第四章 随机信号通过线性系统分析
- 格式:ppt
- 大小:632.00 KB
- 文档页数:46
随机信号分析----通过线性系统和非线性系统后的特性分析一、实验目的1、了解随机信号自身的特性,包括均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度等的概念和特性2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统和非线性系统所具有的性质3、掌握随机信号的分析方法。
4、熟悉常用的信号处理仿真软件平台:matlab、c/c++、EWB。
二、实验仪器1、256MHz以上内存微计算机。
2、20MHz双踪示波器、信号源。
3、matlab或c/c++语言环境、EWB仿真软件。
4、fpga实验板、面包板和若干导线。
三、实验步骤1、根据选题的内容和要求查阅相关的文献资料,设计具体的实现程序流程或电路。
2、自选matlab、EWB或c仿真软件。
如用硬件电路实现,需用面包板搭建电路并调试成功。
3、按设计指标测试电路。
分析实验结果与理论设计的误差,根据随机信号的特征,分析误差信号对信号和系统的影响。
四、实验任务与要求1、用matlab或c/c++语言编程并仿真2、输入信号为x(t)加上白噪声n(t),用软件仿真通过滤波器在通过限幅器后的信号y1(t),在仿真先平方律后在通过滤波器后的信号y2(t).框图如下:3、计算x(t)、a、b、c、y(t)的均值、均方值、方差、频谱、功率谱密度,自相关函数,并绘出函数曲线。
五.实验过程与仿真1、输入信号的获取与分析(a)输入信号的获取按照实验要求,Matlab仿真如下:%输入信号x的产生t=0:1/16000:0.01;x1=sin(1000*2*pi*t)+sin(2000*2*pi*t)+sin(3000*2*pi*t);x=awgn(x1,5,'measured'); %加入高斯白噪声n=x-x1; %高斯白噪声(b)输入信号及其噪声的分析%输入信号x自相关系数x_arr=xcorr(x);tau = (-length(x)+1:length(x)-1)/16000;%输入信号x的频谱和功率谱x_mag=abs(fft(x,2048));f=(0:2047)*16000/2048;x_cm=abs(fft(x_arr,2048));%画出高斯白噪声n的时域图和频域图figure(1)subplot(1,2,1)plot(t,n)title('高斯白噪声n')xlabel('t/s')ylabel('n(t)')grid onsubplot(1,2,2)N=fft(n,2048);plot(f(1:length(f)/2),N(1:length(f)/2))title('高斯白噪声n的频谱图')xlabel('f/Hz')ylabel('幅值')grid on结果为:%画输入信号的时域,相关系数,频谱图和频谱图figure(2);subplot(2,2,1)plot(t,x)title('输入信号x')xlabel('t/s');ylabel('x(t)');grid on;subplot(2,2,2)plot(tau,x_arr)title('输入信号x的自相关系数')xlabel('\tau/s')ylabel('R_x_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),x_mag(1:length(f)/2)) title('输入信号x的频谱')xlabel('f/Hz')ylabel('幅值')grid on;subplot(2,2,4)plot(f(1:length(f)/2),x_cm(1:length(f)/2)) title('输入信号x的功率谱')xlabel('f/Hz')ylabel('S_x_i(f)')结果如下图:2、带通滤波器的频谱和相频特性[B,A]=butter(8,[1500/(16000/2) 2500/(16000/2)]); figure(3)freqz(B,A,2048)title('带通滤波器的频率特性曲线')grid on结果作图如下:3、输入信号通过带通滤波器后的信号a%信号通过带通滤波器后,过滤出2khz分量,得到信号a a=filter(B,A,x);%信号a的自相关系数a_arr=xcorr(a);%信号a的频谱和功率谱a_mag=abs(fft(a,2048));a_cm=abs(fft(a_arr,2048));%画出信号a的时域图,自相关系数,频谱图和功率谱图figure(4)subplot(2,2,1)plot(t,a)title('通过带通滤波器后的信号a')xlabel('t/s');ylabel('a(t)');subplot(2,2,2)plot(tau,a_arr)title('信号a的自相关系数')xlabel('\tau/s')ylabel('R_a_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),a_mag(1:length(f)/2)) title('信号a的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),a_cm(1:length(f)/2)) title('信号a的功率谱')xlabel('f/Hz')ylabel('S_a_i(f)')作图如下:4、输入信号x通过平方律检波器的信号b%平方律检波器的传输特性为y=m*x^2,k\m=1b=1:length(x);for k=1:length(x)if(x(k)>0)b(k)=x(k)^2;elseb(k)=0;endend%信号b的自相关系数b_arr=xcorr(b);%信号b的频谱和功率谱b_mag=abs(fft(b,2048));b_cm=abs(fft(b_arr,2048));%画出信号b的时域图,自相关系数,频谱图和功率谱figure(5)subplot(2,2,1)plot(t,b)title('通过平方检波器后的信号b')xlabel('t/s');ylabel('b(t)');subplot(2,2,2)plot(tau,b_arr)title('信号b的自相关系数')xlabel('\tau/s')ylabel('R_b_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),b_mag(1:length(f)/2)) title('信号b的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),b_cm(1:length(f)/2)) title('信号b的功率谱')xlabel('f/Hz')ylabel('S_b_i(f)')作图如下:5、信号a通过限幅器后的信号y1%限定幅度最大为0.5,大于0.5的取0.5y1=0:length(a)-1;for