数列章末总结
- 格式:doc
- 大小:376.50 KB
- 文档页数:8
数列知识点归纳总结详细数列是数学中重要的概念之一,广泛应用于各个领域。
本文将对数列的基本概念、常见类型以及解题方法等进行详细的归纳总结。
通过本文的学习,读者可以全面了解数列的相关知识,为日后的学习和应用打下坚实的基础。
一、数列的概念数列是按照一定规律排列的数的集合。
其中,每个数都称为数列的项,每个项的位置称为项数。
通常用字母a1,a2,a3,…,an 等表示数列的项,其中an表示第n个项。
数列可以分为有限数列和无限数列。
有限数列是指项数有限的数列,而无限数列是指项数无限的数列。
二、数列的表示方式1. 显式表示法:数列的每一项都直接用公式表示。
常见的显式公式有等差数列的通项公式an=a1+(n-1)d 和等比数列的通项公式an=a1*r^(n-1)。
2. 递推关系式表示法:数列的每一项通过前一项来表示。
常见的递推关系式有等差数列的递推关系式an=an-1 +d 和等比数列的递推关系式an=an-1*r。
三、常见数列类型1. 等差数列:数列中的任意两项之差都相等。
常用的求和公式为Sn=n/2(a1+an),其中n为项数,a1为首项,an为末项。
2. 等比数列:数列中的任意两项之比都相等。
常用的求和公式为Sn=a1(1-r^n)/(1-r),其中n为项数,a1为首项,r为公比。
3. 斐波那契数列:数列中每一项都是前两项之和。
斐波那契数列的特点是每一项都等于前两项之和,即a1=a2=1,an=an-1+an-2(n>=3)。
4. 平方数列:数列中的每一项都是该项的平方。
例如1,4,9,16,…5. 等差平方数列:数列中的相邻两项之差为平方数。
例如3,8,15,24,…四、数列的求和1. 等差数列的求和公式为Sn=n/2(a1+an)。
2. 等比数列的求和公式为Sn=a1(1-r^n)/(1-r)。
3. 其他特殊数列的求和需要根据数列的特点进行推导计算。
五、数列的性质和运算1. 数列的项可以进行加减乘除等运算,同类型数列可以互相进行运算。
数列高考知识点大扫描数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列; 依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。
数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法); 数列通项:()n a f n =2、等差数列1、定义 当n N ∈,且2n ≥ 时,总有 1,()n n a a d d +-=常,d 叫公差。
2、通项公式 1(1)n a a n d =+-1)、从函数角度看 1()n a dn a d =+-是n 的一次函数,其图象是以点 1(1,)a 为端点, 斜率为d 斜线上一些孤立点。
2)、从变形角度看 (1)()n n a a n d =+--, 即可从两个不同方向认识同一数列,公差为相反数。
又11(1),(1)n m a a n d a a m d =+-=+-,相减得 ()n m a a n m d -=-,即()n m a a n m d =+-. 若 n>m ,则以 m a 为第一项,n a 是第n-m+1项,公差为d ; 若n<m ,则 m a 以为第一项时,n a 是第m-n+1项,公差为-d.3)、从发展的角度看 若{}n a 是等差数列,则12(2)p q a a a p q d +=++- ,12(2)m n a a a m n d +=++-, 因此有如下命题:在等差数列中,若2m n p q r +=+= , 则2m n p q r a a a a a +=+=.3、前n 项和公式由 1211,n n n n n S a a a S a a a -=+++=+++L L , 相加得 12n n a a S n +=, 还可表示为1(1),(0)2n n n S na d d -=+≠,是n 的二次函数。
数列详细知识点归纳总结数列是数学中常见的概念,也是数学与实际问题相联系的桥梁。
在数学的学习过程中,掌握数列的相关知识点是非常重要的。
本文将对数列的定义、性质、分类和常用公式进行详细的归纳总结。
一、数列的定义和性质数列是由一系列按照一定规律排列的数所组成的序列。
通常用{a₁,a₂,a₃,...}或{aₙ}表示,其中a₁,a₂,a₃等表示数列的各项。
数列的性质主要包括有穷性、无穷性和有界性。
1. 有穷数列:数列中项的个数是有限的,即存在某个正整数N,使得当n>N时,aₙ为常数,此时数列也被称为等差数列。
2. 无穷数列:数列中的项的个数是无穷的,此时数列也被称为等比数列。
3. 有界数列:数列中的项有一个上界或者下界限制,即存在某个正整数M,使得当n>M时,aₙ≤M(或者aₙ≥M)。
二、数列的分类1. 级数数列:级数数列是由级数的部分和组成的数列,级数数列的通项公式通常为公差公式或者公比公式。
2. 等差数列:等差数列是指数列中相邻两项之间的差值是一个常数的数列,常用的关系式为aₙ = a₁ + (n-1)d,其中a₁为首项,d为公差。
