《电工技术》异步电动机Y-启动控制实验
- 格式:docx
- 大小:51.92 KB
- 文档页数:3
实验三三相异步电动机Y—△启动控制电路
一、实验目的:
1、了解空气阻尼式时间继电器的结构、原理及使用方法。
2、掌握异步电动机Y—△启动控制电路的工作原理及接线方法。
二、实验仪器和设备:
1、交流接触器 3个
2、热继电器 1个
3、二为(或三位)按钮 1个
4、三相电动机(△接法) 1台
5、熔断器 5个
6、三相刀开关 1个
7、时间继电器 1个8、电工工具 1套
三、实验原理及线路:
1、电路工作情况:合上电源开关Q,按下启动SB2,KM1通电,随即KM2通电并自锁,电动机接成Y联结,接入三相电源进行减压启动,同时KT通电,经一段时间延时后,KT常闭触点断开,KM1断电释放,电动机中性点断开;另一对KT常开触点延时闭合,KM3通电并自锁,电动机接成△联结运行。
同时KM3常闭触点断开,使KM1、KT在电动机△联结运行时。
三相异步电动机Y—Δ减压起动控制实训指导书一、实训目的1、掌握实现三相异步电动机限位控制的方法。
2、熟悉常见低压电器。
3、培养电气线路安装操作能力。
二、实训设备和元器件1、电动机控制线路接线模拟板1块;2、常用电工工具1套;3、试车用三相异步电动机350w左右、380v1台;4、BV7.0mm2,BVR0.75 mm2导线若干。
三、实训电路控制原理电动机Y—△减压起动控制方法只适用于正常工作时定子绕组为三角形(△)联结的电动机。
这种方法既简单又经济,使用较为普遍,但其起动转距只有全压起动时的1/3,因此,只适用于空载或轻载起动。
1、手动控制Y—△减压起动电动机Y按SB2线圈得电自动触头闭合主触头闭合1主触头闭合1联锁触头断开Y起动电动机△联结全压运行:按 SB 3△减压起动线路中的任意一个。
安装时注意文明安全操作,接点要牢靠,接触要良好。
2、安装完线路,检查无误后,接入三相异步电动机,通电试操作。
接入点动机前,要用万用表区分好电动机的三个定子绕组,同时要认真观察电动机及电器的运转及动作情况。
五、实训报告与考核要求(一)实训报告1、画出手动控制Y —△减压起动和自动控制Y —△减压起动的线路,并分析后者的动作原理。
2、自动控制Y —△减压起动电动机线路是否可以设计成其他形式,试设计一种。
(二)考核要求1、在规定的时间内完成安装任务,且试运转成功,操作方法正确。
2、安装工艺达到基本要求,线头长短适当,接点牢靠,接触良好。
3、文明安全操作,没有损坏电器及违反安全规程。
KM 1线圈断电KM 2线圈得电KM 1主触头断开KM 1联合触头闭合 KM 2自锁触头闭合 KM 2主触头闭合 电动机接成△运行 KM 2联锁触头断开。
三相异步电动机Y—Δ自动降压启动控制实验1、实验目的⑴学会三相异步电动机Y—Δ自动降压启动控制的接线和操作方法。
⑵理解三相异步电动机Y—Δ自动降压启动的概念。
⑶理解三相异步电动机Y—Δ自动降压启动的基本原理。
⑷了解时间继电器的作用和动作情况。
2、预习内容及要求⑴Y—Δ转换启动的作用三相异步电动机的Y—Δ转换起动方式是大容量电动机起动常用的降压起动措施,但它只能应用于Δ形连接的三相异步电动机。
在起动过程中,利用绕组的Y形连接即可降低电动机的绕组电压及减少绕组电流,达到降低起动电流和减少电机起动过程对电网电压的影响。
待电动机起动过程结束后再使绕组恢复到Δ形连接,使电动机正常运行。
⑵电动机Y—Δ启动控制原理①控制线路及电路组成三相异步电动机的Y—Δ变换起动控制的连接线路如图3-6所示,它主要有以下元器件组成:图3-6 三相异步电动机Y—Δ自动降压启动控制线路a.起动按钮(SB2)。
手动按钮开关,可控制电动机的起动运行。
b.停止按钮(SB1)。
手动按钮开关,可控制电动机的停止运行。
c.主交流接触器(KM1)。
电动机主运行回路用接触器,起动时通过电动机起动电流,运行时通过正常运行的线电流。
d.Y形连接的交流接触器(KM3)。
用于电动机起动时作Y形连接的交流接触器,起动时通过Y形连接降压起动的线电流,起动结束后停止工作。
e.Δ形连接的交流接触器(KM2)。
用于电动机起动结束后恢复Δ形连接作正常运行的接触器,通过绕组正常运行的相电流。
f.时间继电器(KT)。
控制Y—Δ变换起动的起动过程时间(电机起动时间),即电动机从起动开始到额定转速及运行正常后所需的时间。
