电磁兼容与电磁防护新材料新产品
- 格式:doc
- 大小:48.00 KB
- 文档页数:9
552020年第6期 安全与电磁兼容引言电磁兼容指设备既不产生过大的电磁干扰,影响其它设备的正常运行,又有一定的承受其它设备干扰的能力,能在一定的电磁环境中正常工作。
产品的电磁兼容性包括电磁发射、电磁敏感度两方面。
设备的电磁兼容设计与功能设计同样重要,要满足设备的电磁兼容性要求,如军用设备的GJB 151B-2013,信息技术设备的GB 4943-2001和GJB/Z 25-91等[1-2]。
研究电磁兼容问题,必须从电磁兼容的三要素,干扰源、耦合通道、敏感源着手[3]。
又必须站在系统的角度,全面分析电磁兼容问题。
系统中的设备既是干扰源又是敏感源,设备的结构件本身并不存在电磁兼容问题,但是结构件的屏蔽功能可以防止电磁波传入其内部空间[4],有助于提高产品的电磁兼容性能;未良好接地的结构件可能成为发射天线,从而降低产品的电磁兼容性能。
机箱结构的电磁兼容设计,就是从切断干扰信号的传播路径出发,采用屏蔽、接地技术,提高产品的电磁防护性能。
1 机箱结构VPX 机箱(以下简称机箱)是基于高速串行总线的新一代总线标准的机箱,主要应用于服务器、加固计算机等。
具有高速数据采集、实时信号处理及宽频带大容量存储功能,并具有体积坚固、抗干扰、耐震动的特点。
采用19英寸标准VPX(VITA46)机箱,其结构示意图如图1。
机箱总高度为4U,内部前部含有16个3U 标准模块插槽,后部含有14个3U 后插标准模块插槽,3U 标准模块插槽间距为5HP,即25.4 mm。
机箱采用风机风冷散热,进风口位于面板下方及左、右侧板的前部下方。
出风口位于后面板上方。
前面摘要介绍了VPX 机箱的结构型式,详细阐述了机箱外壳拼接、可视窗及活动门、散热进出风口、接地与搭接的设计思想、实现方法。
给出了波导通风窗截止频率、屏蔽效能的计算公式,指出采用簧片或导电橡胶条、屏蔽玻璃、波导窗等措施,可有效提高VPX 机箱的屏蔽效能及电磁防护水平。
通过改进可视窗屏蔽玻璃的安装方式和机箱多点接地,解决了VPX 机箱样机RE102项目测试超标、CS112项目测试中的短暂黑屏问题,样机完全满足GJB 151B-2013电磁兼容的相关要求。
2024年电磁兼容中的接地技术摘要:随着社会的不断发展,无线通信、电子设备和电力设施的普及使用,电磁辐射成为人们普遍关注的问题之一。
电磁辐射会对人体健康产生一定的不良影响,对电子设备的正常运行也会产生干扰。
为了解决电磁辐射的问题,接地技术应运而生。
本文将会探讨2024年电磁兼容中的接地技术发展现状及趋势。
1. 引言接地技术是一种重要的电磁辐射防护手段,通过将设备与地面建立良好的接地连接,能够降低电磁辐射的水平,减少对设备和人体的干扰和伤害。
2024年电磁兼容中的接地技术在以下几个方面取得了显著进展。
2. 现有接地技术的问题在过去的几十年间,人们已经积累了丰富的关于接地技术的知识和经验。
然而,传统的接地技术在面对现代复杂的电磁环境和高频高速的电子设备时显得力不从心。
传统的接地系统主要包括接地线和接地板,这种传统的接地方式存在以下几个问题:2.1. 高频环境下的接地问题在高频环境下,电磁波能够沿着接地线传输,从而导致接地线成为辐射源。
这会导致设备与接地线之间的电磁干扰增加,传输性能下降。
2.2. 大地接地问题传统的接地方式主要依赖于大地作为回路,但现实情况中地面导电性能不均一,接地电阻也不均匀,这会导致接地效果不理想。
2.3. 多设备共用接地问题现代电子设备往往需要共用接地系统,而共用接地可能导致不同设备之间的电磁干扰增加。
传统的接地方式对于多设备共用接地问题无法提供有效的解决方案。
3. 接地技术的发展趋势为了解决传统接地技术存在的问题,研究人员提出了一系列新的接地技术和方案,旨在提高接地系统的性能。
3.1. 次级接地系统次级接地系统可以有效地减少设备间的电磁干扰。
通过在设备上采用独立的次级接地系统,可以减少不同设备之间的共路径干扰,提高设备的电磁兼容性。
3.2. 活性接地技术活性接地技术可以通过引入电子控制器和传感器实时监测接地系统的状态,自动调整接地电阻并提供稳定的接地效果。
活性接地技术具有快速响应和自适应性强的特点,能够在不同的电磁环境下提供良好的接地效果。
高压输电线路的电磁辐射防护与电磁兼容性研究近年来,随着城市的发展和人口的增加,高压输电线路的建设也越来越多。
然而,高压输电线路在运行过程中会产生电磁辐射,可能对周围的居民和环境造成潜在风险。
因此,对高压输电线路的电磁辐射防护与电磁兼容性的研究显得尤为重要。
首先,为了保护周围居民的健康,高压输电线路的电磁辐射需要进行有效防护。
目前,主要有以下几种方法可以降低电磁辐射的影响:1.电磁屏蔽:采用金属屏蔽材料,将线路进行屏蔽,有效地减少电磁场的泄漏。
这种方法可以在线路附近建设屏蔽墙或屏蔽罩,将电磁辐射限制在规定范围内。
2.地下埋设:将高压输电线路埋入地下,将电磁辐射限制在地下,减少对地表和周围居民的影响。
这种方法虽然需要更高的成本,但能够更好地保护人们的健康。
3.距离远离居民区:考虑线路建设的位置,尽量将其远离居民区等人口密集地。
这样可以有效减少电磁辐射对居民的影响。
除了电磁辐射防护之外,高压输电线路的电磁兼容性问题也需要研究。
由于高压输电线路通常会与其他设备,如通信设备和电子设备等共同存在,并且它们之间会相互干扰,这就需要进行电磁兼容性的研究,以确保各种设备能够正常运行。
为了实现高压输电线路的电磁兼容性,可以采取以下措施:1.合理布设线路:选择合适的线路走向和布设方式,尽量避免与其他设备的干扰。
例如,在规划线路时应考虑与通信基站等敏感设备的距离。
2.提高设备的抗干扰性能:采用抗干扰设计,对高压输电线路和其他设备进行屏蔽和过滤,减少互相之间的电磁干扰。
例如,通过增加滤波器、使用屏蔽罩等手段来提高设备的抗干扰能力。
3.定期检测与维护:对高压输电线路以及周围设备进行定期检测和维护,及时发现问题并修复。
这样可以提高线路和设备的稳定性,减少干扰情况的发生。
除了上述的措施外,还可以通过不断的研究和改进来提高高压输电线路的电磁兼容性。
借助现代技术手段,如电磁仿真和实验室测试,可以更准确地评估线路的电磁辐射和兼容性情况。
