第4章 三角形章末知识汇总
- 格式:doc
- 大小:56.50 KB
- 文档页数:5
第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。
二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。
七年级下册数学第四章三角形一、三角形的基本概念。
1. 三角形的定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 例如,在平面内有三条线段AB、BC、AC,它们首尾相接,就构成了三角形ABC,记作△ABC。
2. 三角形的边、顶点和内角。
- 边:组成三角形的线段叫做三角形的边。
在△ABC中,AB、BC、AC就是三角形的三条边。
- 顶点:三角形相邻两边的公共端点叫做三角形的顶点。
△ABC有三个顶点A、B、C。
- 内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。
△ABC 的三个内角分别是∠A、∠B、∠C。
3. 三角形的分类。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形。
直角三角形可以用符号“Rt△”表示,如Rt△ABC,其中∠C = 90°。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三条边都不相等的三角形。
- 等腰三角形:有两条边相等的三角形。
相等的两条边叫做腰,另一条边叫做底边。
两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
- 等边三角形:三条边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。
二、三角形的性质。
1. 三角形三边关系。
- 三角形两边之和大于第三边。
例如,在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。
- 三角形两边之差小于第三边。
即AB - BC<AC,AB - AC<BC,BC - AC<AB。
- 可以用来判断三条线段能否组成三角形。
例如,三条线段的长分别为3cm、4cm、5cm,因为3 + 4>5,3+5>4,4 + 5>3,同时3 - 4<5,3 - 5<4,4 - 5<3,所以这三条线段能组成三角形。
第四章三角形一、认识三角形●三角形的有关概念1、三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫作三角形。
2、三角形的边:组成三角形的线段叫作三角形的边,可以用两个大写英文字母表示,也可以用一个小写英文字母表示。
3、三角形的顶点:相邻两边的公共端点叫作三角形的顶点。
4、三角形的角:相邻两边组成的角叫作三角形的内角,简称三角形的角。
5、角与边的对应关系:大边对大角。
6、三角形的表示:用符号“△”表示,以A,B,C为顶点的三角形记作“△ABC”,读作“三角形ABC”。
●三角形的分类1、按内角的大小分类锐角三角形(三个角都是锐角)直角三角形(最大内角为直角),互相垂直的两条边叫作直角边,最长的边叫作斜边,直角三角形ABC可以用符号“Rt△ABC”表示钝角三角形(最大内角为钝角)注:在一个三角形中,最多有三个锐角,最少有两个锐角;最多有一个直角,最多有一个钝角。
2、按边的相等关系分类等腰三角形:有两条边相等的三角形叫作等腰三角形,其中相等的两条边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,腰和底边的夹角叫作底角。
等边三角形:三条边都相等的三角形叫作等边三角形,即腰和底边相等的等腰三角形叫作等边三角形,也叫正三角形。
不等边三角形:三边都不相等的三角形。
注:●三角形的三边关系1、三角形的两边的和大于第三边,三角形两边的差小于第三边。
(证明可以依据两点之间线段最短,大角对大边,不等式性质)2、三边关系的运用(1)判断以已知的三条线段为边能否构成三角形(2)确定三角形的第三边长(或周长)的取值范围(3)解决线段的不等关系问题(如证明几何不等式)●三角形的高1、三角形的高的概念:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足所连线段叫做三角形的高。
2、三角形高的几何语言表达形式AD是△ABC的边BC上的高,或AD是△ABC的高,或AD垂直BC与点D,或∠BDA=∠CDA=90°3、三角形三条高的位置锐角三角形三条高都在三角形的内部。
初一下册数学第四章知识点:三角形三角形是初一下学期学习的第四章内容,并且也是初中数学中几何部分的基础图形,这一部分是初中、高中乃至整个数学的基础,是很重要的一部分内容,具体内容请看下文初一下册数学第四章知识点的内容。
一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。
三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。
三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形内角和定理:三角形三个内角的和等于180推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角和;推论3 三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。
三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。
内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。
这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。
但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。
因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。
2.难点:三角形的角的性质和边的关系的运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。
2.学生准备:完成本章的学习任务,准备好相关的学习资料。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。
3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。
4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。
5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。
