平面直角坐标系-有序数对
- 格式:ppt
- 大小:3.04 MB
- 文档页数:41
《平面直角坐标系》知识点大全3.1确定位置:在平面内,确定一个物体的位置一般需要两个数据。
3.2平面直角坐标系1、有序数对:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,即:(a,b)2、平面直角坐标系:在平面内,两条互相垂直、且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向竖直的数轴称为y 轴或纵轴,习惯上取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0;第二象限:x<0,y>0第三象限:x<0,y<0;第四象限:x>0,y<0x 轴上的点:(x ,0)y 轴上的点:(0,y )4、距离问题:点(x ,y )距x 轴的距离为y点(x ,y )距y 轴的距离为x坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为21x x -点A (0,y 1)点B (0,y 2),则AB 距离为21y y -5、角平分线问题若点(x ,y )在第一、三象限角平分线上,则x=y若点(x ,y )在第二、四象限角平分线上,则x=-y6、对称问题:对称点坐标的特征:P(a,b)关于x 轴对称的点的坐标为(a,-b);P(a,b)关于y 轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)7、平行于坐标轴的直线上的点:平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同。
8、中点坐标:点A (1x ,0)点B (2x ,0),则AB 中点坐标为(221x x +,0)。
7.1平面直角坐标系 7.1.1 有序数对一、本节的学习目标:1.通过实例认识有序数对,感受有序数对在确定点的位置中的作用。
2.能用有序数对表示实际生活中物体的位置。
3.通过学习感受数学知识来源于生活,培养理论联系实际的意识。
二、本节的学习重难点:重点:用有序数对表示位置。
难点:对有序数对中的有序的理解。
三、学习过程:(一)新课导学自学课本64~65页练习前的内容,并完成下面的自学提纲。
【自学提纲】1.假设我们约定“列数在前,排数在后”, 请你在图中标出下列座位的同学: (1,5),(2,4),(4,2),(3,3),(5,6). 其中(2,4),(4,2)表示的是同一同学么? 答:结合课本请归纳出“有序数对”的概念.有序数对:用含有 的词表示一个确定的位置,其中各个数表示 的含义,我们把这种有 的 个数a 与b 组成的数对,叫做有序数对,记作 。
利用有序数对,可以很准确地表示出一个位置。
(二)完成第65页练习及68页第1、3、4题(直接在书上按要求完成即可). 四、通过本节的学习,总结一下自己都有哪些收获。
五、随堂检测1.如图1所示,一方队正沿箭头所指的方向前进, A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( ) A.(2,5) B.(5,2) C.(2,2) D.(5,5)3.如图1所示,如果队伍向北前进,那么A(3,4)西侧第二个人的位置是 ( ) A.(4,1) B.(1,4) C.(1,3) D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D5.小张看电影,买了一张8排10号的电影票,用有序实数对可表示为 ,如果变换有序数对的位置,所表示的位置和原来的位置 (填“相同”或“不同”).6.如图所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?236541D CB A三行六行六列五列四列三列二列一列答:六、课后作业1.如图1所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母 的下面寻找.2.如图2所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点 C 的位置为______,点D 和点E 的位置分别为______,_______.3.如图3所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点C 的位置为_______.4.如右图所示,请说出图中物体的位置.5.如下图所示,从2街4巷到4街2巷,走最短的路 线,共有几种走法? 请分别写出这些路线.7.1.2 平面直角坐标系(第一课时)一、本节的学习目标:1. 理解平面直角坐标系、坐标的含义;会根据点的位置写出坐标,根据点的坐标描出点.2. 体会特殊点的坐标特征3. 理解通过平面直角坐标系,建立了点与有序实数对的对应关系,从而把数和形结合起来. 二、本节的学习重难点:重点:平面直角坐标系和点的坐标. 难点:根据点的位置确认其坐标. 三、学习过程(一)知识回顾回顾上学期,我们学习了数轴,知道数轴是规定了 、 和的直线.如图,点A 和点B 的位置分别表示的有理数是 和 ,我们就把这两个数分别叫做点A 和点B 的坐标.(4)图3(街)(巷)2354114532(二)新课导学:自学课本65~66页思考前的内容,并完成下面的自学提纲。