已经发布的电磁兼容国家标准序号 GB 号标 准 名 称采标状况 1 GB/T3907-1983 工业无线电干扰基本测量方法2GB4343.1-2003电磁兼容 家用电器、电动工具和类似器具的要求 第一部分:发射eqv:CISPR14-13 GB4343.2-1999电磁兼容 家用电器、电动工具和类似器具的要求 第一部分:抗扰度——产品类标准idt:CISOPR14-2 (1997) 4 GB/T4365-2003 电工术语 电磁兼容 IEC50(161) 5 GB4824-2004工业、科学和医疗(ISM )射频设备 电磁骚扰特性 限值与测量方法eqv:CISPR11 6 GB/T4859-1984 电气设备的抗干扰特性基本测量方法7 GB/T6113.1-1995 无线电骚扰和抗扰度测量设备规范 eqv:CISPR16-1 (1993) 8 GB/T6113.2-1998 无线电骚扰和抗扰度测量方法epv:CISPR16-2 (1996)9 GB/TZ 6113.3-2006无线电骚扰和抗扰度测量方法规范 第3部分:无线电骚扰和抗扰度测量技术报告 CISPR16-3:200310 GB/T 6113.402-2006 “无线电骚扰和抗扰度测量设备和测量方法规范 第4-2部分:不确定度,统计学和限制缄默测量设备和设施的不确定度” CISPR16-4-2:2003 11 GB6364-1986 航空无线电导航台站电磁环境要求 12 GB6830-1986电信线路遭受强电线路危险影响的容许值13 GB/T6833.1-1986 电子测量仪器电磁兼容性试验规范 总则eqv:HP765.001~.009-77 14 GB/T6833.2-1987 电子测量仪器电磁兼容性试验规范 磁场敏感度试验 15 GB/T6833.3-1987 电子测量仪器电磁兼容性试验规范 静电放电敏感度试验16 GB/T6833.4-1987电子测量仪器电磁兼容性试验规范 电源瞬态敏感度试验17 GB/T6833.5-1987 电子测量仪器电磁兼容性试验规范 辐射敏感度试验 18 GB/T6833.6-1987 电子测量仪器电磁兼容性试验规范 传导敏感度试验 19 GB/T6833.7-1987 电子测量仪器电磁兼容性试验规范 非工作状态磁场干扰试验20 GB/T6833.8-1987电子测量仪器电磁兼容性试验规范 工作状态磁场干扰试验21 GB/T6833.9-1987 电子测量仪器电磁兼容性试验规范 传导干扰试验 22 GB/T6833.10-1987 电子测量仪器电磁兼容性试验规范 辐射干扰试验23 GB/T7260.2- 2003 不间断电源设备(ups )第2部分:电磁兼容性要求 IEC 62040-2:1999 24 GB/T7343-198710kHz ~30MHz 无源无线电干扰滤波器和抑制元件抑制特性的测量方法CISPR17 (1981)25 GB/T7349-2002 高压架空送电线、变电站无线电干扰测量方法26 GB/T7432-1987 同轴电缆载波通信系统抗无线电广播和通信干扰的指标27 GB/T7433-1987 对称电缆载波通信系统抗无线电广播和通信干扰的指标28 GB/T7434-1987 架空明线载波通信系统抗无线电广播和通信干扰的指标29 GB7495-1987 架空电力线路与调幅广播收音台的防护间距30 GB8702-1988 电磁辐射防护规定31 GB9175-1988 环境电磁波卫生标准32 GB9254-1998 信息技术设备的无线电骚扰限值和测量方法idt:CISPR22 (1997)33 GB/T9383-1999 声音和电视广播接收机及有关设备抗扰度限值及测量方法eqv:CISPR20(1998)34 GB10436-1989 作业场所微波辐射卫生标准35 GB11032-2000 交流无间隙金属氧化物避雷器IEC60099-4-199 136 GB11604-1989 高压电器设备无线电干扰测试方法 eqv:IEC18(1983)37 GB/T11684-2003 核仪器电磁环境条件与试验方法38 GB/T12190-2006 电磁屏蔽室屏蔽效能的测量方法idt:IEEE299 (1996)39 GB12638-1990 微波和超短波通信设备辐射安全要求(正在修订)40 GB12668.3-2003 调速电气传动系统第3部分:产品的电磁兼容性标准及其特定的试验方法41 GB13421-1992 无线电发射机杂散发射功率电平的限值和测量方法42 GB13613-1992 对海中远程无线电导航台站电磁环境要求43 GB13614-1992 短波无线电测向台(站)电磁环境要求44 GB13615-1992 地球站电磁环境保护要求45 GB13616-1992 微波接力站电磁环境保护要求46 GB13617-1992 短波无线电收信台(站)电磁环境要求47 GB13618-1992 对空情报雷达站电磁环境防护要求48 GB/T13619-1992 微波接力通信系统干扰计算方法49 GB/T13620-1992 卫星通信地球站与地面微波站之间协调区的确定和干扰计算方法50 GB13836-2000 电视和声音信号电缆分配系统 第2部分 设备的电磁兼容eqv:IEC60728-2(1997)51 GB13837-2003 声音和电视广播接收机及有关设备无线电骚扰特性限值和测量方法eqv:CISPR1352 GB14023-2006 车辆、机动船和由火花点火发动机驱动装置的无线电干扰特性的限值和测量方法idt:CISPR12(1997)53 GB/T14431-1993 无线电业务要求的信号/干扰保护比和最小可用场强54 GB/T14598.9-2002 电气继电器第22-3部分:量度继电器和保护装置的电气骚扰试验——辐射电磁场骚扰试验idt:IEC60255-22-355 GB/T14598.10-1996电力继电器 第22部分:量度继电器和保护装置的电气干扰试验 第4篇:快速瞬变干扰试验 idt:IEC60255-22-4(1992) 56 GB/T14598.13-1998量度继电器和保护装置的电气干扰试验 第1部分:1MHz 脉冲群干扰试验 epv:IEC60255-22-1(1998) 57 GB/T14598.14-1998量度继电器和保护装置的电气干扰试验 第2部分:静电放电试验 epv:IEC60255-22-2(1998) 58 GB 14598.16-2002 电气继电器 第25部分:量度继电器和保护装置的电磁发射试验epv:IEC60255-25(2000)59 GB 14598.18-2007电气继电器 第22-5部分:量度继电器和保护装置的电器骚扰试验——浪涌抗扰度试验epv:IEC60255-25(2000)60 GB/T15152-2006 脉冲噪声干扰引起移动通信降级的评定方法 IEC/CISPR21:199961 