达西定律 Darcy
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
Darcy’s law•formulated by the French hydrologist Henry•Darcy•based on the results of experiments on the flow of water through beds of sand.•widely used in petroleum engineering and geology, describing the permeability.Darcy’s law can be written as•In theory, permeability is one of rock’s properties and its value is determined by the rock itself, having nothing to do with the fluid used in labs. This theoretical permeability is called absolute permeability.•But in fact because Darcy’s law is only valid when there is no chemical reaction between the fluid and rock and when only one fluid phase completely fills the pores, the value of permeability we get using a liquid as the fluid is always a variable value. The permeability is measured in the lab using an inert gas.•Inert gas•refers to the atmospheric pressure.•kelinkenberg effect•克林肯伯格效应亦称滑脱效应,系指气体在岩石孔道中渗流特性不同于液体。
达西定律的内容和原理和适用范围
达西定律是指在流体中,当流速增加时,压力会降低,反之亦然。
这个定律是由英国物理学家亨利·达西在1799年发现的,因此得名为达西定律。
达西定律的原理是基于质量守恒和能量守恒定律。
当流体通过管道或管道中的任何其他形状的限制器时,流速会增加,因为流体必须通过更小的空间。
这会导致流体的动能增加,而静压力会降低。
这是因为动能和静压力之间存在一种平衡,当动能增加时,静压力必须降低以保持平衡。
达西定律适用于任何流体,包括气体和液体。
它可以用于各种应用,例如水力工程、空气动力学、石油工业和化学工业等。
在水力工程中,达西定律可以用于计算水流的速度和压力,以确定水力发电站的效率。
在空气动力学中,达西定律可以用于计算飞机的空气动力学性能,以确定最佳飞行速度和高度。
在石油工业和化学工业中,达西定律可以用于计算流体在管道中的流动速度和压力,以确定最佳生产率和效率。
总之,达西定律是流体力学中的一个重要定律,它描述了流体在管道中的流动行为。
它的应用范围广泛,可以用于各种工程和科学领域,是流体力学研究的基础之一。
实验一 达西定律验证实验1 实验目的和要求(1)测定均质沙柱的渗透系数K 值;(2)测定通过沙柱的渗流量与水头损失的关系,验证渗流的达西定律。
2 实验原理液体在孔隙介质中流动时,由于粘滞性作用将会产生能量损失。
达西(Henry Darcy )在1852-1855年间通过实验,总结得出渗流能 量损失与渗流速度成一次方的线性规律,后人称为达西定律。
由于渗流速度很小,故速度水头可以忽略不计。
因此总水头H 可用测压水头h 来表示,水头损失w h 可用测压水头差来表示,即,于是,水力坡度J 可用测管水头坡度来表示:12w h h h hJ L L L-∆===式中:L 为两个测压管孔之间距离;1h 与2h 为两个测压孔的测压水头。
达西通过大量实验,得到砂柱内渗流量Q 与过水断面面积A 和水力坡度J 成正比,并和砂的透水性能有关,所建立基本关系式如下:12h h Q KAKAJ L-==或者式中v 为渗流简化模型的断面平均流速,即渗流速度;系数K 为反映孔隙介质透水性能的综合系数,即渗透系数。
