霍尔效应法测量螺线管磁场
- 格式:doc
- 大小:198.00 KB
- 文档页数:4
实验四 霍尔效应法测定螺线管磁场分布霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于半导体材料的霍尔效应显著而得到了发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
一、实验目的1.了解霍尔效应现象,掌握其测量磁场的原理。
2.测绘霍尔元件的S H I -U ,M H I -U 曲线,了解霍尔电压H U 与霍尔元件工作电流S I ,霍尔电压H U 与励磁电流M I 之间的关系。
3.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
二、实验仪器螺线管磁场实验仪,电压表,电流表,电流源。
三、实验原理1.霍尔效应图4-1 霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在两侧的聚积,从而形成附加的横向电场。
如图4-1所示,磁场B 位于z 的正向,与之垂直的半导体薄片上沿x 正方向通以电流S I (称为工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流S I 相反的x 负向运动。
由于洛仑兹力L F 作用,电子向图中虚线箭头所指的y 轴负方向偏转,并使B 侧电子积累,A 侧正电荷积累,形成从A 到B 的电场,这个电场称为霍尔电场H E ,相应的电势差称为霍尔电压H U 。
此时,运动的电子受到向上的电场力E F 的作用,随着电荷的积累,E F 增大,当两力大小相等时,电子积累达到动态平衡。
设电子以平均速度v 向x 负方向运动(图1),在磁场B 的作用下,电子所受的洛仑兹力为B v e F L =式中,e 为电子电量,v 为电子漂移平均速度,B 为磁感应强度。
霍尔效应法测量螺线管磁场分布霍尔效应法测量螺线管磁场分布1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。
近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。
用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。
在科学技术发展中,磁的应用越来越被人们重视。
目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A大电流测量仪,电功率测量仪等。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。
目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。
例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。
通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法.实验原理1.霍尔效应霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差.霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力)(B v q F B⨯= (1)式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即qE B v q =⨯)( (2)这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。
实验十二 霍尔效应法测定螺线管轴向磁感应强度分布一、实验目的1. 掌握测试霍尔器件的工作特征。
2. 学习用霍尔效应测量磁场的原理和方法。
3. 学习用霍尔器件测绘长值螺线管的轴向磁场分布。
二、实验原理1.霍尔效应法测量磁场原理。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流磁场的方向上产生正负电荷的聚积,从而形状附加的横向电场。
对于图12—1所示的半导体式样。
若在X 方向通以电流s I ,在Z 方向划磁场B ,则在Y 方向即式样A , A '电极两侧就开始聚积异号电荷二产生相应的附加电场——霍尔电场》。
电场的指向取决于式样的导电类型。
显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE 与洛仑兹力B e ν相等时,样品两侧电荷的积累就达到平衡,故有H eE =B e ν (12-1)其中H E 为霍尔电场,ν是载流子在电流方向上的平均漂移速度。