k=1:length(a)if(a(k)>0.5)y1(k)=0.5;else if(a(k)<-0.5)y1(k)=-0.5;elsey1(k)=a(k);endendend%信号y1的自相关系数y1_arr=xcorr(y1);%信号y1的频谱和功率谱y1_mag=abs(fft(y1,2048));y1_cm=abs(fft(y1_arr,2048));figure(5)%画出信号y1的时域图,自相关系数,频谱图和功率谱图figure(6)subplot(2,2,1)plot(t,y1)axis([0 0.01 -1 1])title('信号a通过限幅器后的信号y1')xlabel('t/s');ylabel('y1(t)');subplot(2,2,2)plot(tau,y1_arr)title('信号y1的自相关系数')xlabel('\tau/s')ylabel('R_y_1_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),y1_mag(1:length(f)/2))title('信号y1的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),y1_cm(1:length(f)/2))title('信号y1的功率谱')xlabel('f/Hz')ylabel('S_y_1_i(f)')作图如下:6、信号b通过带通滤波器器后的信号y2%信号a通过带通滤波器后,过滤出2khz分量,得到信号y1 [B,A]=butter(8,[1900/(16000/2) 2100/(16000/2)]);y2=filter(B,A,b);%信号a的自相关系数y2_arr=xcorr(y2);%信号a的频谱和功率谱y2_mag=abs(fft(y2,2048));y2_cm=abs(fft(y2_arr,2048));%画出信号a的时域图,自相关系数,频谱图和功率谱图figure(7)subplot(2,2,1)plot(t,y2)title('信号b通过带通滤波器后的信号y2')xlabel('t/s');ylabel('y2(t)');subplot(2,2,2)plot(tau,y2_arr)title('信号y2的自相关系数')xlabel('\tau/s')ylabel('R_y_2_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),y2_mag(1:length(f)/2)) title('信号y2的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),y2_cm(1:length(f)/2))title('信号y2的功率谱')xlabel('f/Hz')ylabel('S_y_2_i(f)')作图如下:7、通过matlab计算x(t)、a、b、c、y(t)的均值、均方值、方差(a)输入信号x的均值,方差和均方值x_mean=mean(x)x_var=var(x)x_st=x_var+x_mean^2结果得:x_mean = 0.0200x_var =1.9562x_st =1.9566(b)信号a的均值,方差和均方值a_mean = mean(a)a_var=var(a)a_st=a_var+a_mean^2a_arr=xcorr(a);结果得:a_mean =-0.0051a_var =0.4908a_st = 0.4908(c)信号b的均值,方差和均方值b_mean=mean(b)b_var=var(b)b_st=b_var+b_mean^2结果得:b_mean =0.9755b_var = 6.2748b_st = 7.2264(d)信号y1的均值,方差和均方值y1_mean=mean(y1)y1_var=var(y1)y1_st=y1_var+y1_mean^2结果得:y1_mean =-0.0054y1_var = 0.1616y1_st =0.1617(e)信号y1的均值,方差和均方值y2_mean = mean(y2)y2_var=var(y2)y2_st=y2_var+y2_mean^2结果得:y2_mean =-0.0035y2_var = 1.3080y2_st =1.30806.实验中遇到的问题在刚开始做实验时,理论知识都没有学完,对于很多概念仍不清晰。
第四章 随机信号通过非线性系统的分析4.1 通信中常见的非线性系统从电子设备各组成部分的作用结果看,基本上可以把它们划分成线性系统和非线性系统两大类,非线性系统与线性系统有两个重要方面不同;1.一般来说对于线性系统的解,入们通常能够求得封闭形式的表达式,而对非线性系统来说,这一点并不是总能实现的。
人们往往不得不满足于找出收敛于真实解的近似函数,或者对真实解作出估计。
因此同线性系统比较起来人们一般不能确切地知道什么是非线性系统的精确解。
2.分析非线性系统相对于线性系统来说一般涉及的数学在概念上更高深,在内容上则更繁杂。
由于线性系统的本质特征是叠加原理,因此非线性系统也可以理解为不满足叠加原理的系统。
本章主要是研究随机信号通过非线性系统的分析。
在对非线性系统的分析中,也可划分成无惰性和惰性两种情况。
如果在某个瞬时t 的输出随机信号,只取决于同一瞬时的输入随机信号,那么我们可以用一个函数关系把它表示为()[()]Y t g X t =式中g[]代表某种非线性函数关系。
这样的非线性关系,我们称之为无惰性的。
凡在一个非线性系统中,只要有贮能元件存在,它就会有惰性。
但在有些情况下,可以把非线性系统中的贮能元件,归并在非线性系统的输入及输出的线性系统中。
换句话说,即使我们遇到了一个非线性的有惰性的系统,往往可以作某种折合或等效归并到下一级的输入电路或前级的输出电路中去。
表示非线性系统特性的()g x 通常可以用实验的方法得到,如电子管、半导体器件的伏安特性曲线。
为了要进行理论分析,往往是在实验的基础上,采用各种渐近方法求出()g x 。
从理论上讲,比较方便的有多项式,折线和指数等渐近方法。
每种方法各具有优缺点,因为所要求的渐近精确性和解析表达式的简单性往往是有矛盾的,通常在它们之间只能采用折衷的方法去处理这种矛盾。
在通信当中,主要有下列几个简单的非线性系统:通过非线性系统, 我们一般化放大器和衰减器的概念。
例如, 一个·模拟放大器输出的电压不会高于它们的动力供给电压,这就导致了峰值剪 (clipping ). 这种形式的非线性系统为:(())Ax t θy(t)=Clib 这里,,,x x x Clip x θθθθθθθ≥⎧⎪-<<⎪=⎨--≥⎪⎪⎩与峰值剪相对应的一种非线性系统是 中心剪 (center clipper ), 其式为:0,||(),x y C x x θθ<⎧==⎨⎩其它中心剪显然是一个非线性的,从其表达式看很难想象它的用处,其实,它在语音处理中有很重要的应用。