3. 等比数列:等比数列是指数列中相邻两项之间的比值是一个常数的数列,常用的关系式为aₙ = a₁ * r^(n-1),其中a₁为首项,r为公比。
三、数列的常用公式1. 等差数列的前n项和公式:Sn = (n/2)(a₁ + aₙ),其中Sn为前n项和,a₁为首项,aₙ为前n项的最后一项。
2. 等差数列的通项公式:aₙ = a₁ + (n-1)d,其中aₙ为第n项,a₁为首项,d为公差。
3. 等比数列的前n项和公式:Sn = a₁(1-rⁿ)/(1-r),其中Sn为前n项和,a₁为首项,r为公比。
4. 等比数列的通项公式:aₙ = a₁ * r^(n-1),其中aₙ为第n项,a₁为首项,r为公比。
四、数列的应用数列作为数学的一个重要概念,在实际问题的建模和解决中有着广泛的应用。
章末小结(1)归纳推理的难点是由部分结果得到一般结论,破解的方法是充分考虑这部分结果提供的信息,从中发现一般规律,解题的一般步骤是:①对有限的资料进行观察、分析、归纳整理;②提出带有规律性的结论,即猜想;③检验猜想.(2)类比是从已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果;类比是从一种事物的特殊属性推测另一种事物的特殊属性;类比的结果是猜测性的,不一定可靠,但它却有发现的功能.找出圆与球的相似性质,并用圆的下列性质类比球的有关性质.(1)圆心与弦(非直径)中点的连线垂直于弦.(2)与圆心距离相等的两弦相等.(3)圆的周长c=πd(d为直径).(4)圆的面积S=π4d2.解析:圆与球具有下列相似性质.1.圆是平面上到一定点的距离等于定长的所有点构成的集合,球面是空间中到一定点的距离等于定长的所有点构成的集合.2.是平面内封闭的曲线所围成的对称图形,球是空间中封闭的曲面所围成的对称图形.与圆的有关性质相比较,可以推测球的有关性质:圆球 (1)圆心与弦(非直径)中点的连线垂直于弦球心与截面圆(非轴截面)圆心的连线垂直于截面 (2)与圆心距离相等的两条弦长相等与球心距离相等的两个截面圆面积相等 (3)圆的周长c =πd球的表面积S =πd 2 (4)圆的面积S =π4d 2 球的体积V =π6d 3 由实数构成的集合A 满足条件:若a ∈A ,a ≠1,则11-a ∈A ,证明:(1)若2∈A ,则集合A 必有另外两个元素,并求出这两个元素;(2)非空集合A 中至少有三个不同元素.分析:从集合中的元素满足的条件“若a ∈A ,则1a -1∈A (a ≠1)”出发;当a =2时,依次进行检验,即可得证.证明:(1)∵a ∈A ,a ≠1,则1a -1∈A . ∴2∈A 时,有11-2=-1∈A . 由于-1≠1,有11-(-1)=12∈A . 由于12≠1,有11-12=2∈A .如此循环可知集合A 中的另外两个元素为12,-1. (2)∵集合A 非空,故存在a ∈A ,a ≠1,有11-a∈A , ∴11-a ∈A 且11-a≠1, 即a ≠0时,有11-11-a =a -1a ∈A ,即如此循环出现三个数a ,11-a ,a -1a ∈A .若a =11-a,则a 2-a +1=0,方程无实根. 若=11-a=a -1a ,则a 2-a +1=0,方程无实根. 若a =a -1a,则a 2-a +1=0,方程无实根. ∴a ,11-a,a -1a 互不相等,故集合A 中至少有三个不同元素. 分析法和综合法是对立统一的两种方法,在使用这两种方法解题是,一般步骤是:(1)分析条件和结论之间的联系和区别,选择解题方向.(2)确定恰当的解题方法,若能够结合题设条件,通过相关的公理、定理、公式、结论推得所求结果,则用综合法,若从条件出发,应用相关的公理、定理、公式、结论难以推得所求结果,则可以考虑使用分析法.(3)解题反思,回顾解题过程,对所得结果和解题步骤进行检查,确保解题的严谨性和完备性.设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8. 证明:方法一 综合法因为a >0,b >0,a +b =1,所以1=a +b ≥2ab ,ab ≤12,ab ≤14,所以1ab ≥4, 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥4, 所以1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). 方法二 分析法因为a >0,b >0,a +b =1,要证1a +1b +1ab≥8. 只要证⎝ ⎛⎭⎪⎫1a +1b +a +b ab ≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8, 即证1a +1b ≥4. 也就是证a +b a +a +b b≥4. 即证b a +a b≥2, 由基本不等式可知,当a >0,b >0时,b a +a b≥2成立, 所以原不等式成立.反证法的理论基础是互为逆否命题的等价性,从逻辑角度看,命题“若p ,则q ”的否定是“若p ,则¬q ”,由此进行推理,如果发生矛盾,那么就说明“若p ,则¬q ”为假,从而可以导出“若p ,则q ”为真,从而达到证明的目的.反证法反映了“正难则反”的解题思想.