2018年七年级升八年级数学 暑期衔接班讲义 第八讲 全等三角形的判定(二)SSS,ASA,AAS(无答案) 新人教
- 格式:doc
- 大小:157.00 KB
- 文档页数:8
第六讲探索三角形全等的条件(二)[教学内容]《数学思维训练教程》暑期衔接版,七升八年级第六讲“探索三角形全等的条件(二)”. [教学目标]知识技能1.熟悉全等三角形的概念,全等三角形的性质及判定全等三角形的条件.2.掌握全等三角形辅助线的添加方法.数学思考1.使学生经历三角形全等的条件的过程,体验用操作.归纳得出数学结论的过程.2.在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉.问题解决1.学生经历观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应边与对应角的方法,能够运用全等三角形的性质解决简单的问题.2.在与同学交流合作的过程中,能较好地理解同学的思考方法和结论,并能对同学所提问题进行反思,初步形成评价与反思的意识.情感态度1.通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯.2.通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点全等三角形辅助线的添加方法.教学难点全等三角形辅助线的常用添加方法:截长补短,倍长中线.[教学准备]动画多媒体语言课件.第一课时教学过程:教学路径学生活动方案说明上次课我们复习全等三角形的性质和全等三角形的判定定理,我们这节课继续探索三角形全等的条件.看下面一个问题同学们能不能解决.启动性问题如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35 cm,点B与点O的垂直距离AB长是20 cm,在点O处作一直线平行于地面,在直线上截取OC=35 cm,过C作OC的垂线,在垂线上截取CD=20 cm,连接OD,然后,沿着DO的方向打孔,结果钻头正好从点B处打出.这是什么道理?提示:△AOB≌△COD .小亮(点击小亮头像出):∵在△AOB和△COD中,359020AO CO cmOAB OCDAB CD cm==∠=∠=︒==⎧⎪⎨⎪⎩,,,∴△AOB≌△COD(S A S),∴∠AOB=∠COD,即点B,O,D在同一条直线上,∴钻头正好从点B处打出.师:谁能说说三角形的判断方法都有什么呢?生:“SSS”、“SAS”、“ASA”、“AAS”、“HL”引导学生从题中提炼关键信息(1)求证:△ABE≌△ACD.师:如何证全等呢?生:根据SAS判定三角形全等,AB=AC,∠BAE=∠CAD,AE=AD.课件出示解析:先标∠BAC和∠EAD标上垂直符号(参照下图),然后出示①下一步:在图中依次给AC=AB,AD=AE描颜色(相等的线段描相同的颜色),然后出示:②下一步:AC=AB②∠EAD=∠BAC=90°→∠CAD =∠BAE①AD=AE②(下一步)出示大括号,箭头文字:△ABE≌△ACD课件出示答案:证明:∵△ABC和△ADE都是等腰直角三角形,∴AC=AB,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.下一步在△ABE和△ACD中,AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(S A S).(2)试猜想DC与BE的位置关系,并说明理由.师:猜测一下两条线段有什么位置关系呢?生:垂直.师:怎么证明垂直?生:根据垂直的定义证明,全等三角形的性质得出∠B= ∠ACD=45°,又∠ACB=45°,所以∠DCB=∠ACB+∠ACD=90°.课件出示解析:动画给△ABE和△ACD填充颜色,然后出示动画出示褐色的弧度线,然后出示文字:利用全等三角形的性质得∠B=∠ACD=45°,(下一步)∠DCB=∠ACB+∠ACD=90°. 师要详细跟学生讲截长补短法师引导学生分析辅助线的作法.解析:动画将AC=AE+CD,然后出示箭头,文字:截长补短. (下一步)在AC上截取AF=AE.连接OF.(用动画展示). (下一步)利用全等三角形证明CD=CF.答案:如图,在AC上截取AF=AE,连接OF.(答案中保留)∵AD平分∠BAC,CE平分∠ACB,∴∠EAO=∠OAF,∠FCO=∠OCD.在△AOE和△AOF中,AE=AF,∠EAO=∠F AO,AO=AO,画图AE=AF,∠EAO=∠F AO,AO=AO,相等的颜色相同. ∴△AOE≌△AOF(S A S),∴∠AOE=∠AOF.下一步由(1)知∠AOC=120°,∴∠AOE=180°-∠AOC =60°,∴∠AOF=∠COD=60°=∠COF.在△COF和△COD中,∠FOC=∠DOC,CO=CO,∠FCO=∠DCO,画图∠FOC=∠DOC,CO=CO,∠FCO=∠DCO, 相等的颜色相同.∴△COF≌△COD(A S A),∴CF=CD,∴AC=AF+CF=AE+CD.补充题:自己的答案.师:通过这两道题的学习,同学们是不是掌握了截长补短的方法?让我们看看下面这道题怎么做呢?例4 已知:如图,E是正方形ABCD的边BC上的中点,F是边CD上一点,AE平分∠BAF.求证:AF=BC+CF.(提示:正方形四条边相等,四个角都是直角)师:这道题跟例3很相似,我们是不是也可以用截长补短的方法来求吗?学生独立利用截长补短的方法来做,指定学生说说自己的解题思路.师:你们还有没有其他想法呢?提示:遇到角平分线时,考虑做垂直.因为AE平分∠BAF,截长补短法构造全等三角形:在AF上截取AM=AB,连接EF.(用动画展示)(作图时应注意将AM=AB,MF=CF)(下一步)利用三角形全等证FM=FC.课件答案:证明:在AF上截取AM=AB,连接EF,如图.∵AE平分∠BAF,∴∠BAE=∠EAF.在△ABE和△AEM中,AB=AM,∠BAE=∠EAM,AE=AE,∴△ABE≌△AME.∴∠B=∠AME=90°,BE=EM.下一步∵E是BC的中点,∴EC=BE=EM.在Rt△EMF和Rt△ECF中,EM=EC,EF=EF,∴Rt△EMF≌Rt△ECF.∴FM=FC.∴AF=AM+MF=BC+CF.师总结:此题是典型的应用截长补短法解决的题目.探究类型之四“中线倍长法”构造全等三角形例5 如图,AD为△ABC的中线,求证:AB+AC>2AD.课件出示答案:证明:延长AD到E,使DE=AD,连接BE,CE,如图.∵AD为△ABC的中线,∴BD=CD.在△EBD和△ACD中,BD=CD,∠1=∠2,AD=ED,∴△EBD≌△ACD(S A S).∴EB=AC.∵在△ABE中,AB+BE>AE,∴AB+AC>2AD.师总结:1.倍长法:(1)已知三角形中线时,常延长加倍中线,构造全等三角形;(2)有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形.2.在证明不等关系时,都需要构造全等,将所要证的线段转移到同一个三角形中.第二课时教学过程:教学路径互动说明方案说明我们可以利用三角形全等来证明线段相等,也可以求角的度数.上节课我们都学习了哪些做作辅助线的方法?生:截长补短和倍长中线.探究类型之六与三角形全等有关的探究型问题例6(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD;师:1.这道题我们能利用截长补短能做吗?学生分组讨论. 学生分组教案中课时划分只是一个参考,教师应该视自己情况而定.提示:延长EB到G,使BG=DF,连接AG.2.找学生说说自己的做题思路,老师点评、讲解.3.另解:思路不唯一.延长FD到G,使DG=BE,连接AG.课件出示解析:思路1:延长EB到G,使BG=DF,连接AG,如图.(用动画展示)下一步:动画给△AEG和△AEF填充颜色,然后出示文字:证△AEG≌△AEF,根据全等三角形的性质得到GE=EF.思路2:延长FD到G,使DG=BE,连接AG.动画给△AGF和△AEF填充颜色,然后出示文字:证△AGF≌△AEF,根据全等三角形的性质得到GF=EF.课件出示答案:证明:延长EB到G,使BG=DF,连接AG,如图. 协作,师引导学生探究由题意知∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3.下一步又∵∠EAF=12∠BAD.∴∠1+∠3=∠EAF.