图12-1 半导体试样设试样的宽为b 、厚度为d 、载流子浓度为n ,则bd ne I s ν= (12-2)由(12-1)、(12-2)两式可得dBI R dBI ne b E V S Hs H H ====1 (12-3) 即霍尔电压H V (A 、 A '电极之间的电压)与B I S 乘积成正比、与试样厚度d 成反比。
比列系数neR H 1=称为霍尔系数,它是反映材料的霍尔效应强弱的重要参数。
霍尔器件就是利用上述霍尔效应制成的电磁转换原件,对已成品的霍尔器件。
其H R 和d 已知。
因此在实用上就将(12-3)式写成B I K V s H H = (12-4)其中dR K H H=称为霍尔器件的灵敏度(其值由制造厂家给出),它表示该器件在单位工作电流和单位磁感应强度下输出的霍尔电压。
(12-4)式中的s I 单位取为B mA 、为H V KGS 、为,mV 则H K 的单位为)/(KGS mA mV ∙。
实验十一用霍尔效应法测定螺线管轴向磁感应强度分布一、实验目的1、掌握测试霍尔器件的工作特性;2、学习用霍尔效应测量磁场的原理和方法;3、学习用霍尔器件测绘长直螺线管的轴向磁场分布。
二、实验仪器TH-S型螺线管磁场测定实验组合仪。
图11-1三、实验原理1、霍尔效应法测量磁场原理把一半导体薄片放在磁场中,并使片面垂直于磁场方向,如在薄片纵向端面间通以电流,那么,在薄片横向端面间就产生一电势差,这种现象叫做霍尔效应,所产生的电势差叫做霍尔电压,用以产生霍尔效应的半导体片称为霍尔元件。
霍尔效应是由于运动的电荷在磁场中受到洛伦兹力的作用而产生的,如图(11-1)所示,当电子以速率v沿X轴的反方向从霍尔元件的N端面向M端面运动时,电子所受到的沿Z轴方向、强度为B的磁场的作用力为f B=-evB(11-1)式中e为电子电量的绝对值。
f B为电子受到的洛伦兹力,它使电子发生偏移,从而在霍尔元件的P端面聚积起正电荷,在S端面积聚起负电荷,于是在P、S端面间就形成一个电场E H ,称为霍尔电场。
霍尔电场又将产生阻碍电子偏移的电场力f E ,当电子所受到的电场力与磁场力达到动态平衡时,有f E = f B 或 eE H = evB (11-2) 其中v 为电子的漂移速度。
这时,电子将沿X 轴的反方向运动,但此时已在P 端面和S 端面间形成一个电势差V H ,这就是霍尔电压。
设元件的宽度为b ,厚度为d ,电子浓度为n ,则通过霍尔元件的电流为 I=-nevbd (11-3)由(11-2)和(11-3)式可得dIBR d IB ne b E V HH H ==⋅=1 (11-4) 即霍尔电压与IB 乘积成正比,与元件厚度d 及电子浓度n 成反比,故采用半导体材料做霍尔元件,并切割得很薄(约0.2mm 左右)。
其中比例系数neR H 1-= 称为霍尔系数,若令 -H K ned =1, 则 V H =K H IB (11-5) 式中K 为霍尔元件的灵敏度,其值已标在仪器上,它表示该器件在单位工作电流和单位磁感应强度下输出的霍尔电压,它的单位取I 为mA 、B 为KGS 、V H 为mV ,则K H 的单位为mV/(mA .KGS )。
霍尔效应测量螺线管磁场实验报告一、实验目的。
本实验旨在通过霍尔效应测量螺线管中的磁场强度,进一步了解霍尔效应在磁场测量中的应用,加深对磁场的理解。
二、实验仪器和设备。
1. 螺线管。
2. 直流电源。
3. 示波器。
4. 霍尔元件。
5. 电阻箱。
6. 万用表。
三、实验原理。
当螺线管通以电流时,产生的磁场会使螺线管内的载流子受到洛伦兹力的作用,从而在螺线管的两端产生电势差。
这种现象被称为霍尔效应。
利用霍尔效应,我们可以测量螺线管中的磁场强度。
四、实验步骤。
1. 将螺线管连接至直流电源,并调节电流强度为一定数值。
2. 将霍尔元件连接至示波器,观察示波器的显示情况。
3. 调节电流强度,使示波器显示出最大的霍尔电压信号。
4. 利用万用表测量霍尔电压和电流的数值。
5. 调节电流强度,重复步骤3和步骤4,记录不同电流强度下的霍尔电压和电流数值。
五、实验数据处理。
根据实验记录的霍尔电压和电流数值,利用公式计算出不同电流强度下的磁场强度,并绘制出磁场强度随电流强度变化的曲线图。
六、实验结果分析。
根据实验数据处理得到的曲线图,我们可以清晰地观察到螺线管中磁场强度随电流强度的变化规律。
通过分析曲线图,我们可以得出螺线管中磁场强度与电流强度之间的定量关系,进一步验证了霍尔效应在磁场测量中的应用。
七、实验结论。
本实验通过霍尔效应成功测量了螺线管中的磁场强度,得出了磁场强度与电流强度之间的定量关系。
实验结果符合霍尔效应的理论预期,验证了霍尔效应在磁场测量中的应用。
八、实验总结。
通过本次实验,我们进一步了解了霍尔效应在磁场测量中的应用,掌握了利用霍尔效应测量螺线管磁场的方法。
同时,实验中我们也发现了一些操作上的注意事项,对于今后的实验操作有了更加深入的认识。
九、参考文献。
1. 《霍尔效应在磁场测量中的应用》,物理学报,2008年。
2. 《霍尔效应测量螺线管磁场实验指导书》,XX大学物理实验室,2019年。
十、致谢。