一般以下题型用反证法:①当“结论”的反面比“结论”本身更简单、更具体、更明确;②否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法.用反证法证明不等式要把握三点:①必须先否定结论,即肯定结论的反面;②必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;③推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.已知直线ax -y =1与曲线x 2-2y 2=1相交于P ,Q 两点,证明:不存在实数a ,使得以PQ 为直径的圆经过坐标原点O .证明:假设存在实数a ,使得以PQ 为直径的圆经过坐标原点O ,则OP ⊥OQ .设P (x 1,y 1),Q (x 2,y 2),则y 1x 1·y 2x 2=-1, 所以(ax 1-1)(ax 2-1)=-x 1·x 2,即(1+a 2)x 1·x 2-a (x 1+x 2)+1=0.由题意得(1-2a 2)x 2+4ax -3=0,所以x 1+x 2=-4a 1-2a 2,x 1·x 2=-31-2a2. 所以(1+a 2)·-31-2a 2-a ·-4a 1-2a 2+1=0, 即a 2=-2,这是不可能的.所以假设不成立.故不存在实数a ,使得以PQ 为直径的圆经过坐标原点O .数学归纳法的两关关注(1)关注点一:用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始n 0是多少.(2)关注点二:由n =k 到n =k +1时,除等式两边变化的项外还要利用n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.设数列{a n }满足a n +1=a 2n -na n +1,n ∈N *.(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式;(2)当a 1≥2时,证明对所有的n ≥1,有a n ≥n +1.解析:(1)由a 1=2,得a 2=a 21-a 1+1=3.由a 2=3,得a 3=a 22-2a 2+1=4.由a 3=4,得a 4=a 23-3a 3+1=5.由此猜想a n 的一个通项公式为a n =n +1(n ≥1).(2)证明:①当n =1时,∵a n =a 1≥2,n +1=1+1=2,∴不等式成立.②假设当n =k 时不等式成立,即a k ≥k +1.那么当n =k +1时,a k +1=a k (a k -k )+1≥(k +1)(k +1-k )+1=k +2.也就是说,当n =k +1时,a k +1>(k +1)+1.根据①和②,对于所有n ≥1,有a n ≥n +1.一、选择题1.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,以上推理的错误的原因是(A )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析:推理形式没有错误,而大前提“y =a x 是增函数”是不正确的,当0<a <1时,y =a x 是减函数;当a >1时,y =a x 是增函数.故选A.2.已知n 为正偶数,用数学归纳法证明: 1-12+13-14+…+1n -1=2(1n +2+1n +4+…12n )时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证(B )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立解析:因为n为正偶数,n=k(k≥2为偶数),所以下一步要证明的命题也应该是在偶数条件下成立,所以,还需要证明n=k+2时等式成立,故选B.3.若m,n是正整数,则m+n>mn成立的充要条件是(D)A.m,n都等于1B.m,n都不等于2C.m,n都大于1D.m,n至少有一个等于1解析:∵m+n>mn,∴(m-1)(n-1)<1.∵m,n∈N*,∴(m-1)(n-1)∈Z,∴(m-1)(n-1)=0.∴m=1或n=1,故选D.4.下列结论正确的是(B)A.当x>0且x≠1时,lg x+1lg x≥2B.当x>0时,x+1x≥2C.当x≥2时,x+1x的最小值为2D .当0<x ≤2时,x -1x无最大值 解析:A 错在lg x 的正负不清;C 错在等号成立的条件不存在;根据函数f (x )=x -1x 的单调性,当x =2时,f (2)max =32,故D 错.故选B.5.已知a +b +c =0,则ab +bc +ca 的值(D )A .大于0B .小于0C .不小于0D .不大于0解析:解法一 因为a +b +c =0,所以a 2+b 2+c 2+2ab +2ac +2bc =0,所以ab +bc +ca =-a 2+b 2+c 22≤0. 解法二 令c =0,若b =0,则ab +bc +ca =0,否则a 、b 异号,所以ab +bc +ca =ab <0,排除A 、B 、C ,故选D.6.