GB15540-2006陆地移动通信设备电磁兼容技术要求和测量方法ETSI EN 601 489-1:02 62 GB/T15658-1995 城市无线电噪声测量方法63 GB15707-1995 高压交流架空送电线无线电干扰限值 CISPR18(1986)64 GB/T15708-1995交流电气化铁道电力机车运行产生的无线电辐射干扰测量方法65 GB/T15709-1995 交流电气化铁道接触网无线电辐射干扰测量方法 66 GB15734-1995 电子调光设备无线电骚扰特性限值及测量方法 67 GB16203-1996作业场所工频电场卫生要求68 GB/T16607-1996 微波炉在1GHz 以上的辐射干扰测量方法eqv:CISPR19:198369 GB/T16679 -1996 信号与连接线的代号 IEC61175:199370 GB16787-1997 30MHz ~1GHz 声音和电视信号的电缆分配系统辐射测量方法和限值IEC60728-1-199171 GB16788-199730MHz ~1GHz 声音和电视信号的电缆分配系统抗扰度测量方法和限值IEC60728-1-1986 72 GB/T 16895.3-2004建筑物电气装置 第5-54部分:电气设备的选择和安装——接地配置、保护导体和保护联结导体73GB/T 16895.16- 2002建筑物电气装置 第4部分:安全防护 第44章:过电压保护 第444节:建筑物电气装置电磁干扰(EMI)防护74 GB/T 16895.17-2002建筑物电气装置 第5部分:电气设备的选择与安装第548节:信息技术装置的接地配置和等电位联结 75 GB/T17618-1998 信息技术设备抗扰度限值和测量方法idt:CISPR24(1997)76 GB/T17619-1998 机动车电子电器组件电磁辐射抗扰性限值和测量方法 采用欧共体指令95/54/EEC (1995)77 GB/T17624.1-1998 电磁兼容 综述 电磁兼容基本术语和定义的应用与解释idt:IEC61000-1-1(1992)78 GB17625.1-2003电磁兼容 限值 谐波电流发射限值(设备每相输入电流≤16A )eqv:IEC61000-3-279 GB17625.2-1999 电磁兼容 限值 对额定电流不大于16A 的设备在低压供电系统中产生的电压波动和闪烁的限值 idt:IEC61000-3-3(1994) 80 GB/Z17625.3-2000 电磁兼容 限值 对额定电路大于16A 的设备在低压供电系统中产生的电压波动和闪烁的限制IEC61000-3-5 (1994) 81 GB/Z17625.4-2000 电磁兼容 限值 中、高压电力系统中畸变负荷发射限值的评估IEC61000-3-6 (1996) 82 GB/Z17625.5-2000电磁兼容 限值 中、高压电力系统中波动负荷发射限值的评估IEC61000-3-7 (1996) 83 GB/Z 17625.6-2003电磁兼容 限值 对额定电流大于16A 的设备在低压供电系统中产生的谐波电流的限制84 GB/T17626.1-1998 电磁兼容 试验和测量技术 抗扰度试验总论 idt:IEC61000-4-1(1992)85 GB/T17626.2-2006 电磁兼容 试验和测量技术 静电放电抗扰度试验 idt:IEC61000-4-2(2001)86 GB/T17626.3-2006 电磁兼容 试验和测量技术 射频电磁场辐射抗扰度试验idt:IEC61000-4-3(2002)87 GB/T17626.4-1998电磁兼容 试验和测量技术 电快速瞬变脉冲群抗扰度试验idt:IEC61000-4-4(1995)88 GB/T17626.5-1999 电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验 idt:IEC61000-4-5(1996)89 GB/T17626.6-1998 电磁兼容 试验和测量技术 射频场感应的传导骚扰抗扰度idt:IEC61000-4-6(1996)90 GB/T17626.7-1998电磁兼容 试验和测量技术 供电系统及所连设备谐波、谐间波的测量和测量仪器导则idt:IEC61000-4-7(1991)91 GB/T17626.8-1998 电磁兼容 试验和测量技术 工频磁场抗扰度试验 idt:IEC61000-4-8(1993)92 GB/T17626.9-1998 电磁兼容 试验和测量技术 脉冲磁场抗扰度试验 idt:IEC61000-4-9(1993)93 GB/T17626.10-1998 电磁兼容 试验和测量技术 阻尼振荡磁场抗扰度试验 idt:IEC61000-4-10(1993) 94 GB/T17626.11-1999电磁兼容 试验和测量技术 电压暂降、短时中断和电压变化的抗扰度试验 idt:IEC61000-4-11(1994) 95 GB/T17626.12-1998 电磁兼容 试验和测量技术 振荡波抗扰度试验 idt:IEC61000-4-12(1995) 96 GB/T17626.14-2005 电磁兼容 试验和测量技术 电压波动抗扰度试验 idt:IEC61000-4-14(2002) 97 GB/T17626.16-2007电磁兼容 试验和测量技术 0Hz-150Hz 共模传导骚扰抗扰度试验 idt:IEC61000-4-16(2002) 98 GB/T17626.17-2005电磁兼容 试验和测量技术 直流电源输入端口纹波扰度试验 idt:IEC61000-4-17(2002) 99 GB/T17626.28-2005 电磁兼容 试验和测量技术 工频频率变化抗扰度试验 idt:IEC61000-4-28(2001) 100 GB17743-1999电气照明和类似设备的无线电骚扰特性的限值和测量方法idt:CISPR15(1996)101 GB/T17799.1-1999电磁兼容 通用标准 居住、商业和轻工业环境中的抗扰度试验idt:IEC61000-6-1(1996) 102 GB/T 17799.2-2003 电磁兼容 通用标准 工业环境中的抗扰度试验103 GB/T17799.3-2001电磁兼容 通用标准 居住、商业和轻工业环境中的发射标准idt:IEC61000-6-3(1996)104 GB/T17799.4-2001 电磁兼容 通用标准 工业环境中的发射标准 idt:IEC61000-6-4(1997) 105 GB/Z18039.1-2000 电磁兼容 环境 电磁环境的分类 