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
第三节 平面直角坐标系知识解读一、 有序数对1.概念:用含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作:(),a b .注:有序数对是强调顺序的,a 与b 表示不同的含义.因此(),a b 与(),b a 顺序不同,含义也不同.二、 平面直角坐标系1.概念:在平面内画两条互相垂直,原点重合的数轴,就组成了平面直角坐标系.(1)水平的数轴称为x 轴或横轴,习惯取向右为正方向;(2)竖直的数轴称为y 轴或纵轴,取向上为正方向;(3)两坐标轴的交点称为平面直角坐标系的原点.2.坐标系中的点及点的坐标:有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.确定坐标系中点的坐标只需从这点分别向x 轴和y 轴作垂线,垂足在坐标轴上对应的数就是这一点的横坐标和纵坐标,我们把横坐标和纵坐标写成有序数对的形式就是这一点的坐标.如图:P 点的坐标为()3,2,Q 点坐标为()2,3.注:书写坐标的时候一定要把横坐标写在前面,纵坐标写在后面.3.平面内点与有序数对的关系:对于平面内任意一点M ,都有惟一的一对有序数对(),x y 和它对应对于任意一对有序数对(),x y ,在坐标平面内都有注:考察到坐标轴距离问题要注意多解,例如:横坐标3,到x 轴距离为4的点为(3,4)或(3,-4)5.象限:在直角坐标系中,两条坐标轴把平面分成四个区域,按照逆时针顺序分别称第一、二、三、四象限.注:坐标轴上的点不属于任何一个象限.原点属于两条坐标轴.6.点的位置与坐标特征(1)第一象限(),++、第二象限(),−+、第三象限(),−−、第四象限(),+−;(2)x 轴(),0x 、y 轴()0,y ;(3)一三象限角平分线(),x x 、二四象限角平分线(),x x −.巩固练习一.选择题1.在平面直角坐标系中,点(2,3)P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.点(4,2)−所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)4.将某图形的各点的横坐标减去2,纵坐标保持不变,可将该图形( )A .横向向右平移2个单位B .横向向左平移2个单位C .纵向向上平移2个单位D .纵向向下平移2个单位5.若点(1,1)P a b +−在第二象限,则点(,1)Q a b −在第( )象限.A .一B .二C .三D .四6.在平面直角坐标系xOy 中,点P 在第二象限,且点P 到x 轴的距离是4,到y 轴的距离是5,则点P 坐标是( )A .(5,4)−B .(4,5)−C .(4,5)D .(5,4)−7.在平面直角坐标系xOy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y ,则点P 的坐标为( )A.1)−B .( C.(1, D.(−8.在平面直角坐标系xOy 中,(2,4)A ,(2,3)B −,(4,1)C −,将线段AB 平移得到线段CD ,其中点A 的对应点是C ,则点B 的对应点D 的坐标为()A .(4,8)−B .(4,8)−C .(0,2)D .(0,2)−9.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .(1.9,0.7)−C .(0.7, 1.9)−D .(3.8, 2.6)−10.如图,把图①中的A 经过平移得到O (如图②),如果图①中A 上一点P 的坐标为(,)m n ,那么平移后在图②中的对应点P '的坐标为( )A .(2,1)m n ++B .(2,1)m n −−C .(2,1)m n −+D .(2,1)m n +− 二.填空题11.平面直角坐标系中,已知点(2,1)A −,线段//AB x 轴,且3AB =,则点B 的坐标为 .12.在平面直角坐标系中,点(3,1)A −−关于y 轴的对称点的坐标为 .13.点A 到x 轴的距离是3,到y 轴的距离是1,且点A 在x 轴下方,则点A 的坐标为 .14.在平面直角坐标系中,点(3,42)P m m −−不可能在第 象限.15.如图,直线12l l ⊥,在某平面直角坐标系中,x 轴1//l ,y 轴2//l ,点A 的坐标为(2,4)−,点B 的坐标为(4,2)−,那么点C 在第 象限.16.将点(2,3)P −先向右平移2个单位,再向上平移3个单位后,则平移后点P的坐标是.17.已知点(3,0)A ,点B 在y 轴上,6ABO S ∆=,则B 点坐标为 .18.若点(2,31)P m m −+在y 轴上,则点P 的坐标是 .19.