- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 总之,波导双孔定向耦合器是依靠波的 相互干涉而实现主波导的定向输出, 在耦 合口上同相叠加, 在隔离口上反相抵消。 为了增加定向耦合器的耦合度,拓宽工 作频带, 可采用多孔定向耦合器,
二 ,双分支定向耦合器
• 双分支定向耦合器由主线、副线和两条分支线 组成, 其中分支线的长度和间距均为中心波长 的1/4, 如图 5 - 15 所示。 设主线入口线“①” 的特性阻抗为, 主线出口线“②”的特性阻抗 为(k为阻抗变换比), 副线隔离端“④”的特性 阻抗为, 副线耦合端“③”的特性阻抗为, 平 行连接线的特性阻抗为Z0p, 两个分支线特性 阻抗分别为和。下面来讨论双分支定向耦合器 的工作原理。
5 耦合器得用途
• 功率控制的在各个功率下都要求严格,只是在接近最大功率处更 为苛刻,此时PA的功率较大,对线性度的挑战也不叫苛刻,稍微 冒大一点可能会连带处调变参数,如ACP,Spectrum,EVM 等大幅度恶化,像有的兄弟遇到的指标跳来跳去,有时会跳fail。 另外一方面就是校准之后,小功率会比较准确而大功率会有相对 较大的误差,主要有两方面的原因,其一是功率校准时通过取点 内插法实现,在小功率模式下,PA的线性度较高,其差值得到的 直线(曲线)很接近实际的特性直线(曲线),而在大功率下, 其功率可能会接近压缩,曲线会有所失真,这样通过差值得到的 曲线,除非取点很多,否则很难精准模拟实际特性曲线,所以在 PA输出加一功率检测反馈回路保证功率的精确性
(5)
• 工作带宽是指定向耦合器的上述C、 I、 D、 ρ等参数均满足要求时的工作频率 范围。
B
• 波导双孔定向耦合器是最简单的波导定 向耦合器, 主、副波导通过其公共窄壁上 两个相距d=(2n+1)λg0/4 的小孔实现 耦合其中,λg0是中心频率所对应的波 导波长, n为正整数, 一般取n=0。耦合 孔一般是圆形, 也可以是其它形状。定向 耦合器的结构如下页图
1耦合度 输入端“①”的输入功率P1 ,与 耦合端的输出功率之比定义为耦 合度c,如下公式:
(2)隔离度 输入端“①”的输入功率P1和隔 离端“④”的输出功率P4之比定 义为隔离度,记作I。
(3)定向度
P3与隔离 端“④”的输出功率P4之比定义为定 向度,记作D。
(4) 输入驻波比
端口“②、 ③、 ④”都接匹 配负载时的输入端口“①”的驻 波比定义为输入驻波比,记作ρ。
• 定向耦合器的原理图
定向耦合器的性能指标
• 定向耦合器是四端口网络,如上图端口 “①”为输入端, 端口“②”为直通输出 端, 端口“③”为耦合输出端, 端口“④” 为隔离端, 并设其散射矩阵为[S]。描 述定向耦合器的性能指标有: 耦合度、隔 离度、 定向度、输入驻波比和工作带宽。 下面分别加以介绍。
耦合器
616028282
目录
1 •2 •3 •4 •5 定向耦合器。 定向耦合器的性能指标。 波导双孔定向耦合器。 双分支定向耦合器 。 耦合器对RF电路的影响。
定向耦合器
• 在微波系统中, 往往需将一路微波功率按 比例分成几路, 这就是功率分配问题。实 现这一功能的元件称为功率分配元器件, 主要包括: 定向耦合器、 功率分配器以 及各种微波分支器件。 这些元器件一般 都是线性多端口互易网络, 因此可用微波 网络理论进行分析。
• 定向耦合器是一种具有定向传输特性的 四端口元件, 它是由耦合装置联系在一起 的两对传输系统构成的。 • 如图下页图所示。 图中“①、 ②”是一 条传输系统, 称为主线;“③、④”为另 一条传输系统, 称为副线。耦合装置的耦 合方式有许多种, 一般有孔、分支线、耦 合线等, 形成不同的定向耦合器。
• 同样由A→C的两路信号为同相信号, 故 在端口“③”有耦合输出信号, 即端口 “③”为耦合端。耦合端输出信号的大 小同样取决于各线的特性阻抗。 • 下面给出微带双分支定向耦合器的设计 公式 。 设耦合端“③”的反射波电压为 |U3r|, 则该耦合器的耦合度为
各线的特性阻抗与| |关系式为
• 分支线定向耦合器的带宽受λg/4 的限制, 一般可做到, 若要求频带 更宽, 可采用多节分支耦合器。
• 根据耦合器的耦合机理, 画出如上图 b所示的 原理图。 设端口“①”入射TE10波(u+1=1), 第一个小孔耦合到副波导中的归一化出射波为 • 和, q为小孔耦合系数。假设小孔很小, 到达第 二个小孔的电磁波能量不变, 只是引起相位差 (βd), 第二个小孔处耦合到副波导处的归一化 出射波分别为和在副波导输出端口“③”合成 的归一化出射波为
• 定向耦合器的原理图
• 如图是定向耦合器的原理图,其中A、B是主馈电缆的 内导体,在接近内导体里放入一个线圈L3,其中C是L3 和内导体之间的分布电容。当有射频信号送入时,A、 B有电流I 流过,其中E是内外导体间的射频电压,由 于分布电容C的存在,那么内导体中就有一电流通过C、 R1流到外导体,这个电流在R1上将产生一个互感电压 EL3,很明显,a-b两端的输出电压E=ER1+EL3,在制造 中我们适当地选择L3和R1并在调试中改变C和互感系数 M,使得在一个方向上输出电压E为最大值(即使得ER1 和EL3在相位上是相加的),而在另一个方向上E输出 极小极小(即使得ER1和EL3在相位上是相减的),这 样我们就实现了定向耦合的作用,输出电压E通过BG1 检波后送至指示系统,这样我们就可以在指示系统上 读出机器发向天线的实际功率。
• 副波导输出端口“④”合成的归一化出 射波为 • 由此可得波导双孔定向耦合器的耦合度 为
小圆孔耦合的耦合系数为
• 式中, a、b分别为矩形波导的宽边和窄 边;r为小孔的半径;β是TE10模的相 移常数。而波导双孔定向耦合器的定向 度为当工作在中心频率时, βd=π/2, 此 时D→∞; 当偏离中心频率时, secβd具 有一定的数值, 此时D不再为无穷大。实 际上双孔耦合器即使在中心频率上, 其定 向性也不是无穷大, 而只能在30dB左右。
• 假设输入电压信号从端口“①”经A点 输入, 则到达D点的信号有两路, 一路是 由分支线直达, 其波行程为λg/4, 另一路 由A→B→C→D, 波行程为3λg/4;故两 条路径到达的波行程差为λg/2, 相应的 相位差为π, 即相位相反。
因此若选择合适的特性阻抗, 使到达的两路信号的振幅相
等, 则端口“④”处的两路信号相互抵消, 从而实现隔离