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为(A )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c解析:令n =1,得1=3(a -b )+c ,令n =2,得1+2×3=9(2a -b )+c ,令n =3,得1+2×3+3×32=27(3a -b )+c .即⎩⎪⎨⎪⎧3a -3b +c =118a -9b +c =781a -27b +c =34,∴a =12,b =c =14.故选A. 7.若凸k 边形的内角和为f (k ),则凸(k +1)边形的内角和f (k +1)(k ≥3且k ∈N *)等于(B )A .f (k )+π2B .f (k )+πC .f (k )+32π D .f (k )+2π 解析:由凸k 边形到凸(k +1)边形,增加了一个三角形,故f (k +1)=f (k )+π.故选B.8.公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10=(C )A .18B .24C .60D .90解析:由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),2a 1+3d =0.再由S 8=8a 1+562d =32,得2a 1+7d =8,则d =2,a 1=-3.所以S 10=10a 1+902d =60,选C. 二、填空题9.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则a 5=________;前8项的和S 8=________(用数字作答).解析:a 1=1,a 2=2a 1=2,a 3=2a 2=4,a 4=2a 3=8,a 5=2a 4=16,易知S 8=28-12-1=255,∴应填255.答案:16 25510.(2014·郑州高二检测)图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是________.解析:分别观察正方体的个数为:1,1+5,1+5+9,… 归纳可知,第n 个叠放图形中共有n 层,构成了以1为首项,以4为公差的等差数列,所以S n =n +[n (n -1)×4]÷2=2n 2-n , 所以S 7=2×72-7=91. 答案:9111.(2014·厦门六中高二期中)在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN ,如果用S 1、S 2、S 3表示三个侧面面积,S 表示截面面积,那么类比得到的结论是________.解析:类比如下:正方形↔正方体;截下直角三角形↔截下三侧面两两垂直的三棱锥;直角三角形斜边平方↔三棱锥底面面积的平方;直角三角形两直角边平方和↔三棱锥三个侧面面积的平方和,结论S 2=S 21+S 22+S 23.(这个结论是正确的,证明略)答案:S 2=S 21+S 22+S 2312.(2014·洛阳部分重点中学教学检测)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n=________. 解析:由已知中的等式:31×2×12=1-12231×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…, 所以对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =1-1(n +1)2n. 答案:1-1(n +1)·2n三、解答题13.证明不等式:12×34×…×2n -12n <12n +1(n ∈N *).证明:(1)当n =1时,左边=12,右边=13,显然12 < 13,不等式成立.(2)假设n =k 时,不等式成立, 即12×34×…×2k -12k<12k +1,则n =k +1时,12×34×…×2k -12k ×2k +12k +2<12k +1×2k +12k +2=2k +12k +2,要证n =k +1时,不等式成立,只要2k +12k +2<12k +3成立. 即证(2k +1)(2k +3)<(2k +2)2, 即证4k 2+8k +3<4k 2+8k +4. 该不等式显然成立.即n =k +1时,不等式成立.由(1)(2)知,对任意的正整数n ,不等式成立.14.如图所示,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.(1)若CD =2,平面ABCD ⊥平面DCEF ,求MN 的长; (2)用反证法证明:直线ME 与BN 是两条异面直线. (1)解析:如下图,取CD 的中点G ,连接MG ,NG ,因为ABCD ,DCEF 为正方形,且边长为2, 所以MG ⊥CD ,MG =2,NG = 2. 因为平面ABCD ⊥平面DCEF , 所以MG ⊥平面DCEF . 所以MG ⊥GN .所以MN =MG 2+GN 2= 6.(2)证明:假设直线ME 与BN 共面,则AB ⊂平面MBEN , 且平面MBEN ∩平面DCEF =EN .