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.下一步∴EG=EF.∵EG=BE+BG.∴EF=BE+FD.(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?师:这道题还是要证明EF与BE+FD之间的关系,我们还能利用(1)的证明方法吗?提示:思路和(1)完全一样.学生分组讨论完成,老师巡视,并找一组的学生代表说说想法,最后老师讲解. (延长FD到G,使DG=BE,连接AG.)课件出示解析:延长EB到G,使BG=DF,连接AG.(用动画展示)动画给△AEG和△AEF填充颜色,然后出示文字:证△AEG≌△AEF,根据全等三角形的性质得到GE=EF.课件出示答案:解:(1)中的结论EF=BE+FD仍然成立.延长EB到G,使BG=DF,连接AG,如图.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D.∵AB=AD,∴△ABG≌△ADF.∴AG=AF,∠GAB=∠DAF.∴∠GAB+∠BAE=∠DAF+∠BAE=∠BAD-∠EAF=12∠BAD=∠EAF.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD.(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF=1 2∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成需要老师提点,学生反复记忆掌握的内容立,请写出它们之间的数量关系,并证明.师:通过观察此图,(1)的结论在(2)中成立吗?提示:不能.师:同学们,你们能通过观察此图猜想一下EF,BE,FD之间的关系吗?提示:EF=BE-FD.师:那怎么证明呢?那证明方法跟前两问一样吗?提示:按(1)的思路,在BE上截取BG.学生独立完成剩下部分,找学生说说过程,老师点评、讲解.课件出示解析:在BE上截取BG,使BG=DF,连接AG.(用动画展示)课件出示答案:解:结论EF=BE+FD不成立,应当是EF=BE-FD.证明:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.下一步∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD.∴∠GAE=∠EAF.下一步∵AE=AE,∴△AEG≌△AEF.∴EG=EF. 下一步∵EG=BE-BG,∴EF=BE-FD.师总结:(1)利用全等三角形来实现线段的转换;(2)没有明确的全等三角形时,要通过作辅助线来构建与已知条件和所求结论相关联的全等三角形.类似性问题1.如图,已知AB=AC,AE=AD,那么图中全等三角形共有( )A.0对B.1对C.2对D.3对学生先独立思考,然后找学生说说自己的解题思路,老师针对学生回答的情况点评.解析:动画依次将△ABD和△ACE中填充相同颜色的,然后给△BEO和△ODC填充不同上边的颜色.2. 如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB,你补充的条件是( ) 学生独立完成类似性问题A.∠A=∠CB.∠ABD=∠CDBC.AB=CDD.∠AOD=∠BOD师:此题不严谨,A 、C均可.老师可灵活新出一题.3. 如图,D是△ABC中AB边上一点,DF交AC于点E,AE=EC,CF∥AB.求证:BD=AB-CF.1.学生独立完成,指定一个好学生讲解思路.其他学生指正、补充.2.老师出示课件总结.解析:利用△ADE≌△CFE(两个三角形填充颜色)证AD=CF. 答案:证明:如图,∵CF∥AB,∴∠1=∠F,∠2=∠A.直接出∠1,∠2.下一步在△ADE和△CFE中,∠1=∠F,AE=CE,∠A=∠2,∴△ADE≌△CFE,∴AD=CF.∵BD=AB-AD,∴BD=AB-CF.4.如图所示,在△ABC中,AD为△ABC的外角平分线,P为射线AD上任意一点,AB+AC和B P+P C有什么关系?1.此题有一定难度,学生可以分组讨论.每组指定一个好学生当小组组长,2.因为有难度,(学生可能得不到最后结论)(提示学生:在AE上取一点F,使AF=AC,连接P F.)老师需要灵活控制讨论时间,指定组长说说小组讨论的成果. 老师点评.3.老师出示课件解析引导学生一起完成.课件出示解析:在AE上取一点F,使AF=AC,连接PF.(用动画展示)(下一步)证△F AP≌△CAP可得AF=AC,PF=PC.(下一步)给△BPF填充颜色,然后出示文字:将所要证的线段转移到同一个三角形中去.答案:解:AB+AC≤BP+PC.理由如下:如图,在AE上取一点F,使AF=AC,连接PF.∵AD为△ABC的外角平分线,∴∠F AP=∠CAP.下一步在△F AP和△CAP中,AF=AC,∠F A P=∠CA P,A P=A P,∴△F AP≌△CAP,∴PF=PC. 下一步∵在△BPF中,BF<BP+PF,∴AB+AC<BP+PC.当P点与A点重合时,AB+AC=BP+PC,∴结论应为AB+AC≤BP+PC.课堂总结我们这节课,主要研究了怎么构造全等三角形,以下是构造全等三角形常用的方法,希望大家课下记得巩固复习.添加辅助线构造全等的方法:1.在求线段的和差关系时,会采用“截长补短法”;(下一步)2.倍长中线:(1)已知三角形中线时,常延长加倍中线,构造全等三角形;(2)有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形.(下一步)倍长中线造“8”字形,出全等有平行(下一步)3.遇见角平分线经常做辅助线的方法:两边双垂线,构造全等三角形.根据对称的思想,构造全等三角形通过作垂直,构造等腰三角形本讲教材及练习册答案:类似性问题:1.C2.C3.证明:如图,∵CF∥AB,∴∠1=∠F,∠2=∠A.在△ADE和△CFE中,∠1=∠F,AE=CE,∠A=∠2,∴△ADE≌△CFE,∴AD=CF.∵BD=AB-AD,∴BD=AB-CF.4.解:AB+AC≤B P+P C.理由如下:如图,在AE上取一点F,使AF=AC,连接P F.∵AD为△ABC的外角平分线,∴∠F A P=∠CA P.在△F A P和△CA P中,AF=AC,∠F A P=∠CA P,A P=A P,∴△F A P≌△CA P,∴P F=P C.∵在△B P F中,BF<B P+P F,∴AB+AC<B P+P C.当P点与A点重合时,AB+AC=B P+P C,∴结论应为AB+AC≤B P+P C.练习册1.A2.A3.CD=C′D′(或∠C=∠C′或∠CAD=∠C′A′D′)4.证明:(1)∵AB=AC,AD⊥BC,∴BD=DC=12 BC.∵AD=BC=2CE,∴DC=CE.又∵AD⊥BC,EC⊥BC,∴∠ADC=∠BCE=90°.在△ADC和△BCE中,DC=CE,∠ADC=∠BCE,AD=BC,∴△ADC≌△BCE(S A S).(2)由(1)知△ADC≌△BCE,∴∠DAC=∠CBE.又∵∠BFD=∠AFG,∴∠AGF=∠BDF=90°.∴BE⊥AC.5.证明:如图,延长CE,BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.又AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF,∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.又BE=BE,∠BEC=∠BEF=90°,∴△BCE≌△BFE,∴CE=EF,∴CE=12 BD,∴BD=2CE.6.证明:如图,延长AM,与CD的延长线相交于点N.∵CD∥AB,∴∠BAM=∠N.又∵∠BMA=∠CM N,BM=CM,∴△ABM≌△N CM.∴AB=CN.∵∠BAM=∠N,∠DAM=∠BAM,∴∠DAM=∠N.∴AD=ND.∴AB=C N=AD+CD.7.解:小华的思考过程不正确,正确的解答是:如图,连接BC,在△ABC和△DBC中,AB=CD,AC=BD,BC=BC,∴△ABC≌△DCB(SSS),∴∠A=∠D.在△AOB和△DOC中,∠A=∠D,∠AOB=∠DOC,AB=CD,∴△AOB≌△DOC(AA S).。
北京版数学八年级上册《全等三角形的判定(二)——SAS》说课稿3一. 教材分析《全等三角形的判定(二)——SAS》是北京版数学八年级上册的教学内容。