IEC61000-2-5(1996) 106 GB/Z18039.2-2000 电磁兼容 环境 工业设备电源低频传导骚扰发射水平的评估IEC61000-2-6 (1996) 107 GB/T 18039.3-2003电磁兼容 环境 公共低压供电系统低频传导骚扰及信号传输的兼容水平IEC61000-2-2 (1990) 108 GB/T 18039.4-2003 电磁兼容 环境 工厂低频传导骚扰的兼容水平 IEC61000-2-4 (1994) 109 GB/T 18039.5-2003电磁兼容 环境 公共供电系统低频传导骚扰及信号传输的电磁环境IEC61000-2-1 (1990) 110 GB/T 18039.6-2005 电磁兼容 环境 各种环境中的低频磁场 IEC61000-2-7 (1998) 111 GB/T 18268-2000 测量、控制和试验使用的电设备电磁兼容性要求 112 GB/T 18387-2001 电动车辆的电磁场辐射强度的限值和测量方法宽带9kHz~30MHz113 GB 18499-2001家用和类似用途的剩余电流动作保护器(RCD )——电磁兼容性114 GB/Z 18509-2001 电磁兼容 电磁兼容标准起草导则 115 GB 18555-2001 作业场所高频电磁场职业接触限值 116 GB/T 18595-2001 一般照明用设备的电磁兼容抗扰度要求117 GB 18655-2002 用于保护车载接收机的无线电骚扰特性的限值和测量方法118 GB/T 18732-2002 工业、科学和医疗设备限值的确定方法119 GB 18802.1-2002 低压配电系统的电涌保护器(SPD) 第1部分:性能要求和试验方法120 GB 18802.21-2002低压电涌保护器 第21部分:电信和信号网络的电涌保护器(SPD)性能要求和试验方法121 GB/T 19271.1-2003 雷电电磁脉冲的防护 第1部分:通则 122 GB 19286-2003 电信网络设备的电磁兼容性要求及测量方法 123 GB/T 19287-2003 电信设备的抗扰度通用要求124 GB/Z 19397-2003 工业机器人—电磁兼容性试验方法和性能评估准则—指南125 GB 19483-2004 无绳电话的电磁兼容性要求及测量方法126 GB 19484.1-2004 800MHz CDMA 数字蜂窝移动通信系统 电磁兼容性要求和测量方法 第1部分:移动台及其辅助设备127 GB/T 19951-2005道路车辆静电放电产生的电骚扰试验方法 ISO10605:2001128 GB/T19954.1-2005 电磁兼容专业用途的音频、视频、音视频和娱乐场所灯光控制设备的产品类标准第1部分:发射EN55301-1:1996129 GB/T19954.2-2005 电磁兼容专业用途的音频、视频、音视频和娱乐场所灯光控制设备的产品类标准第1部分:抗扰度EN55301-2:1996130 GB/Z19511-2004 工业、科学和医疗设备(ISM)国际电信联盟(ITU)指定频段内的辐射电平指南131 GB/Z19871-2005 数字电视广播接收机电磁兼容性能要求和测量方法132 GB/T20549-2006 移动通信直放机电磁兼容技术要求和测试方法133 GJB/Z17-90 军用装备电磁兼容管理指南134 GJB/Z25-90 电子设备和设施的接地,搭接和屏蔽设计指南135 GJB/Z36-93 舰船总体天线电磁兼容性设计导则136 GJB/Z54-94 系统预防电磁能量效应的设计和试验指南137 GJB72A-2002 电磁干扰和兼容性术语138 GJB/Z124-99 电磁干扰诊断指南139 GJB/Z132-2002 军用电磁干扰滤波器选用和安装指南140 GJB151A-97 军用设备和分系统电磁发射和敏感度要求 MIL-STD-461A 141 GJB152A-97 军用设备和分系统电磁发射和敏感度测量 MIL-STD-462A 142 GJB181A-2003 飞机供电特性143 GJB/Z214-2003 军用电磁干扰滤波器设计指南144 GJB538-88 半导体器件电磁脉冲损伤阈值试验方法145 GJB572A-2006 飞机外部电源供电特性及一般要求146 GJB786-89 预防电磁场对军械危害的一般要求147 GJB870-90 军用电子设备方舱通用规范148 GJB911-90 电磁脉冲防护器件测量方法149 GJB968.1-.13-90 军用弦外机定型试验规定150 GJB1046-90 舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法151 GJB1143-91 无线电频谱特性的测量152 GJB1210-91 接地,搭接和屏蔽设计的实施 MIL-STD-1857153 GJB1389A-2005 系统电磁兼容性要求 MIL-E-6051D 154 GJB1450-92 舰船总体射频危害电磁场强测量方法155 GJB1518-92 射频干扰滤波器总规范156 GJB1696-93 航天系统地面设施电磁兼容性和接地要求157 GJB2038-94 雷达吸波材料反射率测试方法158 GJB2079-94 无线电系统间干扰的测量方法159 GJB2080-94 接收点场强的一般测量方法160 GJB2117-94 横电磁波室性能测量方法161 GJB2451-95 金属壳密封抑制电磁干扰电容器总规范162 GJB2604-96 军用电磁屏蔽涂料通用规范163 GJB2606-96 军用透光屏蔽涂料通用规范164 GJB2713-96 军用屏蔽玻璃通用规范165 GJB2926-97 电磁兼容性测试实验室认可要求166 GJB3039-97 舰船屏蔽舱室要求和屏蔽效能测试方法167 GJB3198-98 无线电引信抗干扰性能评定方法168 GJB3405-98 20-1000MHz屏蔽室场分布测试方法169 GJB3590-99 航天系统电磁兼容性要求170 GJB3622-99 通信和指挥自动化地面设施对高空核电磁脉冲的防护要求171 GJB3909-99 指挥中心(所)电磁兼容性要求172 GJB4223-2001 反坦克导弹武器系统抗干扰定型试验规程173 GJB4940-2003 VHF/UHF频段航空移动业务与陆地移动业务之间电磁兼容性要求174 GJB4944-2003 舰载卫星通信地球站电磁环境要求175 GJB5185-2003 小屏蔽体屏蔽效能测量方法176 GJB5195-2004 