g.热继电器(或电机保护器FR)。
热继电器主要设置有三相电动机的过负荷保护;电机保护器主要设置有三相电动机的过负荷保护、断相保护、短路保护和平横保护等。
②控制原理三相异步电动机Y—Δ转换启动的控制原理大致如下:i.按下启动按钮SB2后,电源通过热继电器FR的动断接点、停止按钮SB1的动断接点、Δ形连接交流接触器KM2常闭辅助触头,接通时间继电器KT的线圈使其动作并延时开始。
三相异步电动机的Y―启动控制实验报告实验报告:三相异步电动机的Y-启动控制一、引言三相异步电动机是工业中常见的一种电动机,它具有结构简单、使用可靠等优点。
在实际应用中,三相异步电动机的启动是一个重要的环节,影响电动机的启动电流和起动时间。
本实验旨在研究三相异步电动机的Y-启动控制方法,探究不同启动方式对电动机起动性能的影响。
二、实验原理Y-起动是三相异步电动机常用的一种启动方法。
在这种方式下,电动机的起动过程分为两个阶段。
第一阶段:将电动机三个绕组连接成星形,即Y-连接。
在这种连接方式下,每个绕组之间电压相差120度。
起动时,绕组所接收的电压为线电压的1/√3倍,即电动机的起动电流较小,起动转矩也相对较小。
第二阶段:当电动机达到一定转速时,将电动机三个绕组连接成三角形,即Δ-连接。
在这种连接方式下,每个绕组之间电压相同,电动机的运行电流也相对较大。
实验中,我们通过控制开关来切换电动机的连接方式,观察电动机在不同启动方式下的起动电流和起动时间,以此来研究Y-启动对电动机起动性能的影响。
三、实验步骤1.搭建实验电路。
将三相异步电动机与电源、电阻以及实验仪器等连接,按照实验原理所述,将电动机三个绕组连接成Y-形。
2.调整电动机参数。
根据实验要求,设定电动机的额定电压、额定功率等参数。
3.打开电源,给电动机供电。
通过电动机控制开关,将电动机连接方式由Y-转换为Δ-。
4.测量启动电流和起动时间。
使用电流表测量电动机的启动电流,并使用计时器记录电动机的起动时间。
5.将电动机连接方式切换回Y-,重复步骤3和4,再次测量启动电流和起动时间。
6.对比实验结果,分析Y-启动对电动机起动性能的影响。
四、实验结果与分析根据实验所得数据,我们可以得出Y-启动对电动机起动性能的影响。
在Y-启动方式下,电动机的启动电流相对较小,起动时间也较短,这对电动机的使用可靠性和节能效果具有积极意义。
而在Δ-启动方式下,电动机的启动电流较大,起动时间也相对较长。
三相异步电动机的Y—△启动控制实验报告实验目的:1.理解三相异步电动机Y-△启动控制的原理;2.学会使用实验仪器,进行Y-△启动控制实验;3.探讨不同条件下Y-△启动控制的特点和优缺点。
实验仪器:1.工频电源;2.三相异步电动机;3.电流表、电压表;4.实验接线板;5.开关;6.其他必要的实验辅助设备。
实验原理:三相异步电动机在启动阶段启动电流较大,容易对电网造成冲击和短时过载。
为了减小启动电流,一种常用的方法是采用Y-△启动控制。
Y-△转换器是一种三角形和星形互联的电路,通过切换这两种连接方式,可以实现电动机的起动和停止。
在起动阶段,电动机连接为星形,启动电流较小;在运行阶段,电动机连接为三角形,电动机正常运行。
实验步骤:1.将工频电源接入电动机主馈线末端,并接地;2.在电动机输出线路上串联一个电流表、一个电压表,用于观察电流和电压的变化;3.将实验接线板上的接线器调整到Y-△转换器的星形连接方式;4.打开电源,记录电流和电压的数值;5.启动电动机,观察电流和电压的变化,并记录数据;6.将实验接线板上的接线器切换到三角形连接方式;7.再次观察电流和电压的变化,并记录数据。
实验结果:在实验过程中,根据实际情况记录了电流和电压的变化数据。
根据数据可以得出以下结论:1.在Y-△转换器的星形连接方式下,启动电流较小,电压较高;2.在Y-△转换器的三角形连接方式下,电流较大,但电压较低;3.通过对比两种连接方式下的电流和电压数据,可以明显看出Y-△启动控制可以减小启动电流。
实验讨论:1.Y-△启动控制的优点是可以减小启动电流,降低对电网的冲击和过载风险;2.Y-△启动控制的缺点是需要额外的电器元件和接线,增加了成本和复杂度;3.实际应用中,是否采用Y-△启动控制需要考虑电动机的功率、负载情况以及电网容量等因素。