本节课是在学生已经掌握了全等三角形的概念和SSS判定方法的基础上进行教学的。
教材通过引入实际问题,引导学生探究全等三角形的判定方法,培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了全等三角形的概念和SSS判定方法,对数学图形有了一定的认识和理解。
但是,学生对于全等三角形的判定方法的理解和应用能力还有待提高。
此外,学生的空间想象能力和解决实际问题的能力也需要进一步培养。
三. 说教学目标1.知识与技能目标:使学生掌握SAS判定全等三角形的方法,能够运用SAS判定两个三角形是否全等。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的意志。
四. 说教学重难点1.教学重点:掌握SAS判定全等三角形的方法,能够运用SAS判定两个三角形是否全等。
2.教学难点:对SAS判定全等三角形的理解,能够灵活运用SAS判定两个三角形是否全等。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等教学方法,引导学生主动参与教学过程,培养学生的思维能力和解决实际问题的能力。
2.教学手段:利用多媒体课件、实物模型、几何画板等教学手段,直观展示全等三角形的判定过程,帮助学生理解和掌握判定方法。
六. 说教学过程1.导入:通过引入实际问题,激发学生的学习兴趣,引导学生思考全等三角形的判定方法。
2.新课导入:介绍SAS判定全等三角形的方法,引导学生通过观察、操作、猜想、验证等过程,理解和掌握判定方法。
3.案例分析:分析具体的例子,让学生运用SAS判定两个三角形是否全等,巩固所学知识。
4.练习与讨论:设计相关的练习题,让学生独立完成,并进行小组讨论,培养学生的解决问题能力和团队合作意识。
全等三角形的判定(二)(SAS)(人教版)(基础)一、单选题(共7道,每道14分)1.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°答案:B解题思路:由题意得:AB=ED,BC=DC,∠B=∠D=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∴∠1+∠2=∠BAC+∠2=180°.故选B试题难度:三颗星知识点:略2.如图,将两根钢条,的中点O连在一起,使,可以绕着点自由旋转,就做成了一个测量工件,则的长等于内槽宽,那么判定的理由是( )A.SSSB.ASAC.SASD.AAS答案:C解题思路:∵AA′,BB′的中点O连在一起,∴OA=OA′,OB=OB′,在△OAB和△OA′B′中,,∴(SAS).故选C试题难度:三颗星知识点:略3.如图,已知AB∥DE,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于( )A.55°B.65°C.60°D.70°答案:D解题思路:∵AB∥DE∴∠B=∠DEF∵BE=CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠F=∠ACB=180°-32°-78°=70°故选D试题难度:三颗星知识点:略4.如图,线段AD,CE相交于点B,BC=BD,AB=EB,则下列说法不正确的是( )A.△ABC≌△EBDB.AC=EDC.∠CBD=∠ED.∠ACB=∠EDB答案:C解题思路:在△ABC和△EBD中∴△ABC≌△EBD(SAS)所以AC=ED,∠ACB=∠EDB故选项A,B,D正确,选项C错误故选C试题难度:三颗星知识点:略5.如图,已知∠ABC=∠DEF,AB=DE,若以“SAS”为依据来证明△ABC≌△DEF,还要添加的条件为( )A.∠A=∠DB.AC=DFC.∠ACB=∠FD.BC=EF或BE=CF答案:D解题思路:在△ABC和△DEF中,已知∠ABC=∠DEF,AB=DE要以“SAS”为依据来证明△ABC≌△DEF,只需要BC=EF故需添加的条件为BC=EF或BE=CF故选D试题难度:三颗星知识点:略6.如图所示,要测量池塘两岸相对的两点A,B之间的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.可以说明△DEC≌△ABC,得ED=AB,那么量出DE的长,就能求A,B两点间的距离.判定△DEC≌△ABC最恰当的理由是( )A.SSSB.ASAC.SASD.ASS答案:C解题思路:要证两个三角形全等要找三组条件,由题意知CD=CA,CE=CB,根据对顶角相等,又有∠DCE=∠ACB,所以可以根据SAS得到△DEC≌△ABC.故选C试题难度:三颗星知识点:略7.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=PA,PD=PB,连接CD,测得CD长为10m,则池塘宽度AB为________m,理由是________.上述两个空格处应填( )A.5,SSSB.10,SASC.5,SASD.10,SSS答案:B解题思路:由题意可得,在△APB和△CPD中∴△APB≌△CPD(SAS)∴AB=CD=10m故选B试题难度:三颗星知识点:略。
12.2.2三角形全等的判定(SAS)教学设计一、学习目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想. 从而激发学生学习数学的兴趣.为此,我确立如下:1.知识与能力:(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程(2)掌握三角形全等的“边角边”的判定方法,能用三角形的全等解决一些实际问题。
2.过程与方法:经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验,3.情感与态度:通过“边角边公理”的获得和使用,培养学生严密的逻辑思维品质以及勇于探索、团结协作的精神。
二、学习重点根据本节课的内容和地位,重点确定为:“边角边公理”的内容及应用学习难点发现、验证并归纳边角边公理内容,运用此结论解决实际问题。
三、教法分析鉴于教材特点及初二学生思维依赖于具体直观形象的特点,采用实验发现法,将有利于学生更好地理解与应用数学,获得成功的体验,增强学好数学的信心。
本节课主要采用实验发现法,同时以直观演示教学法、观察法、探究法为辅。
在教法上,尽可能地组织学生自主地通过观察、实验等数学活动,探究三角形全等的特征,通过对数学问题情境、数学活动情境等设计,调动学生学习数学的积极性。
运用多媒体直观演示,化静为动,使学生始终处于主动探索问题的积极状态中,使数学学习变得有趣、有效、自信、成功。
学法指导本节课主要是“边边边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
四、教学过程设计(一)创设情境,引入新知1.由生活中遇到的全等问题情境自然引入。
2.画一画如果两个三角形的两边和一角分别对应相等,那么会有几种情况。
12.2《三角形全等的判定(二)尺规作图》教学设计蠡县实验中学张娜项目设计内容说明课题12.2三角形全等的判定(第二课时)尺规作图教科书第36页相关内容教学目标1、会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、掌握作已知角的平分线的方法及步骤。
重点用尺规作一个角等于已知角,作已知角的平分线。
难点规范使用尺规,规范使用作图语言,规范的按照步骤作出图形。
教具准备直尺或三角板、圆规教学过程教师活动学生活动说明或设计意图直接导入新课1.前面我们用量角器画一个角等于已知角和画一个已知角∠AOB的平分线OC,怎样用尺规来作一个角等于已知角和作已知角的平分线呢?2.只用无刻度的直尺和圆规作图的方法称为尺规作图.最基本,最常用的尺规作图,通常称基本作图.3.这节课我们继续来学习12.2三角形全等的判定(第二课时)尺规作图出示课题并板书课题。
4.五种基本作图:(1)作一条线段等于已知线段(2)、作一个角等于已知角(3)、平分已知角(4)、作已知线段的垂直平分线(5)、过一点作已知直线的垂线其中(1)我们已经学过,本节课我们主要学习(2)、(3)两种基本作图.1. 回忆以前的作法。
2.“老师,什么是尺规作图呢?”齐读:只用无刻度的直尺和圆规作图的方法称为尺规作图.3.了解五种基本作图。
从量角器到尺规,让同学注意尺规作图的使用工具。
合1.作一个角等于已知角。
