附录3 债券的久期与凸性教学文案
- 格式:ppt
- 大小:564.50 KB
- 文档页数:40
久期和凸性是衡量债券利率风险的重要指标,是衡量债券价格对利率的敏感程度.久期具有双面性,在利率上升周期,要选择久期小的债券;在利率下降周期,要选择久期大的债券.凸性具有单面性,就是凸性越大,债券的风险越小,选择凸性较大的债券,对持有者越有利。
久期描述了价格—收益率(利率)曲线的斜率,斜率大表明了作为Y轴的价格变化较大,而凸性描述了这一曲线的弯曲程度,或者是由于该曲线的非线性程度较大,使得衡量曲线斜率的这一工具变化较大,无法以统一的数字来判断,因此再次对斜率的变化进行衡量,引入凸性参数。
凸性就是债券价格对收益率曲线的二阶导数,就是对债券久期(受利率影响,对利率敏感性)的再度测量。
在利率变化很小的时候,传统的久期(是以每期现金流现值占总体现值的比)可以近似衡量债券价格和利率之间关系,但是更为精确的衡量则是修正久期。
久期(也称持续期,duration)是1938年由F。
R。
Macaulay提出的,以衡量债券利率风险最常用的指标,反映市场利率变化引起债券价格变化的幅度。
直观地讲,就是收益率变化1%所引起的债券全价变化的百分比。
久期=价格的变化幅度/单位收益率的变化它是债券在未来产生现金流的时间的加权平均,其权重是各期现金流现值在债券价格中所占的比重。
久期的计算比较麻烦,一般投资者没有必要自己去计算它。
久期取决于债券的三大因素:到期期限,本金和利息支出的现金流,到期收益率.债券的久期越大,利率的变化对该债券价格的影响也越大,因此,该债券所承担的利率风险也越大。
在降息时,久期大的债券价格上升幅度较大;在升息时,久期大的债券价格下跌的幅度也较大。
由此,投资者在预期未来降息时,可选择久期大的债券;在预期未来升息时,可选择久期小的债券.案例:某只债券基金的久期是5年,如果利率下降1个百分点,则该基金的资产净值约增加5个百分点;反之,如果利率上涨1个百分点,则该基金的资产净值要遭受5个百分点的损失.又如,有两只债券基金,久期分别为4年和2年,前者资产净值的波动幅度大约为后者的两倍。
债券的久期、凸性久期和凸性是衡量债券利率风险的重要指标。
很多人把久期简单地视为债券的到期期限,其实是对久期的一种片面的理解,而对凸性的概念更是模糊。
在债券市场投资行为不断规范,利率风险逐渐显现的今天,如何用久期和凸性量化债券的利率风险成为业内日益关心的问题。
久期久期(也称持续期)是1938年由F.R.Macaulay提出的,用来衡量债券的到期时间。
它是以未来收益的现值为权数计算的到期时间。
其公式为其中,P=债券现值,Ct=每年支付的利息,y=到期收益率,n=到期期数,M=到期支付的面值。
可见久期是一个时间概念,是到期收益率的减函数,到期收益率越高,久期越小,债券的利率风险越小。
久期较准确地表达了债券的到期时间,但无法说明当利率发生变动时,债券价格的变动程度,因此引入了修正久期的概念。
修正久期修正久期是用来衡量债券价格对利率变化的敏感程度的指标。
由于债券的现值对P 求导并加以变形,得到:我们将的绝对值称作修正久期,它表示市场利率的变化引起的债券价格变动的幅度。
这样,不同现值的券种就可以用修正久期这个指标进行比较。
由公式1和公式2我们可以得到:在某一特定到期收益率下,P为常数,我们记作P0,即得到:由于P0是理论现值,为常数,因此,债券价格曲线P与P /P 0有相同的形状。
由公式7,在某一特定到期收益率下,P /P 0的斜率为修正久期,而债券价格曲线P的斜率为P0×(修正久期)。
修正久期度量了收益率与债券价格的近似线性关系,即到期收益率变化时债券价格的稳定性。
修正久期越大,斜率的得绝对值越大,P对y的变动越敏感,y上升时引起的债券价格下降幅度越大,y下降时引起的债券价格上升幅度也越大。
可见,同等要素条件下,修正久期小的债券较修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。
但修正久期度量的是一种近似线性关系,这种近似线性关系使由修正久期计算得出的债券价格变动幅度存在误差。
如下图,对于债券B′,当收益率分别从y上升到y1或下降到y2,由修正久期计算出来的债券价格变动分别存在P1′P1"和P2′P2"的误差。
久期和凸性分析范文久期是衡量债券价格对利率变动的敏感性的指标。
它表示债券的平均回收期,即投资者从持有债券获得的现金流量的平均到期时间。
久期越长,债券价格对利率变动的敏感性越高。
久期的计算方法有两种:修正久期和加权久期。
修正久期是用来衡量债券特定到期收益率的变动对债券价格的影响。
加权久期是用来衡量整个收益率曲线上的利率变动对债券价格的影响。
久期计算公式如下:修正久期=Σ(CFt*t)/P加权久期=Σ(CFt*t*DFt)/P其中,CFt表示在第t期获得的现金流量,t表示现金流量获得的时间,DFt表示第t期的贴现因子,P表示债券价格。
凸性是衡量债券价格对利率变动的曲率的指标。
它表示债券价格变动与利率变动之间的关系。
凸性为正表示当利率上升时,债券价格下降的幅度大于利率下降时债券价格上升的幅度。
凸性为负则相反。
凸性的计算方法如下:C=(P--2P+P+)/(P*Δy^2)其中,P-表示利率下降时的债券价格,P+表示利率上升时的债券价格,Δy表示利率变动的大小。
久期和凸性的分析有助于投资者理解债券投资的风险和回报特征。
首先,久期可以帮助投资者评估债券价格对利率变动的敏感性。
当投资者预计利率上升时,可以选择久期较短的债券,降低利率上升对债券价格的影响。
其次,凸性可以帮助投资者评估利率变动对债券价格变动的曲线形状。
当投资者预计利率波动较大时,可以选择凸性较高的债券,以获得更高的回报。
此外,久期和凸性分析对债券组合管理也具有重要意义。
投资者可以通过调整久期和凸性来优化债券组合的风险和回报特征。
例如,投资者可以通过组合久期较短和久期较长的债券,实现对利率变动的敏感性的平衡。
同时,投资者还可以通过组合凸性为正和凸性为负的债券,实现对利率变动的曲线形状的平衡。
综上所述,久期和凸性分析是债券投资领域重要的工具。
久期帮助投资者理解债券价格对利率变动的敏感性,凸性帮助投资者理解债券价格对利率变动的曲线形状。
通过久期和凸性分析,投资者可以评估债券的风险和回报特征,并优化债券组合的风险和回报特征。