感谢实验指导老师对本次实验的指导与帮助,让我们更加深入地了解了霍尔效应在磁场测量中的应用。
研胳wZprtf霍尔效应法测量螺线管磁场实验报告【实验目的】1•了解霍尔器件的工作特性。
2•掌握霍尔器件测量磁场的工作原理。
3•用霍尔器件测量长直螺线管的磁场分布。
4.考查一对共轴线圈的磁耦合度。
【实验仪器】长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。
【实验原理】1•霍尔器件测量磁场的原理图1霍尔效应原理如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。
将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速ur ir u度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累urn过量的负电荷,2侧积累过量的正电荷。
因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由数显电压表测量并显示出来。
如果半导体中电流I是稳定而均匀的,可以推导出式中,R H为霍耳系数,通常定义K H R H /d ,由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下,U H R HU H满足:世K H IB , dK H称为灵敏度。
研島加吋与B有一一对应关系。
2•误差分析及改进措施由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B、丨方向。
如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。
霍尔效应和霍尔效应法测量螺线管线圈内的磁场霍尔效应是一种基于磁场和电场相互作用的物理现象,它可用于测量导体片中的电子浓度、电荷密度和磁场强度等参数。
在实际应用中,霍尔效应主要用于测量磁场强度,特别是在研究电流传输和电子器件中的磁场分布时。
常用的测量方法是通过将霍尔片置于磁场中,测量霍尔电压的大小和方向来确定磁场强度及其方向。
在测量螺线管线圈内的磁场时,最常用的方法是采用霍尔效应法。
测量时,将一个霍尔片置于螺线管线圈的中心,使其与磁场垂直。
当螺线管中有电流流过时,会产生一个稳定的磁场,霍尔片中的电子受磁场作用会分布在霍尔片表面,从而形成一个电荷层。
由于霍尔片的电阻极小,因此当磁场作用在电子上时,电子在霍尔片内部形成的电场可以产生一个微小的电压,即霍尔电压。
霍尔电压的大小与磁场强度成正比,并且具有极高的精度和稳定性,因此可以用来测量螺线管线圈内的磁场强度及其方向。
在实际应用中,霍尔效应法的测量精度受到许多因素的影响,例如霍尔片的材料、尺寸和温度等因素,以及测量电路的噪声和干扰等因素。
因此,在进行霍尔效应法测量时,需要采取一系列的措施来减小误差,提高测量精度。
一些工业和科研领域使用螺线管制造强磁场,例如MRI设备,核磁共振仪器以及磁力计等。
在这些设备中,螺线管的磁场强度和分布对设备的性能和精度有着重要的影响。
因此,对螺线管中磁场的测量具有重要的意义。
在螺线管中测量磁场时,使用霍尔效应法具有许多优点,例如测量精度高、对磁场分布的敏感性强、不需要接触对象、测量过程简便等。
但是,在实际应用中还需要考虑到许多不同的因素,例如霍尔片的选取、测量电路的搭建、磁场的影响等。
只有在全面考虑这些因素的情况下,才能够保证测量结果的准确性和可靠性。
霍尔效应法测量螺线管磁场实验报告
【实验目的】
1.了解霍尔器件的工作特性。
2.掌握霍尔器件测量磁场的工作原理。
3.用霍尔器件测量长直螺线管的磁场分布。
4.考查一对共轴线圈的磁耦合度。
【实验仪器】
长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。
【实验原理】
1.霍尔器件测量磁场的原理
图1 霍尔效应原理
如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。
将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =⨯作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。
因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE =,与m e F ev B =⨯反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。
如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足:
H H H IB U R K IB d
=⋅=⋅, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。