实验总结:通过本次实验,我学习了三相异步电动机Y-△启动控制的原理和实验操作方法。
实验结果表明,Y-△启动控制可以有效减小启动电流,降低对电网的冲击和过载。
三相异步电动机的Y—△启动控制实验报告DOC实验名称:三相异步电动机Y—△启动控制实验报告一、实验目的:1.了解三相异步电动机的原理及工作特性;2.学习三相异步电动机的Y—△启动方式;3.掌握对三相异步电动机进行Y—△启动的控制方法;4.观察不同条件下的电动机的启动过程及运行情况。
二、实验原理:1.三相异步电动机的原理:2.Y—△启动方式:Y—△启动方式是一种较为常见的电动机启动方式,即先将电动机的绕组通过Y连接,使得电动机的起动电流较小;当电动机转速达到一定值后,再切换至△连接,使电动机能够正常运转。
三、实验器材及设备:1.三相异步电动机2.实验台架3.电源4.电流表5.电压表6.开关四、实验步骤及结果:1.将三相异步电动机连接至实验台架上,确保连接正确且牢固。
2.将电源接入实验台架,并调整电源参数(例如,电流、电压等)。
3.打开电源,使电源供电给电动机。
4.观察电动机的启动情况,记录电动机在不同条件下的启动时间和电流、电压等参数。
5.将电动机的连接方式从Y切换至△,观察电动机的运行情况并记录相关参数。
6.实验结束后,关闭电源,拆卸电动机。
五、实验讨论:1.分析Y—△启动方式的优点和缺点。
2.分析在实验过程中观察到的电动机启动时间和电流、电压等参数的变化规律及影响因素。
3.总结对三相异步电动机进行Y—△启动的控制方法。
4.提出改进实验方案的建议,并说明改进的原因。
六、实验结论:根据实验结果分析得知,Y—△启动方式能够有效地减小电动机起动时的电流冲击,降低电动机起动所需的能量,同时保证电动机能够正常运转。
在不同条件下,电动机的启动时间、电流、电压等参数存在差异,通过对电动机启动控制方法的改进,能够更好地控制电动机的启动过程,提高电动机的启动效率和运行质量。
在今后的实际应用中,可以根据电动机的不同要求选择合适的启动方式,以提高电动机的性能和可靠性。
《电工技术》异步电动机Y-启动控制实验
一、实验目的
1. 进一步提高按图接线的能力。
2. 了解时间继电器的结构、使用方法、延时时间的调整及在控制系统中的应用。
3. 熟悉异步电动机Y-△降压启动控制的运行情况和操作方法。
二、实验设备
三、实验内容
1. 时间继电器控制Y-△自动降压启动线路
用手推动时间继电器衔铁模拟继电器通电吸合动作,用万用电表Ω档测量触头的通与断,以此来大致判定触头延时动作的时间。
通过调节进气孔螺钉,即可整定所需的延时时间。
实验线路电源端接自耦调压器输出端(U、V、W), 供电线电压为220V。
(1) 按图1线路进行接线,先接主回路后接控制回路。
要求按图示的节点编号从
左到右、从上到下,逐行连接。
(2) 在不通电的情况下,用万用电表Ω档检查线路连接是否正确,特别注意KM2与KM3两个互锁触头KM3(5-7)与KM2(5-11)是否正确接入。
经指导教师检查后,方可通电。
(3) 开启控制屏电源总开关,按控制屏启动按钮,接通220V三相交流电源。
(4) 按启动按钮SB1,观察电动机的整个启动过程及各继电器的动作情况,记录Y -△换接所需时间。
(5) 按停止按钮SB2,观察电机及各继电器的动作情况。
(6) 调整时间继电器的整定时间,观察接触器KM2、KM3的动作时间是否相应地改变。
(7) 实验完毕,按控制屏停止按钮,切断实验线路电源。
2. 接触器控制Y-△降压启动线路
按图2线路接线
(1) 按控制屏启动按钮,接通220V三相交流电源。
(2) 按下按钮SB2,电动机作Y接法启动,注意观察启动时,电流表最大读数I Y启动=_____A。
(3) 稍后,待电动机转速接近正常转速时,按下按钮SB1,使电动机为△接法正常运行。
(4) 按停止按钮SB3,电动机断电停止运行。
(5) 先按按钮SB2,再按铵钮SB1,观察电动机在△接法直接启动时的电流表最大读数I△启动=_____A。
四、思考题
1、采用Y-△降压启动对鼠笼电动机有何要求。
答:
2、如果要用一只断电延时式时间继电器来设计异步电动机的Y-△降压启动控制线路,试问三个接触器的动作次序应作如何改动,控制回路又应如何设计?
答:
3、控制回路中的一对互锁触头有何作用?若取消这对触头对Y-△降压换接启动有何影响,可能会出现什么后果?
答:。