若点(4,26)P a a −−在x 轴上,则点P 的坐标为 .20.在平面直角坐标系xOy 中,(4,0)A ,(0,3)B ,(,7)C m ,三角形ABC 的面积为14,则m 的值为21.平面直角坐标系xOy 中,已知线段AB 与x 轴平行,且5AB =,若点A 的坐标为(3,2),则点B 的坐标是 .22.今年清明假期164万游客游园,玉渊潭、动物园、天坛公园游客最多,如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(6,1)−,表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为 .23.在平面直角坐标系中,我们定义,点P 沿着水平或竖直方向运动到达点Q 的最短路径的长度为P ,Q 两点之间的“横纵距离”.如图所示,点A 的坐标为(2,3),则A ,O 两点之间的“横纵距离”为5.(1)若点B 的坐标为(3,1)−−,则A ,B 两点之间的“横纵距离”为 ;(2)已知点C 的坐标为(0,2),D ,O 两点之间的“横纵距离”为5,D ,C 两点之间的“横纵距离”为3.请写出两个满足条件的点D 的坐标: ,.三.解答题24.如图,在平面直角坐标系中,三角形ABC 的三个顶点分别是(1,6)A −,(4,3)B −,(1,4)C .将三角形ABC 先向右平移4个单位,再向下平移3个单位,得到三角形A B C '''.(1)请在图中画出平移后的三角形A B C ''';(2)三角形A B C '''的面积是 .25.在平面直角坐标系xOy 中,ABC ∆的三个顶点分别是(2,0)A −,(0,4)B ,(3,0)C .(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为(3,3)D −,将ABC ∆作同样的平移得到DEF ∆,点B 、C 分别与点E 、F 对应,画出平移后的DEF ∆;(3)在(2)的条件下,在坐标轴上找到点Q ,使得DFQ ∆的面积与ABC ∆的面积相等,则ABC ∆的面积为 ,点Q 的坐标为 .26.已知点(36,1)A a a −+,试分别根据下列条件,求出点A 的坐标,(1)点A 在x 轴上;(2)点A 在过点(3,2)P −,且与y 轴平行的直线上.27.如图,在正方形网格中,横、纵坐标均为整数的点叫做格点,点A 、B 、C 、O 均在格点上,其中O 为坐标原点,(3,3)A −.(1)点C 的坐标为 ;(2)将ABC ∆向右平移6个单位,向下平移1个单位,对应得到△111A B C ,请在图中画出平移后的△111A B C ,并求△111A B C 的面积;(3)在x 轴上有一点P ,使得△11PA B 的面积等于△111A B C 的面积,直接写出点P 坐标.28.如图,这是某市部分建筑分布简图,若火车站的坐标为(1,2)−,市场的坐标为(3,5),请在图中画出平面直角坐标系,并分别写出超市、体育场和医院的坐标.超市的坐标为 ;体育场的坐标为 ;医院的坐标为 .29.在平面直角坐标系xOy 中,点(0,4)A ,(6,4)B ,将点A 向右平移两个单位得到点C ,将点A 向下平移3个单位得到点D .(1)依题意在下图中补全图形并直接写出三角形ABD 的面积.(2)点E 是y 轴上的点A 下方的一个动点,连接EC ,直线EC 交线段BD 于点F ,若DEF ∆的面积等于三角形ACF 面积的2倍.请画出示意图并求出E 点的坐标.30.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单−.位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;−−,请在坐标系中标出中国人民大学的位(2)若中国人民大学的坐标为(3,4)置.。
第七章平面直角坐标系专题9 有序数对与平面直角坐标系知识要点1.有序数对:有顺序的两个数a和b组成的数对,记作(a,b),用于表示平面内点的位置.2.平面直角坐标系:平面内两条互相垂直且原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,通常取向右为正方向;竖直的数轴称为y轴或纵轴,通常取向上为正方向,两轴的交点为原点.平面直角坐标系是以数轴为基础的平面图形.坐标平面内的点和有序数对是一一对应的.3.象限:坐标轴把坐标平面分成四个象限,坐标轴上的点不属于任何象限.点P(x,y)在第一、二象限时,y>0;点P(x,y)在第三、四象限时,y<0;点P(x,y)在第一、四象限时,x>0;点P(x,y)在第二、三象限时,x<0;点P(x,y)在第一、三象限时,xy>0;点P(x,y)在第二、四象限时,xy<0.4.平面直角坐标系中的坐标特征[如图9—1所示,点A(x,y)为坐标系中任意一点](1)x轴上的点B表示为(x,0),即x轴上的点的纵坐标为0.(2)y轴上的点E表示为(0,y),即y轴上的点的横坐标为0.