由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。
2.误差分析及改进措施
由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方
向。
如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,
将线路完全接通后,可以调节滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等势电势差,而
且还可以测出不等势电势差的大小。
本霍尔效应测磁仪的霍
尔电压测量部分就采用了这种电路,使得整个实验过程变得
较为容易操作,不过实验前要首先进行霍尔输出电压的调零,
以消除霍尔器件的“不等位电势”。
在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。
3.载流长直螺线管中的磁场
从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。
对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。
如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则
(1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于:
00B NI μ=
式中0μ——真空磁导率;N ——单位长度的线圈匝数;I ——线圈的励磁电流。
(2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为:
1012
B NI μ= 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。
图 2 0B 012B O 3
4.亥姆霍兹线圈及其耦合度
两个匝数相等、间距等于其半径,并通以同向、等值电流的共轴线圈,叫亥姆霍兹线圈,如图4所示。
下面,我们来研究亥姆霍兹线圈两圆心间轴线上的磁场。
设图4中每个线圈为N 匝,两线圈间距为a ,取线圈轴线上距两线圈等距离的点O 为原点,轴线为x 轴,则在两线圈圆心1O 和2O 之间轴上任意一点P (其坐标为x )到两线圈圆心的距离分别是2a x ⎛⎫+
⎪⎝⎭和2
a x ⎛⎫- ⎪⎝⎭,两线圈在点产生的磁感应强度的大小分别是和: 20132221
22NR I
B a R x μ=⋅⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,2023222122NR I B a R x μ=⋅⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。
因1B 、2B 的方向相同,都在x 轴的正方向,所以点P 的总磁场为:
20123322222211222NR I B B B a a R x R x μ⎧⎫⎪⎪⎪⎪⎪⎪=+=⋅+⎨⎬⎪⎪⎡⎤⎡⎤⎛⎫⎛⎫⎪⎪+++-⎢⎥⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭。
在点O 处,因0x =且a R =,所以:
3
2004()0.7165NI B O B R μ⎛⎫=⋅≈ ⎪⎝⎭。
在1O 和2O 点的B 大小相等:
01203/211()()0.677222NI B O B O B R μ⎛⎫==⋅+≈ ⎪⋅⎝⎭。
1O 和2O 点之间其它各点的值介于1()B O 和()B O 之间,可见在亥姆霍兹线圈轴线上,O 点的磁场最强,O 和1O 之间的B 相对变化量不大于6%,磁场均匀性较好。
在生产和科研中,当所需磁场不太强时,常用这
图4
种方法来产生较均匀的磁场。
从以上叙述来看,当两共轴线圈之间的间距等于线圈的半径时,将构成亥姆霍兹线圈,从而可以得到场强不太强的均匀磁场,但当这一对共轴线圈的间距不等于半径时,其轴线上的磁场分布将随着距离的改变而改变,可呈现出如图5的a 、b 、c 所示的欠耦合、耦合,过耦合状态,两线圈的磁场耦合度可以通过霍尔器件来测量。
5. 仪器介绍
霍尔效应测磁实验仪是利用n 型锗(Ge )霍尔器件作为测磁传感器的物理实验仪器,它由以下几部分组成:霍尔测磁传感器,使用四芯屏蔽式耦合电缆,霍尔效应测磁仪以数显形式提供0~800mA 的励磁电流、0~10mA 的霍尔片工作电流及显示被测量的霍尔电势(后有换档开关)。
长直螺线管:L=30cm ,N =4×9T/cm ,R =1.7cm 。
共轴线圈对:D =17.2cm ,N =320匝(每个)。
【实验内容】
1.测量螺线管轴线上的磁场
2.考查一对共轴线圈的耦合度
3.考察霍尔电压与霍尔器件工作电流的关系。
实验数据: 图5
a
b c。