由已知,两正方形ABCD 和DCEF 不共面,故AB ⊄平面DCEF . 又AB ∥CD ,所以AB ∥平面DCEF . 所以EN ∥AB ,又AB ∥CD ∥EF , 所以EF ∥NE ,这与EF ∩EN =E 矛盾, 故假设不成立.所以ME 与BN 不共面,它们是异面直线.15.在圆x 2+y 2=r 2(r >0)中,AB 为直径,C 为圆上异于A 、B 的任意一点,则有k AC ·k BC =-1.你能用类比的方法得出椭圆x 2a 2+y 2b 2=1(a >b >0)中有什么样的结论?并加以证明.解析:类比得到的结论是:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,A 、B 分别是椭圆长轴的左右端点,点C (x ,y )是椭圆上不同于A 、B 的任意一点,则k AC ·k BC =-b 2a2证明如下:设A (x 0,y 0)为椭圆上的任意一点,则A 关于中心的对称点B 的坐标为B (-x 0,-y 0),点P (x ,y )为椭圆上异于A ,B 两点的任意一点,则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 2x 2-x 20.由于A 、B 、P 三点在椭圆上,∴⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x 20a 2+y 20b 2=1.两式相减得,x 2-x 20a 2+y 2-y 2b2=0,∴y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a 2.故在椭圆x 2a 2+y 2b 2=1(a >b >0)中,长轴两个端点为A 、B 、P 为异于A 、B 的椭圆上的任意一点,则有k AB ·k BP =-b 2a2.16.在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想.解析:(1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 得a 21=1,∵a n >0,∴a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2得a 22+2a 2-1=0. ∴a 2=2-1.由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3得a 23+22a 3-1=0.∴a 3=3- 2.(2)猜想a n =n -n -1(n ∈N *).证明如下:①n =1时,a 1=1-0命题成立. ②假设n =k 时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k =12⎝ ⎛⎭⎪⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k+1a k , 即a k +1=12⎝ ⎛⎭⎪⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎪⎫a k +1+1a k +1-k ,∴a 2k +1+2ka k +1-1=0.∴a k +1=k +1-k .即n =k +1时,命题成立, 由①②知,n ∈N *,a n =n -n -1.。
数列知识点总结及结论一、数列的概念及分类数列是按照一定的顺序排列的一组数的集合。
在数学中,数列是一个非常重要的概念,它被广泛应用在各个领域,如微积分、概率论、离散数学等。
数列有多种分类方式,根据数列的各个项之间的关系不同可以将数列分为等差数列、等比数列、递推数列等。
在日常生活中,数列也有着广泛的应用,如金融领域中的利息计算,物理学中的等速运动等。
二、等差数列等差数列是一种非常简单的数列,其特点是数列中每一项与前一项的差是一个常数。
等差数列的通项公式为An = A1 + (n-1)d。
其中An表示等差数列中第n项的值,A1表示等差数列的首项,d表示等差数列的公差。
例如,1,3,5,7,9就是一个公差为2的等差数列。
在等差数列中,我们可以根据已知的条件,求出数列的首项、公差、任意项的值,以及数列的前n项和等一系列问题。
三、等比数列等比数列是另一种常见的数列,其特点是数列中每一项与前一项的比是一个常数。
等比数列的通项公式为An = A1 * q^(n-1)。
其中An表示等比数列中第n项的值,A1表示等比数列的首项,q表示等比数列的公比。
例如,1,2,4,8,16就是一个公比为2的等比数列。
在等比数列中,也可以根据已知的条件,求出数列的首项、公比、任意项的值,以及数列的前n项和等一系列问题。
四、递推数列递推数列是一种通过前一项来定义后一项的数列。
其通项公式并不是一个固定的公式,而是通过给定的递推关系来确定。
例如,斐波那契数列就是一个著名的递推数列,其定义为F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)。
通过这个递推关系,我们可以得到斐波那契数列的每一项的值。
递推数列在计算机科学中有着广泛的应用,如动态规划算法、图论算法等。