实验中的渗流区为一圆柱形的均质砂体,属于均匀渗流,可以认为各点的流动状态是相同的,任意点的渗流流速v 等于断面平均渗流流速,因此达西定律也可以表示为:v KJ =。
渗流雷诺数用下列经验公式求:10.750.23ee vd R n υ=⋅+式中e d 为砂样有效粒径、v 为渗流速度、υ为流体的运动粘滞系数、n 为孔隙率。
3 实验仪器或设备直立圆筒沙柱;供水箱;量筒;测压管;秒表等。
4 实验步骤(1)记录基本常数,包括实验圆筒内径D 、测孔间距L及砂样有效粒径d e、孔隙率n 与水温T。
(2)开启供水管注水,让水浸透圆筒内全部砂体并使圆筒充满水;一般按流量从大到小顺h),通过调节出水口位置高度(即序进行实验。
本次实验采用固定供水箱以及该测压水头(1h)来改变测压水头差。
待水流稳定后,即可用体积法测定渗流量。
2(3)依次调整水头,待水流稳定后进行上述测量,共测10次。
第三章:達西法則(Darcy ’s Law )與水份運動法國工程師Henri Darcy 在Dijon 城市的公共給水觀測水流經過濾沙層的流連,在1856年發現流速(q),與壓力水頭差△H 成正比,與通過濾沙厚度L 成反比,他提出L H q ∆∝ (27)或LHK q ∆=‧................................................................................... (28) K 稱為導水係數(Hydraulic Conductivity )。
這成為第一個孔隙流的公式,稱為達西法則(Darceg ’s law ),達西且發現在飽和流時,K 為常數。
q (Flux )的探討流束(q )是單位土壤(或孔隙介質)面積,在單位時間t 的流量( 或cm 3),所以可表示為sec /cm cm sec /cm A q 23==θ=............................................................ (29) θ為流率(discharge rate )。
q 的單位是流速,v 的單位,但是q 不是流速 孔隙因為一斷面積有不同的孔隙,每個孔隙有不同的流速v ,而整個斷面積有平的流速v ,但是q 也不是。
假故單位孔隙面則為A ',則A v A q '‧=‧ (30)或改寫為AA v q '‧= (31)根據定義f =A '/A ,f 為孔隙率(porosity ),所以q = v ‧f (32)因為f < 1,所以,q < v 。
q 是孔隙介質在不考慮區域性的(或微觀)流速或是平均流速,祗考慮巨觀(Macroscopic )情形下通過一個孔隙介質的流速,所以Darcy ’s 式是巨觀公式,而非微觀(micro-scopic )描述,這是很重要的觀念。
达西定律电子教材《土工技术与应用》项目组2015年3月达西定律(一)达西定律早在1856年,法国工程师达西(H.Darcy)用渗透试验装置对不同粒径的砂土进行大量的试验研究,发现渗流为层流状态时,水在砂土中的渗透流速与土样两端的水头差h成正比,而与渗径长度L成反比,即渗透速度与水力坡降成正比。
可用下列关系式表示:(1) 或 (2) 式中——断面平均渗透流速,cm/s或m/d;i——水力坡降,表示单位渗径长度上的水头损失(i=h/L);k——土的渗透系数,其物理意义是水力坡降i=1时的渗透流速,与渗透流速的量纲相同,是表示土的渗透性强弱的指标;Q——渗透流量,cm3/s或m3/d;A——垂直于渗流方向的土样截面面积,cm2或m2。
式(1)、式(2)即为达西定律(或称渗透定律)的表达式。
式(1)表示渗透速度与水力坡降的线性关系,即渗透速度与水力坡降成直线关系,如图1(a)所示。
渗透水流实际上只是通过土体内土粒之间的孔隙发生流动,而不是土的整个截面。
达西定律中的渗透速度则为土样全截面的平均流速,并非渗流在孔隙中运动的实际流速。
由于实际过水截面小于土体截面A,因此,实际平均渗透流速大于达西定律中的平均渗透速度,两者的关系为:(3)式(3)中 n——土的孔隙率。
(二)达西定律的适用范围达西定律是描述层流状态下渗透速度与水力坡降关系的基本规律,即达西定律只适用于层流状态。
在土建工程中遇到的多数渗流情况,均属于层流范围。
如坝基和灌溉渠道的渗透量以及基坑、水井的涌水量的计算,均可以用达西定律来解决。
研究表明,土的渗透性与土的性质有关。