已知:如图,∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB教师在黑板上作图,同时写出作法:①作射线O′A′。
②以O点为圆心,以任意长为半径画弧,交OA于点C,交OB于点D。
③以O′为圆心,以OC长为半径画弧,交O′A′于点C。
1.拿出直尺和圆规跟老师一起作图.边作图边写出作法.作完图后讨论验证方法.(用SSS进行验证)学生探索作图方法通过示范,使学生明白如何利用尺规作一个角等于已作交流,探究学习④以C′为圆心,以CD长为半径画弧,交前面的弧于点D′。
CB A 2017年七升八暑期衔接班数学培优讲义目 录1. 第一讲:与三角形有关的线段;2. 第二讲:与三角形有关的角;3. 第三讲:与三角形有关的角度求和;4. 第四讲:专题一:三角形题型训练(一);5. 第五讲:专题二:三角形题型训练(二);6. 第六讲:全等三角形;7. 第七讲:全等三角形的判定(一)SAS ;8. 第八讲:全等三角形的判定(二)SSS ,ASA ,AAS ;9. 第九讲:全等三角形的判定(三)HL ;10. 第十讲:专题三:全等三角形题型训练;11. 第十一讲:专题四:全等三角形知识点扩充训练;12. 第十二讲:角平分线的性质定理及逆定理;13. 第十三讲:轴对称;14. 第十四讲:等腰三角形;15. 第十X 五讲:等腰直角三角形;16. 第十六讲:等边三角形(一);17. 第十七讲:等边三角形(二);18. 第十八讲:专题五:全等、等腰三角形综合运用(一)19. 第十九讲:专题六:全等、等腰三角形综合运用(二)20. 第二十讲:专题七:综合题题型专题训练;第 一 讲 与三角形有关的线段【知识要点】一、三角形1.概念:①三条线段;②不在同一直线上;③首尾相连.2.几何表示:①顶点;②内角、外角;③边;④三角形.3.三种重要线段及画法:①中线;②角平分线;③高线.二、三角形按边分类:(注意:等边三角形是特殊的等腰三角形) ()⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩不等边三角形腰底不相等的等腰三角形三角形等腰三角形腰底相等的等腰三角形等边三角形 三、三角形的三边关系(教具)引例:已知平面上有A 、B 、C 三点.根据下列线段的长度判断A 、B 、C 存在的位置情况:(1)若AB=9,AC=4,BC=5,则A 、B 、C 存在的位置情况是:(2)若AB=3,AC=10,BC=7,则A 、B 、C 存在的位置情况是:(3)若AB=5,AC=4,BC=8,则A 、B 、C 存在的位置情况是:(4)若AB=3,AC=9,BC=10,则A 、B 、C 存在的位置情况是:(5)若AB=4,AC=6,BC=12,则A 、B 、C 存在的位置情况是:总结:三角形的三边关系定理:三角形任意两边之和大于第三边.三角形的三边关系定理的推论:三角形任意两边之差小于第三边.【应用】利用定理判断三条线段能否构成三角形或确定三角形第三边的长度或范围.1.已知BC=a ,AC=b ,AB=c.(1)A 、B 、C 三点在同一条直线上,则a ,b ,c 满足: ;(2)若构成△ABC ,则a ,b ,c 满足: ;2.已知BC=a ,AC=b ,AB=c ,且a <b <c.(1)A 、B 、C 三点在同一条直线上,则a ,b ,c 满足: ;(2)若构成△ABC ,则a ,b ,c 满足: ;【新知讲授】例一、如图,在△ABC 中.①AD 为△ABC 的中线,则线段 = =21 ; ②AE 为△ABC 的角平分线,则 = =21 ; ③AF 为△ABC 的高线,则 = =90°;④以AD 为边的三角形有 ;⑤∠AEC 是 的一个内角;是 的一个外角. 例二、已知,如图,BD ⊥AC ,AE ⊥CG ,AF ⊥AC ,AG ⊥AB ,则△ABC 的BC 边上的高线是线段( ).(A)BD (B) AE (C) AF (D) AG例三、(1)以下列各组长度的线段为边,能.构成三角形的是( ). (A)7cm ,5cm ,12cm (B)6cm ,8cm ,15cm (C)4cm ,6cm ,5cm (D)8cm ,4cm ,3cm(2)满足下列条件的三条线段不能..组成三角形的是 .(a 、b 、c 均为正数) ①a=5,b=9,c=7; ②a ∶b ∶c=2∶3∶5; ③1,a ,b ,其中1+a >b ;④a ,b ,c ,其中a+b >c ; ⑤a+2,a+6,5; ⑥a <b <c ,其中a+b >c. 例四、已知三角形的三边长分别为2,5,G ,则G 的取值范围是 .发散:①已知三角形的三边长分别为2,5,2G-1,则G 的取值范围是 . ②已知三角形的三边长分别为2,5,243x ,则G 的取值范围是 . ③已知三角形三边长分别为2,G ,13,若G 为正整数,则这样的三角形个数为( ). (A)2 (B)3 (C)5(D)13 ④已知三角形的两边长分别为2,5,则三角形周长的取值范围是 . ⑤已知一个三角形中两边长分别为a 、b ,且a >b ,那么这个三角形的周长的取值范围是 .AB C D E F DE A B CF G(A)3b <<3a (B)2a <<2a+2b (C)a+2b <<2a+b (D)a+2b <<3a-b例五、已知三角形的三边长分别为5,11-G ,3G-1.(1)则G 的取值范围是 ;(2)则它的周长的取值范围是 ;(3)若它是一个等腰三角形,则G 的值是 .发散:①已知三角形的三边长分别为2,5-G ,G-1,则G 的取值范围是 .②已知三角形两边的长分别为3和7,则第三边a 的取值范围是 ;若它的周长是偶数,则满足条件的三角形共有 个;若它是一个等腰三角形,则它的周长为 .③已知等腰三角形腰长为2, 则三角形底边a 的取值范围是 ;周长的取值范围是 .④已知三角形三边的长a 、b 、c 是三个连续正整数,则它的周长的取值范围是 .若它的周长小于19,则满足条件的三角形共有 个.⑤若a 、b 、c 是△ABC 的三边长,化简||c b a -++|c b a --|的结果为( ).(A)2b (B)0 (C)2a (D)22a c -⑥已知在△ABC 中,AB=7,BC ∶AC=4∶3,则△ABC 的周长的取值范围为 .【题型训练】1.以下列各组线段为边,能组成三角形的是( ).(A)2cm ,3cm ,5cm (B)5cm ,6cm ,10cm (C)1cm ,1cm ,3cm (D)3cm ,4cm ,9cm2.各组线段的比分别为①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶4∶5;⑤3∶3∶6.其中能组成三角形的有( ).(A)1组 (B)2组 (C)3组 (D)4组3.三角形的下列线段中能将三角形的面积分成相等两部分的是( )(A)中线 (B)角平分线 (C)高线 (D)角平分线或中线4.已知三角形的三边长分别为6,7,G ,则G 的取值范围是( ).(A)2<G <12 (B)1<G <13 (C)6<G <7 (D)1<G <75.已知三角形的两边长分别为3和5,则周长的取值范围是( ).(A )6<<15 (B )6<<16 (C )11<<13 (D )10<<166.已知等腰三角形的两边长分别为5和11,则周长是( ).(A )21 (B )27 (C )32 (D )21或277.等腰三角形的底边长为8,则腰长a 的范围为 .8.等腰三角形的腰长为8,则底边长a 的范围为 .9.等腰三角形的周长为8,则腰长a 的范围为 ;底边长b 的范围为 .10.三角形的两边长分别为6,8,则周长的范围为 .11.三角形的两边长分别为6,8,则最长边a 的范围为 .12.等腰三角形的周长为14,一边长为3,则另两边长分别为 .DA B C D A B C I I I C B D A C B D A A D B C I I I C B D AC BD AE A E D B E C I I I C B D A C B A E A E D BF D E F F C 12C B A 13.若a 、b 、c 分别为△ABC 的三边长,则|a+b-c |-|b-c-a |+|c-b-a |= .14.已知在ΔABC 中,AB=AC ,它的周长为16厘米,AC 边上的中线BD 把∆ABC 分成周长之差为4厘米的两个三角形,求∆ABC 各边的长.15.等腰三角形一腰的中线(如图,等腰△ABC 中,AB=AC ,BD 为△ABC 的中线)把它的周长分为15厘米和6厘米两部分,求该三角形各边长.