电子干扰飞机电子对抗任务系统通用规范177 GJB5199-2004 舰船通信干扰设备试验场试验方法178 GJB5239-2004 射频吸波材料吸波性能测试方法179 GJB5240-2004 军用电子装备同用机箱机柜屏蔽效能要求和测试方法IEC 61000-5-7:2001180 GJB5313-2004 电磁辐射暴露限值和测量方法181 GJB/J5410-2005 电磁兼容测量天线的天线系数校准规范182 GJB5792-2006 军用涉密信息系统电磁屏蔽体等级划分和测量方法183 GJBZ20008-91 军用通信车电磁兼容性规范184 GJBZ20048-96 对空情报雷达电磁环境防护要求的测量方法185 GJBZ20093-92 VHF/UHF航空无线电通信台站电磁环境要求186 GJBZ20206-94 军用机场指挥、通信、导航设施抗电磁干扰技术要求187 GJBZ20480-98 军用直升飞机电磁兼容性通用要求188 QJ2809-96 平面材料屏蔽效能的测试方法189 QJ2840-96 电磁兼容性测量天线的天线系数校准方法190 QJ3035-98 电子机柜电磁屏蔽要求和测试方法191 SJ10346-97 电子乐器干扰特性限值和测量方法192 SJ/T10664 电话终端的电磁兼容性技术要求及测量方法193 SJ11151-97 电视游戏机干扰特性限值和测量方法194 SJ20155-92 射频辐射吸收体(微波吸收材料)的通用规范195 SJ20156-92 电源中减小电磁干扰的设计指南196 SJ20672-98 电磁屏蔽衬垫屏蔽质量的测量方法197 SJ20673-98 军用电磁屏蔽橡胶衬垫材料通用规范198 SJ20755A-2005 军用电磁屏蔽通风窗痛用规范199 SJ20814-2002 军用电磁屏蔽箔片通用规范200 SJ20819-2002 军用EMI吸波器件(包括磁珠、磁环、磁筒、磁夹板等器件)通用规范201 SJ20925-2005 军用低泄漏方舱通用规范202 TB/T3021-2001 铁道机车车辆电子装置203 TB/T3073-2003 铁道信号电器设备电磁兼容性试验及其限值204 YD/T968-2002 电信终端设备电磁兼容性要求及测量方法205 YD/T1003-99 卫星通信VSAT地球站电磁干扰的测量方法206 YD/T1032-2000 900/1800MHz CTDMA数字蜂窝通信系统电磁兼容性限值和测量方法第一部分:移动台及其辅助207 YD/T1138-2006 固定/无线链路设备及其辅助设备的电磁兼容性要求和测量方法208 YD/T1139-2006 900/1800MHz CTDMA数字蜂窝通信系统电磁兼容性要求和测量方法第二部分:基站及其辅助设备209 YD/T1169.2-2001 800MHz CTDMA数字蜂窝通信系统电磁兼容性要求和测量方法第二部分:基站及其辅助设备210 YD/T1244-2002 数字用户(XDSL)设备电磁兼容性要求和测量方法211 YD/T1312.1-2004 无线通信设备电磁兼容性要求和测量方法第一部分:通用要去212 YD/T1312.2-2004 无线通信设备电磁兼容性要求和测量方法第二部分:宽带无线电设备213 YD/T1312.3-2004 无线通信设备电磁兼容性要求和测量方法第三部分:个人陆地移动无线电设备(PMR)及其辅助设备214 YD/T1312.4-2004 无线通信设备电磁兼容性要求和测量方法第四部分:无线寻呼系统215 YD/T1312.5-2004 无线通信设备电磁兼容性要求和测量方法第五部分:无线语音链路设备和无线电话216 YD/T1312.6-2004 无线通信设备电磁兼容性要求和测量方法第六部分:业余无线电设备217 YD/T1312.7-2004 无线通信设备电磁兼容性要求和测量方法第七部分:陆地集群无线电设备218 YD/T1312.8-2004 无线通信设备电磁兼容性要求和测量方法第八部分:短距离无线电设备(9k~40GHz)219 YD/T1312.9-.10-2007无线通信设备电磁兼容性要求和测量方法第九-十部分220 YD/T1482-2006 电信设备电磁环境分类221 YD/T1633-2007 电磁兼容性现场测试方法IEC60601-1-2:20 01222 YY0505-2005 医用电气设备第1-2部分:安全通用要求并列标准:电磁兼容要求和试验223 YZ/T0066-2002 小型邮政产品族间容性静电、电快速瞬变脉冲群、电压暂将短时中断的抗扰度试验要求。
吸波超材料研究进展一、本文概述随着现代科技的不断进步,电磁波在通信、雷达、军事等领域的应用日益广泛,然而,电磁波的散射和干扰问题也随之凸显出来。
为了有效地解决这一问题,吸波超材料应运而生。
吸波超材料作为一种具有特殊电磁性能的人工复合材料,能够实现对电磁波的高效吸收,因此在隐身技术、电磁兼容、电磁防护等领域具有广阔的应用前景。
本文旨在综述吸波超材料的研究进展,包括其基本原理、设计方法、制备工艺以及应用现状等方面。
将介绍吸波超材料的基本概念和电磁特性,阐述其吸波原理及影响因素。
然后,将综述近年来吸波超材料在结构设计、材料选择以及性能优化等方面的研究成果。
接着,将讨论吸波超材料的制备方法,包括传统的物理法和化学法以及新兴的3D打印技术等。
将展望吸波超材料在未来的发展趋势和应用前景。
通过本文的综述,读者可以对吸波超材料的研究现状有全面的了解,并为进一步的研究和开发提供有益的参考。
二、吸波超材料的基本原理吸波超材料,作为一种人工设计的复合材料,其基本原理主要基于电磁波的干涉、散射、吸收和转换等物理过程。
吸波超材料通过特定的结构设计,能够有效地调控电磁波的传播行为,从而实现高效的电磁波吸收。
吸波超材料的设计往往采用亚波长结构,这种结构可以在微观尺度上调控电磁波的传播路径,使得电磁波在材料内部发生多次反射和干涉,从而增加电磁波与材料的相互作用时间,提高电磁波的吸收效率。
吸波超材料通常具有负的介电常数和负的磁导率,这使得电磁波在材料内部传播时,会经历与常规材料不同的物理过程。
当电磁波进入吸波超材料时,由于介电常数和磁导率的负值特性,电磁波的传播方向会受到调控,从而实现电磁波的高效吸收。
吸波超材料还可以通过引入损耗机制,如电阻损耗、介电损耗和磁损耗等,将电磁波的能量转化为其他形式的能量,如热能,从而实现电磁波的衰减和吸收。
这种损耗机制的设计对于提高吸波超材料的吸收性能至关重要。
吸波超材料的基本原理是通过调控电磁波的传播路径、改变电磁波的传播方向以及引入损耗机制,实现电磁波的高效吸收。
