析能力。
3. 提升学生运用物理知识解决实际问题的能力。
二、作业内容一、理论学习1. 学生需仔细阅读《运动的相对性》章节内容,理解并掌握相对运动的概念,包括其定义、特性及在日常生活中的应用。
二、实验操作1. 准备实验器材:学生需准备足够数量的纸飞机或小车等简易模型,以及用于测量距离的尺子。
2. 观察并实验:学生在安静环境中独立或小组合作,对同一物体(如纸飞机)在不同环境下进行投放,并记录物体的移动路径。
学生需要特别注意并观察物体的移动过程是否因为周围环境的改变而出现不同效果。
例如,先让物体在静止的桌面上移动,再让物体在行驶的车辆内移动,并对比结果。
三、问题分析1. 提出问题:学生需根据实验结果,分析物体在不同环境下移动的差异,并思考这些差异与什么因素有关。
2. 形成答案:结合所学的运动相对性原理,分析得出结论,解释这些现象的原因。
四、实践应用1. 结合生活中的实际例子:如观察公交车与街道上其他车辆的相对运动情况,分析判断不同车辆的行驶速度和方向。
2. 思考与讨论:学生可分组讨论并分享各自观察到的现象,加深对运动相对性概念的理解。
三、作业要求1. 理论学习部分需认真阅读并理解相关内容。
2. 实验操作部分要求实事求是地记录数据,实验过程中确保安全操作。
3. 提出的问题需与所观察的现象直接相关,并且尽量结合实际情况来分析和总结原因。
4. 在形成答案后进行相互讨论与分享,并与生活中的例子进行对比,将理论与实践相结合。
四、作业评价1. 对学生理论知识的学习进行评价,判断学生对相对运动概念的掌握程度。
2. 观察实验数据的真实性、完整性和规范性进行评价。
3. 分析学生对实验过程中观察到的现象及解释的合理性。
4. 综合学生在问题分析、实践应用等方面的表现进行总体评价。
五、作业反馈1. 教师需及时批改作业并给予反馈,指出学生在作业中存在的问题及改进方向。