中考数学一轮复习·学与练第四章 三角形 课时14 三角形及其全等知 识 清 单考点一 三角形的概念及分类 1.三角形的概念由不在同一条直线上的三条线段首尾顺次连接所组成的 图形叫做三角形. 2.三角形的分类(1)按边分一般三角形:三条边都不相等等腰三角形:有两条边相等等边三角形:三条边都相等(2)按角分90锐角三角形:三个角都是锐角直角三角形:有一个角为钝角三角形:有一个角为钝角考点二 三角形的边角关系1.边的关系:两边之和 第三边,两边之差 第三边.判断三条边(a ,b ,c ,a ≤b ≤c )能否构成三角形,只需比较两条短边(a ,b )的和与第三边(c )的大小,若a +b >c ,则能构成三角形;反之不能构成三角形.2.角的关系(1)三角形内角和等于 ;(2)任意一个外角 与它不相邻的两个内角之和; (3)任意一个外角 任何一个和它不相邻的内角.3.边角关系:同一个三角形中,等边对等角,等角对 ,大边对 . 4.三角形的稳定性三角形具有稳定性,即当三角形的三边确定时,三角形的形状和大小也就随之确定,而不再发生改变.考点三 三角形中的重要线段 1.角平分线(1)概念:一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段.(2)图形及性质:如图1,在△ABC 中,AD 为角平分线,则有∠1= =12∠BAC .(3)内心(三角形内切圆的圆心):三角形的三条角平分线交于一点,该点称为三角形的内心,该点到三角形三边的距离相等.图1 图22.中线(1)概念:连接一个顶点与它对边中点的线段.(2)图形及性质:如图2,在△ABC 中,AD 为BC 边上的中线,则有BD = =12BC .(3)重心:三角形的三条中线交于一点,该点称为三角形的重心,该点到三角形顶点的距离等于它到对边中点距离的 倍.3.高线(1)概念:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.(2)图形及性质:如图3,在△ABC 中,AD 为BC 边上的高线,则有AD ⊥ ,即∠ADB =∠ADC =90°.(3)垂心:三角形的三条高线的交点,该点称为三角形的垂心.图3 图4知识延伸:外心(三角形外接圆的圆心):三角形三条边中垂线的交点.外心到三角形三个顶点的距离 .4.中位线(1)概念:连接三角形两边中点的 .(2)图形及性质:如图4,在△ABC 中,D ,E 分别为AB ,AC 的中点,则DE 为△ABC 中位线,DE ∥ 且DE =12BC .考点四全等三角形的性质及判定1.全等三角形的概念能够的两个三角形叫的全等三角形.2.全等三角形的性质(1)全等三角形的对应角、对应边、周长、面积;(2)全等三角形的对应高、对应中线、对应角平分线都分别.3.全等三角形的判定判定1:三边分别的两个三角形全等(简写成“边边边”或“SSS”).判定2:两边和它们的分别相等的两个三角形全等(简写成“边角边”或“SAS”).判定3:两角和它们的分别相等的两个三角形全等(简写成“角边角”或“ASA”).判定4:两角和其中一个角的对边分别的两个三角形全等(简写成“角角边”或“AAS”).判定5:斜边和一条直角边分别的两个直角三角形全等(简写成“斜边、直角边”或“HL”).重难点讲解命题点1 利用三角形“三线”的性质解题三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角;由三角形的中线可得线段之间的关系;由三角形的角平分线可得角之间的关系,可利用角平分线的性质和三角形的内角与外角的关系建立所求角度与已知条件的联系,达到解题的目的.经典例题1如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°【解析】根据角平分线的定义可得∠ABC=2∠ABE,由AD是BC边上的高可得∠ADB=90°,再由三角形内角和定理可得∠BAD的度数,根据∠DAC=∠BAC-∠BAD即可得解.【答案】B命题点2 全等三角形判定方法的合理选择从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,我们可以利用题目中的已知边(角)确定要补充的边(角),完善三角形全等的条件,从而得到判定两个三角形全等的思路.(1)已知两边⎩⎪⎨⎪⎧找夹角→SAS ,找直角→HL ,找第三边→SSS.(2)已知一边、一角⎩⎪⎨⎪⎧一边为角的对边→找另一角→AAS ,一边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS ,找夹边的另一角→ASA ,找边的对角→AAS.(3)已知两角⎩⎪⎨⎪⎧找夹边→ASA ,找其中一角的对边→AAS.经典例题2 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:∠C =∠D .【解析】根据题意选择“边角边”(SAS)即可求证.【证明】 ∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE .在△ADF 和△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE . ∴∠C =∠D .命题点3 三角形的角度计算问题中的方程思想方程思想的本质是设未知数,用未知量表示已知量的方法,通过分析题目,利用所学定理、性质等寻找出等量关系.三角形有关角度的计算问题,可利用三角形内角和及外角性质构建方程,利用方程思想解决有关角度问题.经典例题3 在△ABC 中,∠A ∶∠B ∶∠C =5∶6∶7,则∠B 的度数是( )A .50°B .60°C .70°D .80° 【解析】因为∠A ∶∠B ∶∠C =5∶6∶7,设∠A =5x °,∠B =6x °,∠C =7x °,根据三角形的内角和是180°,可得5x +6x +7x =180,解得x =10,所以∠B =6x °=60°.【答案】 B中 考 真 题 演 练一、选择题1. 下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 2. 已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2 C .8 D .113. 如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A =54°,∠B =48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°第3题 第4题4. 如图,在△ABC 中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是△ABC 的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG 5. 若一个三角形的两边长分别为5和8,则第三边长可能是( )A .14B .10C .3D .26. 如图,点D 在△ABC 边AB 的延长线上,DE ∥BC .