蓝牙音箱电磁兼容ESD整改案例案例1ESD空气放电,是指静电枪头没有直接接触金属,通过空气放电的方式注入PCB板上;按照实验标准的测试方法,对于孔缝等人体无法直接接触的端口进行空气放电实验。
一、描述:本次实验产品是一款蓝牙音箱,其外露的端口主要有AUX,以及USB金属端口;AUX端口为塑胶,按照实验标准,对其进行空气放电8KV,在测试的时候,我们发现样机很容易会出现声音异常现象,并且无法正常关机,需直接断电才能消失。
重新上电后,音箱的声音已经发生了变质,判断等级为D级。
换一块PCB板后样机可以重新工作。
二、整改过程:经过审核AUX端口的结构,我们发现其内部有金属引脚延伸比较长,并且每个引脚都是直接与IC的PING脚相连;从而使得静电可以通过金属引脚直接干扰到IC引脚。
所以首先在这三个引脚对地并联ASIM ESD(型号:CV0402VT6201T),再进行空气放电的时候,发现样机没有出现之前出现的声音异常现象。
如下图为整改PCB图:再此也设计出一般AUX的静电以及EMI防护方案:案例2一、ESD放电分析:在ESD放电的过程中,会产生瞬间的高电压,大电流和宽带的电磁干扰,以至于电子组件失效、损坏、降低可靠度,大至电子系统设备误动作、损毁,甚至会酿成重大灾难。
二、整改前实验现象:此次实验对象是一款多功能蓝牙音箱,其有AUX、蓝牙、USB、TF卡等模式。
在蓝牙模式充电的情况下,设备在进行空气±8KV放电的时候,机器会出现断蓝牙,复位的现象。
三、整改过程:由于对音箱进行接触放电的时候,发现音箱不会出现类似现象;于是先将PCB板的地定义为完整地;只要将静电导到地上就行;所以第一步措施为:将AUX信号线上串上磁珠(ASIM型号:CVB1005C152T)并且对地并联ESD器件(ASIM型号:CV0402VT6201T),如下图:其基本原理为:整改好后,重新对音箱进行空气±8KV测试,发现现象有所改善,但是还是没有彻底根除。
电磁兼容性在医疗器械产品中的应用马仁俊发布时间:2021-08-23T06:05:42.251Z 来源:《现代电信科技》2021年第8期作者:马仁俊[导读] 随着电子设备在医疗领域的广泛应用,由此产生的电磁兼容性问题也日益突出。
如何提升我国医疗器械产品的质量,确保临床应用过程中的安全性和可靠性,逐渐成为困扰人们的关键问题。
(福建省食品药品认证审评中心 350003)摘要:随着电子设备在医疗领域的广泛应用,由此产生的电磁兼容性问题也日益突出。
如何提升我国医疗器械产品的质量,确保临床应用过程中的安全性和可靠性,逐渐成为困扰人们的关键问题。
因此,本文从电磁兼容性的基础问题入手,对其在医疗领域的实际应用进行简要分析,以期推动医疗产品质量以及安全性能的显著提升。
关键词:电磁兼容性;医疗器械;应用前言近几年来,随着我国电子信息技术的不断发展,其在各个领域都取得了显著的发展成果。
其中,最为惹人注目的就是其在医疗领域的应用,医疗设备是对病人进行检查、手术、治疗、护理等工作中最常用的工具之一,其对设备的性能、安全、质量要求极高。
一旦医疗器械受到电磁环境的严重干扰,轻则被迫中止治疗过程,重则会威胁到病人的生命健康。
因此,医疗器械在使用之前,一定要确保周围环境电磁兼容指标达到要求。
除此之外,要加强对电磁兼容性应用的研究力度。
1电磁干扰对医疗器械危害研究近几年来,医疗设备与电子元件之间实现了联合应用,进一步提高了医疗设备的精确度与敏感度。
较之传统的医疗设备而言,这种联合应用的方式具有明显的优势。
再加之互联网技术广泛应用于医疗器械领域,逐渐形成以互联网连接为基础的远程诊断网络。
通过发射不同频率的电磁波,实现远程的医疗交流。
但是,电磁波会对医疗设备产生一定的消极影响,医疗器械长期处于电磁环境中,极其容易受到其他电子设备的干扰,进而导致计算机系统发生故障。
从实际情况来看,电磁干扰还可能由于损坏治疗设备而阻断医疗诊断过程,严重时甚至会影响医者对患者病情的判断。
无人机系统电磁兼容性测试研究发布时间:2022-01-13T03:21:08.014Z 来源:《福光技术》2021年22期作者:肖猛[导读] 并通过系留线缆输送至多旋翼无人机来维持无人机的长时间空中工作。
地面站通过与系留无人机无线连接实现对无人机姿态的实时监控。
哈尔滨市高新检测技术研究院黑龙江省哈尔滨市 150036摘要:随着现代无人机技术的发展,无人机上搭载了更多的机载电子设备,这使得无人机电磁环境越来越复杂。
特别是用于侦察、干扰、作战的无人机,它的电磁兼容性要求更高而且还需具有隐蔽性好、轻巧、灵活等特点。
这给无人机电磁兼容性设计带来了极大的困难和挑战。
本文通过某型系留无人机的电磁兼容性设计和实验验证,对无人机的电磁兼容性设计方案给出了意见和建议。
关键词:无人机;系统;电磁兼容;测试1.系留无人机简介系留无人机是将多旋翼无人机与光电复合线缆结合实现的,其结构简单、机动性强,可以根据不同的工作需求搭载摄像机、通信基站以及任务载荷等设备,实现长时间不间断的空中监控和应急通讯,同时根据不同的环境需求可切换为地面固定式以及车载移动式、舰载移动式等三种工作模式。
某型系留无人机系统结构如图1所示。
系留综合控制箱将发电机产生的380V交流电转换成1200V高压电,并通过系留线缆输送至多旋翼无人机来维持无人机的长时间空中工作。
地面站通过与系留无人机无线连接实现对无人机姿态的实时监控。
图1 系留无人机系统结构示意图2.无人机电磁兼容性分析无人机在电磁环境内所受的干扰主要可以分为系统内的电磁干扰和系统外的电磁干扰。
无人机系统内部的电磁干扰主要来源于飞机的动力装置(电机、电调)、大电流逆变电源和开关电源、高频数字电路(北斗模块、RTK模块)、天线、具有无线电发射功能的任务载荷等,它们属于无人机系统内部的主要干扰源。
此外,无人机系统内部电路走线、器件布局以及设计的不完善也会导致机体内部局部电荷积累,进而造成系统内部电磁干扰。
电磁仿生学-电磁防护研究的新领域
刘尚合;原亮;褚杰
【期刊名称】《自然杂志》
【年(卷),期】2009(031)001
【摘要】由于集成度提高而导致集成电路电磁抗扰度下降以及电磁环境越发严峻
等因素,使得传统电磁抗扰方式的不足日渐突出.因此,通过讨论生物进化的某些概念、部分生物系统的特点及其在电子系统中所具有的对等性,尝试将仿生学的基本方法
引入电磁防护领域,创建并初步验证了一种基于仿生机制和模型的防护新模式.进而,详细阐述了电磁仿生的基本概念、技术基础和实现目标等具体内容,介绍了目前电
磁仿生研究中已取得的相关成果,证明了电磁仿生技术的可行性与有效性,以及建立
电磁仿生学科的重要性和必要性.