综合探究、三角形两条内、外角平分线的夹角与第三个内角之间的关系1.如图,△ABC 中,∠ABC 、∠ACB 的平分线交于点I ,探求∠I 与∠A 的关系;2.如图,在△ABC 中,∠ABC 、∠ACB 的外角∠ACD 的平分线交于点I ,探求∠I 与∠A 的关系; 3.如图,在△ABC 中,∠ABC 的外角∠CBD 、∠ACB 的外角∠BCE 的平分线交于点I ,探求∠I 与∠A 的关系.例三、“箭形”、“蝶形”、“四边形”两条内、外角平分线的夹角与另两个内角之间的关系 发散探索一:如图,∠ABD 、∠ACD 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.发散探索二:如图,∠ABD 的平分线与∠ACD 的邻补角∠ACE 的平分线所在的直线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系. 发散探索三:如图,∠ABD 的邻补角∠DBE 平分线与∠ACD 的邻补角∠DCF 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系. 第 二 讲 与三角形有关的角 【知识要点】 一、三角形按角分类:①锐角三角形;②直角三角形;③钝角三角形; 二、三角形的内角和定理:三角形内角和为180°(∠A+∠B+∠1=180°); 三、三角形的内角和定理的推论: ①直角三角形两锐角互余; ②三角形的任意一个外角等于和它不相邻的两个内角之和(∠2=∠A+∠B );③三角形的任意一个外角大于任意一个和它不相邻的内角;四、n 边形的内角和定理:(n-2)×180°;五、n 边形的外角和为360°.【新知讲授】 例一、①正方形的每个内角的度数为 ;正五边形的每个内角的度数为 ;正六边形的每个内角的度数为 ;正八边形的每个内角的度数为 ;正十边形的每个内角的度数为 ;正十二边形的每个内角的度数为 .A B C D I A B C D E I A B C ID A BEF C D E A F C B D A C B A B C F E D H D A B C E H E D C B A②若一个正多边形的内角和等于等于外角和的5倍,则它的边数是 .③若一个正多边形的每一个内角都等于144°,则它的边数是 .④若一个正多边形的每一个内角都等于相邻外角的2倍°,则它的边数是 .例二、如图,△ABC 中,∠A=50°,两条高线BD 、CE 所在直线交于点H ,求∠BHC 的度数. 例三、如图,△ABC 中,∠A=50°,两条角平分线BD 、CE 交于点I ,求∠BIC 的度数. 例四、如图,四边形ABCD 中,∠A=∠C ,∠B=∠D ,求证:AB ∥CD ,AD ∥BC. 例五、如图,AB ∥CD ,AD ∥BC ,AE ⊥BC ,AF ⊥CD ,求证:∠BAD+∠EAF=180°.例六、如图,六边形ABCDEF 中,AF ∥CD ,∠A=∠D ,∠B=∠E ,求证:BC ∥EF.例七、如图,在凸六边形ABCDEF 中,∠A+∠B+∠F=∠C+∠D+∠E ,求证:BC ∥EF. 【题型训练】1.如图,△ABC 中,BD 、CE 为两条角平分线,若∠BDC=90°,∠BEC=105°,求∠A.2.如图,△ABC 中,BD 、CE 为两条角平分线,若∠BDC=∠AEC ,求∠A 的度数.3.如图,在△ABC 中,BD 为内角平分线,CE 为外角平分线,若∠BDC=125°,∠E=40°,求∠BAC 的度数.4.如图,在△ABC 中,BD 为内角平分线,CE 为外角平分线,若∠BDC 与∠E 互补,求∠BAC 的度数.第 二 讲 作 业 1.如果一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ).(A)等腰三角形 (B)直角三角形 (C)锐角三角形 (D)钝角三角形2.如图所示,∠A、∠1、∠2的大小关系是( ).(A)∠A>∠1>∠2 (B)∠2>∠1>∠A(C)∠A>∠2>∠1 (D)∠2>∠A>∠13.下面四个图形中,能判断∠1>∠2的是( ).(A) (B) (C) (D)4.将一副三角板按如图所示摆放,图中∠α的度数是( ).A .75°B .90°C .105°D .120°5.在活动课上,小聪将一副三角板按图中方式叠放,则∠=( ).(A)30° (B)45° (C)60° (D)75° E D C B A M E D C B AME D C B A E D C B A A B C D E IAB O CB D A F EC BD A C B D A A D B C 6.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2 的度数为( ).(A)120° (B)180° (C)240° (D)300°7.如图,在△ABC 中,∠C =70º,沿图中虚线截去∠C ,则∠1+∠2=( ).(A)360º (B)250º (C)180º (D)140º8.如图,折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠,A 与A′重合,若∠A=75°,则∠1+∠2=( ).(A)150° (B)210° (C)105° (D)75°9.如图,在△ABC 中,∠B=67°,∠C=33°,AD 是△ABC 的角平分线,则∠CAD 的度数为( )(A)40° (B)45° (C)50° (D)55°10.已知ΔABC 的三个内角∠A、∠B、∠C 满足关系式∠B +∠C =3∠A,则此三角形( ).(A)一定有一个内角为45︒ (B)一定有一个内角为60︒(C)一定是直角三角形 (D)一定是钝角三角形 11.将一副三角尺按如图方式放置,则图中∠AOB 的度数为( ).(A)75° (B)95° (C)105° (D)120°12.若一个正多边形的每一个内角都等于160°,则它是( ). (A)正十六形 (B)正十七形 (C)正十八边形 (D)正十九边形13.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ).(A)7 (B)8 (C)9 (D)1014. 已知:在△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ).(A)40° (B)60° (C)80° (D)90°15.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是 .16.如图,在△ABC 中,D 、E 分别是边AB 、AC 上的两点,BE 、CD 相交于点F ,∠A=62°,∠ACD=40°,∠ABE=20°,求∠BFC 的度数.17.如图,已知直线DE 分别交△ABC 的边AB 、AC 于D 、E 两点,交边BC 的延长线于点F ,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数.第三讲:与三角形有关的角度求和【知识要点】1.与三角形有关的四个基本图及其演变; 2.星形图形的角度求和.【新知讲授】例一、如图,直接写出∠D 与∠A 、∠B 、∠C 之间的数量关系.箭形: ;蝶形: ;四边形: . 请给出“箭形”基本图结论的证明(你能想出几种不同的方法):例二、三角形两条内、外角平分线的夹角与第三个内角之间的关系1.如图,△ABC 中,∠ABC 、∠ACB 的平分线交于点I ,探求∠I 与∠A 的关系;AI I I C B DA CB D A A D BC I I IC BD A C B D AE A E D B E C II I CB D AC B A E A ED B F D EF FC B A M E CD O D Q P C B A D B CE A D B CF E A 2.如图,在△ABC 中,∠ABC 、∠ACB 的外角∠ACD 的平分线交于点I ,探求∠I 与∠A 的关系;3.如图,在△ABC 中,∠ABC 的外角∠CBD 、∠ACB 的外角∠BCE 的平分线交于点I ,探求∠I 与∠A 的关系.例三、“箭形”、“蝶形”、“四边形”两条内、外角平分线的夹角与另两个内角之间的关系发散探索一:如图,∠ABD 、∠ACD 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.发散探索二:如图,∠ABD 的平分线与∠ACD 的邻补角∠ACE 的平分线所在的直线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系. 