统计学6.非参数假设检验(精)
- 格式:ppt
- 大小:283.00 KB
- 文档页数:24
统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。
在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。
非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。
本文将介绍一些常见的非参数检验方法。
一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。
它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。
然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。
二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。
三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。
它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。
它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。
假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。
上一节我们所介绍的Z 检验、t 检验,都是参数检验。
它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。
参数检验就是要通过样本统计量去推断或估计总体参数。
然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。
这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。
非参数检验是通过检验总体分布情况来实现对总体参数的推断。
非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。
非参数检验的方法很多,分别适用于各种特点的资料。
本节将介绍几种常用的非参数检验方法。
一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。
22检验的方法主要包括适合性检验和独立性检验。
(一)2检验概述2是实得数据与理论数据偏离程度的指标。
其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。
分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。
观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。
当 f 0 与 f e 完全相同时,2值为零。
际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。
统计学中的非参数检验方法统计学是一门应用广泛的科学领域,它的应用范围涉及到社会、经济、医学、科学等各个领域。
非参数检验方法是统计学中的一种基于数据分布情况的假设检验方法,它不仅可以应用于各个领域的研究中,也是数据分析领域中不可或缺的一部分。
什么是非参数检验非参数检验是一种基于统计数据分布情况做出判断的方法,在对特定类别的数据进行假设检验的时候,不依赖于数据分布的形状,而且它可以处理许多小样本或者没有熟知的总体参数的数据。
非参数检验方法的应用范围广泛,可以用于数据汇总、逻辑推理、实验设计以及其他数据分析中的问题。
非参数检验的优势传统的统计假设检验方法是基于大样本数据的总体参数进行推断的,其可以直接获得总体参数值,但是对于小样本数据而言,则需要使用比较多的假设、术语和统计量、偏差的值来判断出研究问题的可行性,而非参数检验则可以用较少的假设来完成数据分析,避免了数据误判,降低了数据分析的难度。
非参数检验的应用非参数检验方法在实际生活中的应用,主要表现在以下几个方面:1. 样本分布非正态:如果样本数据分布不满足正态分布,这时是可以应用非参数检验方法的。
2. 样本数据较少:如果样本数据较少,传统假设检验方法会有较高的错误率,可以使用非参数检验方法来避免这种情况。
3. 样本数据有异常值:若样本数据存在严重的异常值,应用传统的假设检验方法可能会导致数据误判,此时可以应用非参数检验方法进行数据分析。
常见的非参数检验方法常见的非参数检验方法有:1. Wilcoxon符号秩检验:适合偏差没达到正态分布的样本。
2. Mann-Whitney U检验:主要用于2组样本数据非独立的情况。
3. Kruskal-Wallis检验:用于3组及以上的样本比较,判断样本总体是否有差别。
4. Friedman秩和检验:主要用于分析多组数据的内部联系。
5. Kolmogorov-Smirnov拟合检验:用于检验给定的样本是否符合特定分布。