【总页数】7页(P1-7)
【作者】刘尚合;原亮;褚杰
【作者单位】中国工程院;军械工程学院计算机工程系,石家庄,050003;军械工程学
院静电与电磁防护研究所,石家庄,050003
【正文语种】中文
【中图分类】O4
【相关文献】
1.复杂电磁环境下某型保障装备电磁防护研究 [J], 罗佳伟;王保成;孙国文;孙玉琳
2.电磁驱动式引信过载试验装置中的电磁防护研究 [J], 王文豪;毕世华;向红军
3.开创电磁兼容服务新领域——容向公司成立十周年暨电磁兼容实验室开业典礼[J],
4.高重频电磁脉冲模拟器控制系统电磁防护研究 [J], 马丽华;冯德仁;李小龙;何山红;车文荃;熊瑛
5.汽车电器电磁干扰及防护研究 [J], 耿兴
因版权原因,仅展示原文概要,查看原文内容请购买。
中国室内装饰协会室内环境监测中心Chinese Indoors Decorates Association Indoors Environment Monitor Center电磁兼容与电磁防护新材料新产品简介本所是“全国静电安全标准化技术委员会”秘书处,我国IEC/TC101技术归口单位。
本室是从事电磁兼容、电磁辐射防护技术的专业研究单位。
自六十年代来,本室从劳保保护、环境保护两大领域开展了多种类型的科学研究,诸如技术开发、应用研究以及涉及到理论方面的基础研究。
获北京市科技进步成果奖、四机部科技进步成果奖、国家重大科技奖多项。
本室在长期的科研实践中,逐步建立了一套先进的场强测试系统,备有国内外先进的测量仪器与试验条件,在劳动保护、环境保护两个领域中形成了电磁辐射防护研究与环境评价中心。
本室在我国电磁兼容与抑制防护专家赵玉峰、于燕华教授的指导下,组织编写,正式由出版社出版了十五部专业书籍;内部发行了大批技术资料;承担了劳动人事部、城乡建设部、卫生部、四机部、全国总工会及其他部门的专业干部学习班讲课任务。
本室是以高科技为龙头,集科、工、贸于一体,迅速发展起来的经济实体。
站在高科技前沿,充分发挥自身的特长与优势,致力于劳动保护、环境保护两大领域中高新技术的研究、开发与利用,创建国内研制、开发一流的特种防护材料与用品产销基地。
服务人民,造福人类。
随着近年来电子、邮电、工业、金融等系统现代化的进展,各种综合数字业务网陆续推广,以计算机为主的各种自动控制设备渐渐普及,随之而来的电磁干扰现象也越来越严重了。
针对日趋严重的电磁污染,北京劳动保护研究所研制了各种抗电磁干扰产品,可对整个工作场所或单个设备并对人员与居民环境进行保护。
本所为国内电磁防护的权威单位之一。
热烈欢迎广大同行、用户惠顾。
目前,主要技术人员已受聘于室内环境监测中心,可径直与赵玉峰教授联系。
高效电磁屏蔽材料一、电磁屏蔽材料:利用材料本身对电磁波与漏能的反射效应和吸收效应阻止其传播或透过。
电磁屏蔽材料又分为成型材料与涂料两类。
第一、成型屏蔽材料1.新型屏蔽材料:采用当今国际上先进的成型加工工艺,将不锈钢纤维与纺织纤维混纺成新型屏蔽织物。
新型屏蔽织物在工频至微波频段具有15-60dB的衰减性能,可根据用户衰减要求,设计成不同规格的屏蔽材料。
2.新型成膜材料:采用先进的成膜技术,在织物或板材上形成屏蔽膜体。
新型成膜材料在10KHz-10GHz 频段具有60-80dB左右的衰减性能。
3.复合屏蔽材料:在10KHz-16GHz频段具有60-80dB的衰减效能。
上述三种新型屏蔽材料,可广泛用于电磁防护与电磁兼容方面。
第二、屏蔽涂料采用先进技术研制成功的电磁屏蔽涂料,在10KHz-18GHz频段具有60-80dB的衰减效能。
二、用途:本单位生产的电磁屏蔽材料,品种齐全、屏效高、使用方便、寿命长,是国内最先进的屏蔽材料。
计算机房、指挥室、精密仪器室、航天、兵器、火控、导弹、飞船、舰队、显示装置、电报电话机房、通讯与卫星通讯系统、电视中继站、通讯卫星、射电天文、无线电测量,以及监控室等,需要进行电磁防护。
用新型屏蔽材料可制作保密通讯室与屏蔽室,随意性大,不占用有效空间,防护效果好,防止信号干扰,防止污染环境,保护人体健康。
(一)屏蔽织物可用来制作屏蔽窗帘、屏蔽挂幕、屏蔽隔断、屏蔽防护服及系列产品;屏蔽织物亦可以直接粘贴在建筑物的墙面上,建造屏蔽室,作屏蔽帐篷等。
(二)屏蔽涂料可喷或刷在建筑物表面,非金属壳体表面,用来建造屏蔽室或屏蔽机壳、屏蔽屏风等;加工各种抑制元器件等,用途十分广泛。
三、主要产品:(一)屏蔽涂料有镍系屏蔽涂料;铜系屏蔽涂料;不锈钢系屏蔽涂料;碳系屏蔽涂料;复合系屏蔽涂料数种。
主要技术性能:1、 衰减量大:(1) 低频磁场10 kH Z ~100 kH Z 衰减量为30~38dB(2) 高频电场100 kH Z ~100 MH Z 衰减量为60~78dB(3) 平面波100 MH Z ~100 GH Z 衰减量为60~80Db2、 涂层可厚可薄、附着力强、牢固不易脱落、表面光滑平整。
(二) 屏蔽织物1、不锈钢软化纤维屏蔽织物(屏蔽衰减量由20dB-60 dB 不等 )。
2、植物纤维金属化屏蔽织物(屏蔽衰减值10KHz-10GHz 频带为80 dB 左右)。
3、特种工艺镀膜织物(10KHz-10GHz 频带衰减值分别为50、60、70、80 dB 等不同规格)。
4、防微波面料(规格多样)。
5、屏蔽套管。
高效电磁吸收材料一、吸收材料:吸收材料一般可以分为下述两类:1.谐振型吸收材料:利用某些材料的谐振特性制成,厚度较薄,它能对频率范围很窄的微波辐射的能量有吸收作用。
2.匹配型吸收材料:它是利用材料和自由空间的阻抗匹配,达到吸收微波辐射能量的目的。
它与谐振特性无关。
适用于很宽范围内的微波,作吸收用。
根据用途的不同,吸收材料可分为下述几类:(一)暗室材料可用吸收材料建造吸波无反射室,通称为微波暗室。