(3)第一、三象限角平分线(l1)上的点C横坐标和纵坐标相等,即C(x,x);笫二、四象限角平分线(l2)上的点D横坐标和纵坐标互为相反数,即D(x,-x).(4)平行于x轴的直线上的点的纵坐标相同,即y A=y E;平行于y轴的直线上的点的横坐标相同,即x A=x C=x B=x D.(5)坐标系中任意一点A(x,y)到x轴的距离为y,到y轴的距离为x.典例精析例1 如图9-2所示,在象棋盘上建立表示规则,即将第a行第b列的棋子位置用(a,b)表示,如“帅”的位置为(1,5).(1)“炮”的位置为;(2)“兵”从图中的位置走到(5,4),最少的步数为;(3)在新的表示规则下,“马”的位置表示为(8,1),则该规则将的棋子用(a,b)表示.拓展与变式1夏天常有台风侵袭福建省的沿海地区,下列说法中,能确定台风中心位置的是( ).A.福建和广东之间B.距福州280海里C.北纬24°,东经121°D.台湾海峡+=2,且m,n都是整数,求满拓展与变式2对于一种有序数对(m,n)满足等式m n足题意的所有有序数对.例2在平面直角坐标系中,点A(x2-1,3-x)在x轴上,求点A的坐标.拓展与变式3在平面直角坐标系中,点M(x2-1在y轴上,求点M的坐标.拓展与变式4 在平面直角坐标系中,点P (ab ,a +b )在第四象限,则点(a ,b )在第 象限.拓展与变式5 在平面直角坐标系中,点P (a ,在第二象限,则点a 2)在第 象限.【反思】点落在坐标轴上和某个象限内,分别能列出等式和不等式.例3 已知点A (a ,0)和点B (2,0),且AB =5,则点A 的坐标为 ____.拓展与变式6 若AB =5且AB ∥y 轴,若点A 的坐标为(3,-1),则点B 到x 轴的距离为 .拓展与变式7 已知点A (a ,0)和点B (2,0),则关于AB 中点C (k ,0),说法正确的是( ).A .点C 一定在点B 的左侧 B .点C 有可能在某一象限内C .k 表示的数一定大于1D .点(k ,1)有可能在第一、三象限的角平分线上专题突破1.(1)若a >0,则点P (a ,3)应在第 象限;(2)点P (m +3,m -2)在x 轴上,则点P 的坐标为 .2.若点P 到x 轴的距离为a ,到y 轴的距离为b ,求点P 的坐标.3.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有f [g (3,4)]=f (-3,-4)=(-3,4),那么g [f (-3,2)]等于( ).A .(3,2)B .(3,-2)C .(-3,2)D . (-3,-2)4.(1)在平面直角坐标系中,点P (m 2 +1,1m --)在第 象限;(2)在平面直角坐标系中,点P(ab,a-b)在第三象限,则点(a,b)在第象限;(3)将正整数按如图9-3所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(3,2)表示实数5,则(8,3)表示的实数是________.1 (1)2 3 (2)4 5 6 (3)7 8 9 10 (4)…图9-35.已知,在平面直角坐标系中,点P(2a-4,a+2)到两坐标轴的距离相等,求点P的坐标.。
有序数对与平面直角坐标系平面直角坐标系是数学中常用的表示二维空间的工具,通过指定一个原点和两条相互垂直的坐标轴,可以精确地定位平面上的点。
在平面直角坐标系中,有序数对起着重要的作用,它们是用来表示平面上的点的坐标。
概念有序数对是由两个数字按特定顺序排列而成的组合,通常用圆括号将这两个数字括起来。
在平面直角坐标系中,通常将有序数对按照首先给出水平方向坐标(横坐标),然后给出垂直方向坐标(纵坐标)的顺序进行排列。
例如,有序数对(2, 3)表示在平面直角坐标系中,某点的横坐标为2,纵坐标为3。
这样一对数值可以准确地确定平面上的一个点。
表示和性质有序数对可表示为(x, y),其中x表示横坐标,y表示纵坐标。
横坐标和纵坐标的取值可以是实数,也可以是整数,取决于具体问题的需求。
有序数对也可以表示为向量。
向量是具有大小和方向的量,可以用箭头表示。
在平面直角坐标系中,向量的起点为原点,终点为对应点的有序数对。
有序数对还具有一些性质,比如可以进行加法和乘法运算。
两个有序数对之间的加法是将对应的横坐标和纵坐标分别相加,乘法是将对应的横坐标和纵坐标分别相乘。
应用有序数对与平面直角坐标系在数学问题和实际应用中有广泛的应用。
在数学中,有序数对常用来表示平面上的点,从而进行几何图形的研究和分析。
例如,可以通过有序数对表示的直线方程来描述平面上的直线,通过有序数对表示的方程组来解决平面上的方程组问题。
在物理学中,有序数对的概念也得到了广泛的应用。
比如,在描述物体的运动状态时,可以使用有序数对来表示物体在不同时间点的位置。
在计算机图形学中,有序数对与平面直角坐标系的概念是构建计算机模型和进行图像处理的基础。
计算机图形学可以通过对有序数对的处理来生成平面上的图像,实现计算机游戏、虚拟现实等应用。
总结有序数对与平面直角坐标系是数学中重要的概念和工具。
有序数对通过表示平面上的点的坐标,可以帮助我们解决各种与平面上的位置和运动有关的问题。