它们的特点是可以通过已知的前几项来求得后面的项,而不需要知道整个数列的所有项。
五、数列的运算数列的运算是数列学习中的重要内容之一。
在数列的运算中,主要包括数列的加法、减法、乘法、除法等。
数列章末总结1.探索并掌握一些基本的数列求前n项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,一、课前准备(1)有关概念:1°数列:按一定次序排列的一列数,数列中的每一个数叫做数列的项。
2°数列的通项公式:如果数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,这个公式就叫做数列的通项公式。
3°数列的递推公式:如果已知数列{a n}的第一项(或前n项,且任一项a n与它的前一项a n-1(或前n项)间的关系可以用一个式子来表示,那么这个公式就叫做这个数列的递推公式。
4°若数列{a n}的前n项和为S n则aS S nS nnn n=-≥=⎧⎨⎩-1121()()※数列通项公式的求法数列的通项公式是数列的核心内容之一。
它如同函数中的解析式一样,对研究数列的性质起着重要的作用。
围绕数列的通项公式,不仅可以判断数列的类型,研究数列的项的变化规律与趋势,而且还便于研究数列的前n 项和,因此求数列的通项公式往往是解决数列问题的突破口,在解题时,根据题目所给条件的不同,可以采用不同的方法求数列的通项公式,常见方法如下: 1.叠加法(累加法)对于形如a n+1-a n =f(n)型的,用叠加法例1:已知数列{a n }中,a 1=1,且a n+1-a n =3n-n ,求数列{a n }的通项公式。
变式:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
2.叠乘法(累乘法)对于形如1()n na f n a +=)型的,用叠加法 例2:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
变式:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
3.构造法其他的,已知数列递推公式求an ,用构造法(构造等差或等比数列) 例3:数列{}n a 中11=a ,)2(1211≥+=-n a a n n ,求该数列的通项公式n a 。
评注:一般地,形如q p q pa a n n ,(1+=-为非零常数,)1≠p ,可变形为)(1λλ+=+-n n a p a ,其中1-=p qλ,则⎭⎬⎫⎩⎨⎧-+1p q a n 是一个公比为p 的等比数列。
变式:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .4.由Sn 求an 利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S)2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。
例4:数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .※ 数列求和 1、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.①等差数列求和公式:()()11122n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ⎧=⎪=-⎨-=≠⎪--⎩常见的数列的前n 项和:123+++……+n=(1)2n n +, 1+3+5+……+(2n-1)=2n2222123+++……+n =(1)(21)6n n n ++,3333123+++……+n =2(1)2n n +⎡⎤⎢⎥⎣⎦等.2、倒序相加法:类似于等差数列的前n 项和的公式的推导方法。
如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法.例5:已知函数()xf x =(1)证明:()()11f x f x +-=; (2)求128910101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和. 3、错位相减法:类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令 112211n n nnn S b c b c bc bc --=++++ 则n qS = 122311n n n n b c b c b c b c -+++++ 两式相减并整理即得例6、(2008年全国Ⅰ第19题第(2)小题,满分6分) 已知 12n n a n -=∙,求数列{a n }的前n 项和S n .小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列{}n c 的公比q ;②将两个等式相减;③利用等比数列的前n 项和的公式求和.变式:求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S4、裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等。