发散探索三:如图,∠ABD 的邻补角∠DBE 平分线与∠ACD 的邻补角∠DCF 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系. 例四、如图,在△ABC中, BP 、BQ 三等分∠ABC ,CP 、CQ 三等分∠ACB. (1)若∠A=60°,直接写出:∠BPC 的度数为 ,∠BQC 的度数为 ; (2)连接PQ 并延长交BC 于点D ,若∠BQD=63°,∠CQD=80°,求△ABC 三个内角的度数. 例五、如图,BD 、CE 交于点M ,OB 平分∠ABD ,OC 平分∠ACE ,OD 平分∠ADB ,OE 平分∠AEC , 求证:∠BOE=∠COD ;【题型训练】1.如图,求∠A+∠B+∠C+∠D+∠E 的度数和.2.如图,求∠A+∠B+∠C+∠D+∠E+∠F 的度数和.3.如图,已知∠1=60°,求∠A+∠B+∠C+∠D+∠E+∠F 的度数和.发散探索:①如图,∠A+∠B+∠C+∠D+∠E= ;②如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;③如图,∠A+∠B+∠C+∠D+∠E+∠F= .④如图,∠A+∠B+∠C+∠D+∠E+∠F= .⑤如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;⑥如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ; A B C D I A B CD EIC BD AF E ⑦如图,BC ⊥EF ,求∠A+∠B+∠C+∠D+∠E+∠F 的度数.第 三 讲 作 业1.如图,B 岛在A 岛的南偏西30°,A 岛在C 岛的北偏西35°,B 岛在C 岛的北偏西78°,则从B 岛看A 、C 两岛的视角∠ABC 的度数为( ).(A)65° (B)72° (C)75° (D)78°2.如图,D 、E 分别是AB 、AC 上一点,BE 、CD 相交于点F ,∠ACD=30°,∠ABE=20°,∠BDC+∠BEC=170°则∠A 等于( ).(A)50° (B)85° (C)70° (D)60°3.一副三角板,如图所示叠放在一起,则图中∠α的度数是( ).(A)75° (B)60° (C)65° (D)55°4.如图,在△ABC 中,∠BAC=36°,∠C=72°,BD 平分∠ABC 交AC 于点D ,AF ∥BC ,交BD 的延长线于点F ,AE 平分∠CAF 交DF 于E 点.我们定义:在一个三角形中,有一个角是36°,其余两个角均为72°的三角形和有一个角是108°,其余两个角均为36°的三角形均被称作“黄金三角形”,则这个图中黄金三角形共有( ). (A)8个 (B)7个 (C)6个 (D)5个5.如图,∠A=35°,∠B=∠C=90°,则∠D 的度数是( ).(A)35° (B)45° (C)55° (D)65°6.如图,已知∠A+∠BCD=140°,BO 平分∠ABC ,DO 平分∠ADC ,则∠BOD=( ).(A)40° (B)60° (C)70° (D)80°7.如图,一个直角三角形纸片,剪去直角后,得到了一个四边形,则∠1+∠2= .8.如图,在△ABC 中,∠A=80°,点D 为边BC 延长线上的一点,∠ACD=150°,则∠B= .9.将一副直角三角板如上图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 .10.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB上,BC 与DE 交于点M .若∠ADF=100°,则∠BMD 为 .11.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______.12.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,如此下去,∠A n ﹣1BC 的平分线与∠A n ﹣1CD 的平分线交于点n A .设∠A=θ.则∠A 1= ;n A = .13.已知:如图1,在△ABC 中,∠ABC 、∠ACB 的角平分线交于点O ,则1902BOC A ∠=︒+∠ 1118022A =⨯︒+∠;如图2,在△ABC 中,∠ABC 、∠ACB 的两条三等分角线分别对应交于点1O 、2O ,则12118033BO C A ∠=⨯︒+∠,21218033BO C A ∠=⨯︒+∠;……;根据以上阅读理解,当n 等分角时,内部有1n -个交点,你以猜想1n BO C -∠=( ). (A)21180A n n⨯︒+∠ (B)12180A n n⨯︒+∠ (C)118011n A n n ⨯︒+∠-- (D)11180n A n n -⨯︒+∠ 14.在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,BE 平分∠ABC ,求∠DBE 度数.第 四 讲 专题一:三角形题型训练(一)【知识要点】平行线、三角形内角和的综合运用【新知讲授】例一、如图,在四边形ABCD 中,∠A=∠C=90°,BE 、DF 分别平分∠ABC 、∠ADC ,请你判断BE 、DF 的位置关系并证明你的结论.例二、如图,在四边形ABCD 中,∠A=∠C=90°,∠ABC 的外角平分线与∠ADC 的平分线交于点E ,请你判断BE 、DE 的位置关系并证明你的结论.例三、 如图,在四边形ABCD 中,∠A=∠C=90°,BE 、DF 分别平分∠ABC 、∠ADC 的外角,请你判断BE 、DF 的位置关系并证明你的结论. 例四、如图,∠A=∠C=90°,∠ABC 的平分线与∠ADC 的平分线交于点E ,请你判断BE 、DE的位置关系并证明你的结论.例五、如图,∠A=∠C=90°,BE 平分∠ABC ,DF 平分∠ADC 的的外角,请你判断BE 、DE 的位置关系并证明你的结论. 例六、如图,∠A=∠C=90°,∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,请你判断BE 、DE 的位置关系并证明你的结论. 例七、如图,△ABC 中,P 为BC 边上任一点,PD ∥AB ,PE ∥AC.(1)若∠A=60°,求∠DPE 的度数; (2)若EM 平分∠BEP ,DN 平分∠CDP ,试判断EM 与DN 之间的位置关系,写出你的结论并证明.例八、如图,△ABC 中,D 、E 、F 分别在三边上,∠BDE =∠BED ,∠CDF =∠CFD. F E D C BA M E D CB A FN M E D C B A E D C B A F M E D C B A N M E D CB D AA DCM B A D B E C B D A E C D B A C E F (1)若∠A=70°,求∠EDF 的度数;(2)EM 平分∠BED ,FN 平分∠CFD ,若EM ∥FN ,求∠A 的度数.例九、如图,△ABC 中,D 、E 、F 分别在三边上,∠DBE =∠DEB ,∠DCF =∠DFC. (1)若∠A=70°,求∠EDF 的度数;(2)EM 平分∠BED ,FN 平分∠CFD ,若EM ∥FN ,求∠A 的度数. 【题型训练】 1.如图1、图2是由10把相同的折扇组成的“蝶恋花”和“梅花”,图中的折扇完全打开且无重叠,则“梅花”图案中五角星的5个锐角的度数均为( ). (A) 36° (B) 42° (C) 45° (D) 48° 2.如图,在△ABC 中,∠B=∠C ,D 是BC 上一点,DE ⊥BC 交AC 于点E ,DF ⊥AB ,垂足为F ,若∠AED=160°,则∠EDF 等于( ).(A)50° (B)60° (C)70° (D)80°3.如图,△ABC 中,∠B=∠C ,∠BAD=32°,∠ADE=∠AED ,则∠CDE= .4.已知△ABC 中,∠ACB—∠B=90°,∠BAC 的平分线交BC 于E ,∠BAC 的外角的平分线交BC 的延长线于F ,则△AEF 的形状是 . 5.如图,AB ∥CD ,∠A=∠C ,AE ⊥DE ,∠D=130°,则∠B 的度数为 .6.如图:点D 、E 、F 为△ABC 三边上的点,则∠1 +∠2 +∠3+∠4 +∠5 +∠6 = .7.若一束光线经过三块平面镜反射,反射的路线如图所示,图中的字母表示相应的度数,若60c =︒,∠P=110°,则d e +的值为 ,x 的值 .8.