(1)对于密实的黏土,其孔隙主要为结合水所占据,当水力坡降较小时,由于受到结合水的黏滞阻力作用,渗流极为缓慢,甚至不发生渗流。
只有当水力坡降达到某一数值克服了结合水的黏滞阻力作用后,才能发生渗流。
渗流速度与水力坡降呈非线性关系,如图1(b)中的实线所示。
工程中一般将曲线简化为直线关系,如图1(b)中的虚线所示,并可用下式表示:(4)式(4)中——密实黏土的起始水力坡降。
达西定律公式k全文共四篇示例,供读者参考第一篇示例:达西定律,也称为达西公式,是描述管道内流体速度与管道内径和流体密度之间关系的一个重要定律。
达西定律得名于法国工程师亨利·菲利浦·达西(Henry Philibert Gaspard Darcy),他是19世纪著名的水利工程师、地质学家和物理学家。
达西定律在流体力学和管道工程中具有广泛的应用,为工程设计和实践提供了重要的理论支持。
在流体力学中,流体的运动状态可以通过流体速度和流体压力等参数来描述。
对于管道内的流体运动,其速度与管道内径、流体密度、流体粘度等因素有着密切的关系。
达西定律描述了管道内流体速度与管道内径、流体密度之间的定量关系,为工程师们计算管道内流体速度提供了重要参考数据。
根据达西定律的公式k,管道内流体速度v与管道内径D和流体密度ρ之间的关系可以表示为:v = k√(RS/ρ)v代表流体速度,D代表管道内径,ρ代表流体密度,k是一个常数,RS是管道的雷诺数。
根据这个公式,我们可以看出,流体速度与管道内径的平方根成反比,与流体密度成正比。
这个公式不仅可以帮助工程师们计算管道内流体速度,还可以帮助他们进行管道设计和优化。
达西定律公式k的推导过程比较复杂,需要考虑流体力学和物理学的知识。
在推导公式k的过程中,工程师们需要考虑管道内流体的黏性和流态特性,雷诺数的影响等因素。
通过合理的推导和分析,工程师们可以得到关于管道内流体速度的精确计算公式,为工程设计和实际应用提供了有力的支持。
达西定律公式k在管道工程领域具有广泛的应用价值。
在城市供水、排水系统、化工工程、石油管道等领域,工程师们都需要依靠达西定律公式k来计算管道内流体速度,从而确保管道系统的正常运行和安全性。
通过合理地使用达西定律公式k,工程师们可以优化管道设计,提高系统效率,并减少能源消耗和运行成本。
达西定律公式k是管道工程领域中一个非常重要的理论工具,它帮助工程师们理解管道内流体速度与管道内径、流体密度之间的关系,为工程设计和实践提供了坚实的理论基础。
达西定律Darcy’s Law
反映水在岩土孔隙中渗流规律的实验定律。
由法国水力学家 H.-P.-G.达西在1852~1855年通过大量实验得出。
其表达式为
Q=KFh/L
式中Q为单位时间渗流量,F为过水断面,h为总水头损失,L为渗流路径长度,I=h/L为水力坡度,K为渗流系数。
关系式表明,水在单位时间内通过多孔介质的渗流量与渗流路径长度成反比,与过水断面面积和总水头损失成正比。
从水力学已知,通过某一断面的流量Q等于流速v与过水断面F的乘积,即Q=Fv。
或,据此,达西定律也可以用另一种形式表达
v=KI
v为渗流速度。
上式表明,渗流速度与水力坡度一次方成正比。
说明水力坡度与渗流速度呈线性关系,故又称线性渗流定律。
达西定律适用的上限有两种看法:一种认为达西定律适用于地下水的层流运动;另一种认为并非所有地下水层流运动都能用达西定律来表述,有些地下水层流运动的情况偏离达西定律,达西定律的适应范围比层流范围小。
这个定律说明水通过多孔介质的速度同水力梯度的大小及
介质的渗透性能成正比。
这种关系可用下列方程式表示:V=K[(h2-h1)÷L]。
其中V 代表水的流速,K 代表渗透力的量度(单位与流速相同, 即长度/时间),(h2-h1)÷L 代表地下水水位的坡度(即水力梯度)。
因为摩擦的关系,地下水的运动比地表水缓慢得多。
可以利用在井中投放盐或染料,测定渗流系数和到达另一井内所需的时间。
达西定律只适用于低流速条件。
在美国佛罗里达的含水层中,曾沿着多口水井,采用碳14 方法测定地下水的年龄。
结果测出渗流系数为每年7 米。
在渗透性能良好的介质中,渗流系数可高达每日6 米。
美国还测得过每日235 米的纪录。
不过,在许多地方,速率通常是每年不超过30 米。
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。