微波暗室是排除杂波干扰、提高调试精度的必要措施。
所以它多用于一些参数的调试方面,比如用来进行卫星、导弹遥控、雷达通讯等的调试与测量;用于进行雷达天线方向图、天线增益以及阻抗参数的测量。
(二)吸收材料用特制的吸收材料敷盖在雷达、飞行器、火箭等设备表面,可以达到防止干扰与侦察的目的。
这种吸收材料多用在电子对抗战方面。
(三)衰减器与终端负载用吸收材料制作的衰减器与终端负载,多用于调试衰减器、同轴衰减器、或作为标准负载等,均具有良好的吸收性能与稳定性。
标准负载又有吸收负载与失配负载之分。
(四)防雷达用的伪装材料用吸收材料制作,可用于地面或武器装备的防雷达侦察的伪装材料。
(五)防微波泄漏的防护材料吸收材料可用于微波加热设备的进出料口或波导连接处,防止微波能量泄漏;也可制作吸收墙壁,防止微波透射;还可用制成防护服,用于个体防护方面。
二、用途(一)尖壁型吸收材料-WXP型这是一种高性能的吸收材料,为国内大部分微波暗室所采用。
它的特点是:吸收性能高,使用频带宽,并且在电波入射角0°-70°内变化及各种极化状态入射时,其性能不变。
主要用于建造高性能微波暗室,铺设试验地面、清除干扰,还可作为微波设备的内屏蔽材料。
(二)平板型软泡沫吸波材料-WXR型它具有良好的吸收功能,而且重量很轻,质地柔软,可以弯曲成各种形状,多用于微波暗室的辅助材料,如搭成屏障或包敷在试验设备表面,以防止微波暗室中的杂乱反射或保护试验人员免受微波伤害。
亦有用这种材料作微波暗室用。
(三)蜂窝型高功率玻璃钢:微波吸收材料-WXC型它是一种具有很大功率容量的高性能吸收材料。
系以0.2mm的玻璃钢片为基体做成蜂窝结构。
可用作进行高功率雷达的实验,或制成等效自由空间的天线屏蔽罩,进行无辐射状态的天线调试。
(四)衰减器件与终端负载-WXS型与WXF型它是用吸波材料作成的波导或同轴线衰减器和终端负载。
具有优异的电性能和稳定性;最佳驻波比ρ=1.003达到国际水平,为国内许多单位所采用。
根据使用要求采用玻璃钢、聚氯乙烯树脂、酚醛树脂等多种基体制成,尺寸规格与状态可根据使用要求确定。
(五)吸波屏蔽材料这是一种窄频段的抑制材料,它的显著优点是,厚度薄,机械强度高。
多用于贴敷在雷达舱内或雷达机架,减少对天线方向图旁瓣的反射引起的方向图畸变。
吸波材料具有20-100dB的衰减量,具有国内先进水平。
三、特种吸波涂料新研制成功的吸波涂料在微波段可具有相当的衰减量。
吸收涂层薄、附着力强、牢固不脱落、表面光滑平整,可广泛用于微波暗室、防雷达侦察的电子对抗战、雷达系统的背向散射以及要求不形成电波反射、折射的场合。
该系列产品采用了最新技术与最新材料,拥有更高的性能价格比,相比传统技术可节省三分之一的经费和大量的工作空间。
是目前极受欢迎的产品。
四、主要产品(一)吸波涂料:(依据厚度不同,可有衰减值为15dB、18 dB、20 dB、25 dB、30 dB—等系列产品)(二)尖劈型吸波材料:(根据用户需要设计制作)(三)平板型吸波材料:(衰减量分别为10、18、20、25、30、40 dB--100 dB系列产品)(四)吸收板与吸收屏:(同平板型吸收材料)(五)吸收年布:(同平板型吸波材料)(六)吸收服新型屏蔽室一、屏蔽室屏蔽室进行EMC试验的基本装备之一,也是使用计算机的保密系统、军事部门、医院医疗诊断室和使用各种高频设备厂矿企业必备的条件。
本系列产品,可提供10KHz-18GHz频率范围有效地抑制空间电磁场的干扰,保证系统和设备正常工作,保证测试数据的可靠性和保密性,保护工作环境,保证工作人员的安全。
应用范围:工业、科学、医学、安全、保密、军事、计算机、通讯、测试、计算机领域。
二、类别:(一)金属板屏蔽室系由全钢板或全铜板焊接或拼装组成,衰减隔离度高达120 dB(平面波)。
(二)金属网屏蔽室(三)新型轻体屏蔽室新型轻体屏蔽室结构合理,能最大限度的有效利用空间,亦可以加工成任意形状,这是以往任何屏蔽室不能比拟的;成型简单、施工方便、装饰美观、制造成本低,这又是当今已投入应用的各类屏蔽室所不具备的,可供在10KGz-10GHz频率范围内有效地抑制工业与空间电磁场的干扰,保证系统正常工作和保护工作环境,保证人员的安全与健康。
(四)EMC专用屏蔽室新研究开发成功的EMC专用屏蔽室,具有60-80 dB的衰减值,组装施工简单、快捷、造价低廉,适用性强;可置于建筑结构房间内,既大房套小房;又可以置于室外大环境中。
新型屏蔽帐篷与屏蔽幕帘一、屏蔽帐篷:本室研制成功的新型屏蔽帐篷,系采用高效屏蔽织物制作。
用金属杆作支架,将用屏蔽布缝制好的帐篷支撑在金属支架上,组装成活动型屏蔽室。
它可以广泛地用于多种移动保密通讯、指挥、控制系统或移动电话专用屏蔽室。
也可用于防止手机干扰方面。
二、屏蔽幕帘:屏蔽幕帘可用于卫星测试系统;系统参数测试场所;医疗卫生系统理疗室和公用、民用屏蔽窗帘以及广播电台、电视台、卫星地面站、微波通讯、短波通讯、雷达、微波干燥、微波加热、射频溅射、高频淬火、电力机车、舰船、核电站、输配电站、大型计算机站、高频熔炼、高频焊接、塑料热合、微波治癌、射频理疗、微波破碎等设备防电磁辐射专用。
防电磁辐射用品系列用高效屏蔽织物制作的防电磁辐射用品系列可以满足各行各业操作人员、高场强辐射环境中广大人员穿用;或设备防辐射用。
产品屏蔽辐射的安全可靠性、服饰性、耐盐雾腐蚀性、耐洗涤性等主要技术指标达到国内同类产品领先水平,能有效的保护人体免受微波与高频辐射的危害。
主要产品有:(一)、防护服系列(衰减值为18-60dB)1. 三紧式防护服;2. 大褂式防护服;3. 风衣式防护服;4. 连体防护服;5. 屏蔽夹克;6. 屏蔽马甲;7. 屏蔽裤子;8. 屏蔽孕妇服;9. 屏蔽西服;10.屏蔽围裙;11.屏蔽背心;亦可根据用户需要加工供应。