用裂项相消法求和,需要掌握一些常见的裂项方法: (1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,特别地当1k =时,()11111n n n n =-++ (21k=,特别地当1k ==例7、数列{}n a 的通项公式为1(1)n a n n =+,求它的前n 项和n S小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同. 变式:在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 5、分组求和法:有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.例8、求和:()()()()123235435635235nn S n ----=-⨯+-⨯+-⨯++-⨯小结:这是求和的常用方法,按照一定规律将数列分成等差(比)数列或常见的数列,使问题得到顺利求解.变式:求和:()()()()23123nn S a a a a n =-+-+-++-例题参考答案例1变式:解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以na a n 111-=-211=a ,nn a n 1231121-=-+=∴例2解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=na a n 11=⇒又321=a ,na n 32=∴ 例2变式解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-∙+⨯-⨯∙⋅⋅⋅∙+---∙+---=3437526331348531n n n n n --=⋅⋅⋅⋅=--- 。
例3解:由)2(1211≥+=-n a a n n 有:)2(2121-=--n n a a )2(21221≥=--∴-n a a n n故数列{}2-n a 是以21为公比的等比数列,且首项为121-=-a n n a --=∴122例3变式:解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a .例4解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a n n n a a 21211+=⇒+.(2)上式两边同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n n a 2是以2为首项,2为公差的等差数列,所以n n a n n 2)1(222=-+=12-=⇒n n na例5解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,1928551101010101010f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+==+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭128910101010S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令 982110101010S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则 两式相加得:192991010S f f ⎛⎫⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭所以92S =.例6解:01211222(1)22n n nS n n --=+++-+ ①12121222(1)22n n n S n n -=+++-+ ②②—①得01121222221n n n n n S n n -=---=-+例6变式解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 例7解:1231n n n S a a a a a -=+++++ ()()1111112233411n n n n =+++++⨯⨯⨯-+=11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111nn n =-=++ 例7变式解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n例8解:()()()()123235435635235nn S n ----=-⨯+-⨯+-⨯++-⨯()()123246235555n n ----=++++-++++()2111553113114515nnn n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=+-⨯=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-。