若∠A =35°,∠C =24°,则∠D 的度数是( )A .24°B .59°C .60°D .69°第6题 第7题7. 如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E 作EF ∥CD (点F 位于点E右侧),且EF =2CD ,连接DF .若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2 8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =12∠ADC D .∠ADE =13∠ADC9. 如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11第9题 第10题10. 如图,直线l 1∥l 2,∠1=55°,∠2=65°,则∠3为( )A .50°B .55°C .60°D .65° 11. 如图,AB ⊥CD ,且AB =CD .E ,F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a -b +cD .a +b -c第11题 第12题12. 如图,已知点P 在线段AB 外,且P A =PB ,求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC =BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C13. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长线交AC于点E.若DF=5,BC=16,则线段EF的长为( )A.4 B.3 C.2 D.1第13题第14题14. 如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)-CD2. 其中正确的是( )A.①②③④B.②④C.①②③D.①③④二、填空题15. 三角形三边长分别为3,2a-1,4,则a的取值范围是 .16. 如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.第16题第17题17. 如图,在△ABC中,BO,CO分别平分∠ABC,∠ACB.若∠BOC=110°,则∠A=.18. 如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AC=6,则AB=.第18题第19题19. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.20. 等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.三、解答题21. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.22. 如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.23. 如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:△AEF≌△DEC;(2)若CF=AD,试判断四边形AFDC是什么样的四边形?并说明理由.24. 如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连接AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.25. 如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.26. 在等腰直角△ABC中,∠ACB=90°,AC=BC,点P在斜边AB上(AP>BP).作AQ⊥AB,且AQ=BP,连接CQ(如图1).(1)求证:△ACQ≌△BCP;(2)延长QA至点R,使得∠RCP=45°,RC与AB交于点H,如图2.①求证:CQ2=QA·QR;②判断三条线段AH,HP,PB的长度满足的数量关系,并说明理由.中小学教育资源及组卷应用平台21世纪教育网(.21c.c)。
章末知识汇总
类型一三角形内角和定理的运用
命题点:三角形内角和
例1在△ABC中,∠A=20°,∠B=60°,则△ABC是()
A.等边三角形B.锐角三角形
C.直角三角形D.钝角三角形
解析:由三角形的内角和定理得,∠A+∠B+∠C=180°,故∠C=180°-20°-60°=100°,故△ABC是钝角三角形,故选D.
答案:D
类型二三角形三边关系定理的运用
例2若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长
为()
A.7B.5
C.5或7D.6
解析:当3为底时,其他两边都为1,因为1+1<3,所以不能构成三角形,故舍去;当3为腰时,其他两边为3和1,3,3,1可以构成三角形,周长为7,故选项A正确.
答案:A
类型三三角形全等的条件与性质的运用
例3如图,AC和BD相交于点O,OA=OC,OB=OD.试说明AB与CD的位置关系.
解析:由题意分析可知AB ∥CD ,说明这一结论需得一组内错角相等即可.
解:在△DOC 和△BOA 中,
⎩⎪
⎨⎪
⎧OA =OC ,∠DOC =∠BOA ,OB =OD ,
所以△DOC ≌△BOA ,所以∠A =∠C .所以AB ∥CD . 类型四 三角形的作图
例4 如图,已知:线段a 及∠O ,只用直尺和圆规,求作:△ABC ,使BC =a ,∠B =∠O ,∠C =2∠B .(在指定作图区域作图,保留作图痕迹,不写作法)
解析:先作一个角等于已知角,即∠MBN =∠O ,在边BN 上截取BC =a ,以射线CB 为一边,C 为顶点,作∠PCB =2∠O ,CP 交BM 于点A ,
△ABC即为所求.
解:如图所示.
类型五三角形全等的实际应用
例5如图,七年级数学兴趣小组要测量河中浅滩B(可看成一点)与对岸4之间的距离.先在另一岸边确定点C,使C,A,B三点在同一条直线上,再在AC的垂直方向上作线段CD,取CD的中点O,然后过点D作DF⊥CD,使F,O,A三点在同一条直线上,在DF上取一点E,使E,O,B三点也在同一条直线上.那么EF的长就是浅滩B与对岸A之间的距离,你能说出同学们这样做的根据吗?
解析:要得到FE =AB ,只要说明△FEO ≌△ABO 即可,而要说明△FEO ≌△ABO ,则需要先说明△AOC ≌△FOD .
解:因为AC ⊥CD ,FD ⊥CD ,所以∠C =∠D =90°.在△AOC 和△FOD
中,⎩⎪
⎨⎪
⎧∠AOC =∠FOD ,CO =DO ,∠C =∠D ,
所以△AOC ≌△FOD (ASA).所以OA =OF ,∠A
=∠F .在△AOB 和△FOE
中,⎩⎪
⎨⎪
⎧∠A =∠F ,OA =OF ,∠AOB =∠FOE ,
所以
△AOB ≌△FOE (ASA).
所以AB =FE ,即EF 的长就是浅滩B 与对岸A 之间的距离.。