如图,在平行四边形ABCD 中,∠BAD 的平分线交边BC 于点M ,连接MD ,且MD 恰好平分∠AMC ,若∠MDC=45°,则∠BAD= ,∠ABC= .第 四 讲 作 业 1.如图,已知△ABC 的三个顶点分别在直线a 、b 上,且a ∥b ,若∠1=120°,∠2=80°,则∠3的度数是( ).(A)40° (B)60° (C)80° (D)120°2.如图,BD ∥EF ,AE 与BD 交于点C ,若∠ABC=30°,∠BAC=75°,则∠CEF 的大小为( ).(A)60° (B)75° (C)90° (D)105°3.如图,已知D 、E 在△ABC 的边上,DE ∥BC ,∠B=60°,∠AED=40°,则∠A 的度数为( ).(A)100° (B)90° (C)80° (D)70°4.已知,直线l 1∥l 2,将一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( ).(A)30° (B)35° (C)40° (D)45°5.如图,将三角尺的直角顶点放在直线a 上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( ).(A)50° (B)60° (C)70° (D)80°6.小明同学把一个含有45°角的直角三角板在如图所示的两条平行线上,测得α∠=120°,则的度数是( ).m n ,β∠N M F E D C B A N M FED C B A(A)45° (B)55° (C)65° (D)75°7.如图,在Rt △ABC 中,∠C=90°.D 为边CA 延长线上的一点,DE ‖AB,∠ADE=42°,则∠B 的大小为( ).(A) 42° (B) 45° (C) 48° (D)58°8.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB 等于( )(A)65° (B)72° (C)75° (D)78° 9.如图,已知AC ∥ED ,∠C=26°,∠CBE=37°,则∠BED 的度数是( ). (A)63°(B)83°(C)73° (D)53°10.如图,已知a∥b,小亮把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为 .11.如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B=70°,∠A=60°. (1)求∠EDC 的度数; (2)求∠BDC 度数.12.如图,∠DAB+∠D=180°,AC 平分∠DAB ,且∠CAD=25°,∠B=95°.(1)求∠DCA 的度数; (2)求∠FEA 的度数.13.如图,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.第五讲 专题一:三角形题型训练(二)知识点:三角形三边的关系定理:两边之和大于第三边;两边之差小于第三边三角形的内角和定理:三角形的内角和等于180°典型例题:1、已知ΔABC 的周长为10,且三边长为整数,求三边的长。
第2讲全等三角形的判定和性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习三角形的判定和性质,这是一节非常重要的内容,是中考大题考查的重点,所占分值也是非常高的,因此通过本节课的学习我们要掌握全等三角形的几种判定方法和性质,学会处理这一类的几何题目。
知识梳理讲解用时:20分钟全等三角形1、全等形:在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形,或者可以表述为直线对称的两个图形是全等形2、全等三角形:能够完全重合的两个三角形称为全等三角形形状大小两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
A DB C E F3、对应顶点:A与D B与E C与F对应边:AB对应DE BC对应EF AC对应DF对应角:∠A对应∠D ∠B对应∠E ∠C对应∠F4、符号:△ABC≌△DEF “≌”读作“全等于”(注意:对应的顶点的字母写在对应的位置上)三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)(1) AB=DE (2)∠A=∠D∠B=∠E AB=DEBC=EF ∠B=∠E 则△ABC≌△DEF(SAS)则△ABC≌△DEF(ASA)(3) AB=DE (4)∠A=∠DBC=EF ∠B=∠EAC=DF BC=EF则△ABC≌△DEF(SSS)则△ABC≌△DEF(AAS)A DB C E F(5)AC=DFAB=DE则Rt△ABC≌Rt△DEF(HL)注意:AAA和SSA都不成立全等三角形的性质全等三角形的性质:全等三角形的对应角相等、对应边相等因为△ABC≌△DEF所以∠A=∠D ∠B=∠E ∠C=∠FAB=DE BC=EF AC=DF课堂精讲精练【例题1】选择题下列条件,不能使两个三角形全等的是()A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等 D.三边对应相等【答案】A【解析】全等三角形的判定定理有“边角边”,“角边角”,“边边边”“角角边”,“HL”,根据此可判断正误找出答案.解:A、“边边角”不能证明两个三角形全等,故本选项错误.B、两角一边对应相等能证明三角形全等.故本选项正确.C、直角边和一个锐角对应相等能证明三角形全等.故本选项正确.D、三边对应相等能证明三角形全等.故本选项正确.故选:A.讲解用时:3分钟解题思路:本题考查全等三角形的判定定理,关键是熟记这些“边角边”,“角边角”,“边边边”“角角边”,“HL”,判定定理.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【答案】A【解析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.讲解用时:3分钟解题思路:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC【答案】C【解析】欲证DE=AB,需根据题中所给角之间的关系证明出∠ACB=∠DCE和∠BAC=∠CAE,又AC=CE,即可证明出△ABC≌△EDC,由全等三角形的性质可得出DE=AB.解:∵∠2=∠3,∴∠DCE=∠3+∠ACD=∠2+∠ACD=∠ACB,即:∠ACB=∠DCE,又∵AC=CE,∴∠E=∠CAE,∠1+∠BAC=∠DAC=∠3+∠CEA,∵∠1=∠3,∴∠BAC=∠CEA在△ABC和△EDC中,∠ACB=∠DCE,AC=CE,∠BAC=∠E,∴△ABC≌△EDC,∴DE=AB.故选:C.讲解用时:3分钟解题思路:本题主要考查了全等三角形的判定以及全等三角形的性质;巧妙地利用∠1是解决本题的关键.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习2.1】如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为()A.5.5 B.4 C.4.5 D.3【答案】B【解析】先证明△ABC≌△EFD,得出AC=ED=7,再求出AD=AE﹣ED=3,即可得出CD=AC﹣AD=4解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=7,∴AD=AE﹣ED=10﹣7=3,∴CD=AC﹣AD=7﹣3=4.讲解用时:3分钟解题思路:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.教学建议:学会判定全等三角形,再利用全等三角形的性质证明边相等.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,AC⊥BC,AD⊥DB,下列条件中,能使△ABC≌△BAD的有(把所有正确结论的序号都填在横线上)①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④∠DAC=∠CBD.【答案】①②③【解析】先得到∠C=∠D=90°,若添加∠ABD=∠BAC,则可根据“AAS”判断△ABC≌△BAD;若添加∠DAB=∠CBA,则可先利用“AAS”证明△ABC≌△BAD;若添加AD=BC,则可利用“HL”判断ABC≌△BAD;若添加∠DAC=∠CBD,则不能判断ABC≌△BAD.解:∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°,①在△ABC和△BAD中,∴△ABC≌△BAD(AAS),所以①正确;②在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),所以②正确;③在Rt△ABC和Rt△BAD中,∴△ABC≌△BAD(HL),所以③正确;④∠C=∠D和∠DAC=∠CBD两个条件不能判定△ABC≌△DCB,所以④错误.所以正确结论的序号为①②③,故答案为①②③.讲解用时:4分钟解题思路:本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.【答案】55°【解析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.讲解用时:3分钟解题思路:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.教学建议:掌握全等三角形的判定和性质,综合利用做题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图,已知AB=AC,∠ABE=∠ACD,BE与CD相交于O,求证:△ABE≌△ACD.【答案】△ABE≌△ACD【解析】由条件AB=AC,∠ABE=∠ACD,再加上公共角∠A=∠A,直接利用ASA 定理判定△ABE≌△ACD即可.证明:在△ABE与△ACD中,,∴△ABE≌△ACD(ASA).讲解用时:3分钟解题思路:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:通过等腰三角形判定角相等,利用“ASA”判定方法来证明.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.【答案】△ABC≌△DEF【解析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).讲解用时:3分钟解题思路:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【答案】△ABC≌△DEC【解析】由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.证明:∵∠BAE=∠BCE=∠ACD=90°,∴∠DCE+∠ECA=∠ECA+∠ACB,∴∠DCE=∠ACB,且∠B+∠CEA=180°,又∠DEC+∠CEA=180°,∴∠B=∠DEC,在△ABC和△DEC中∴△ABC≌△DEC(ASA).讲解用时:4分钟解题思路:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.教学建议:本题关键是通过∠BAE=∠BCE=90°,判断∠B=∠DEC,从而判定两个三角形全等.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.【答案】AE=FB【解析】根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,∴△ECA≌△FDB,∴AE=FB.讲解用时:3分钟解题思路:此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.【答案】AB=DE【解析】欲证明AB=DE,只要证明Rt△ABC≌Rt△DEF(HL)即可;证明:∵BF=EC∴BC=EF∵AB⊥BE,DE⊥BE∴∠B=∠E=90°在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)∴AB=DE讲解用时:3分钟解题思路:本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.教学建议:熟练掌握直角三角形全等的判定.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【答案】(1)全等;(2)是【解析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.讲解用时:3分钟解题思路:考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.教学建议:熟练掌握直角三角形全等的判定.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.【答案】AF⊥AQ【解析】首先证明出∠ABD=∠ACE,再有条件BQ=AC,CF=AB可得△ABQ≌△ACF,进而得到∠F=∠BAQ,然后再根据∠F+∠FAE=90°,可得∠BAQ+∠FAE═90°,进而证出AF⊥AQ.证明:∵BD、CE分别是AC、AB边上的高,∴∠ADB=90°,∠AEC=90°,∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,∴∠ABD=∠ACE,在△ABQ和△ACF中,∴△ABQ≌△ACF(SAS),∴∠F=∠BAQ,∵∠F+∠FAE=90°,∴∠BAQ+∠FAE═90°,∴AF⊥AQ.讲解用时:4分钟解题思路:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.教学建议:熟练掌握全等三角形的判定和性质.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.4 B.5 C.1 D.2【答案】C【解析】由AD垂直于BC,CE垂直于AB,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS得到三角形AEH与三角形EBC全等,由全等三角形的对应边相等得到AE=EC,由EC﹣EH,即AE﹣EH即可求出HC的长.解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故选:C.讲解用时:3分钟解题思路:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)【答案】(1)90°;(2)α+β=180°;α=β【解析】(1)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,即可解题;(2)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠B+∠ACB=180°﹣α即可解题;(3)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°即可解题;【解答】解:(1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°;故答案为 90.(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.讲解用时:8分钟解题思路:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD≌△CAE是解题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:AE=BD.【答案】AE=BD【解析】要证AE=BD,经过观察分析我们可以将这两条线段放在三角形ACE和三角形BCD中,证其全等即可.首先我们根据△ACB和△ECD都是等腰直角三角形,得出两对对应边的相等,然后又根据∠ACB=∠ECD,都减去中间的公共角ACD 再得一对对应角的相等,根据SAS证三角形ACE和三角形BCD的全等,最后根据全等三角形的对应边相等即可得证.证明:∵△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,∴EC=CD,AC=CB,∠ACB﹣∠ACD=∠ECD﹣∠ACD.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD.讲解用时:3分钟解题思路:解此题时要充分利用等腰直角三角形的性质,熟练掌握三角形全等的证明以及对全等三角形的性质的理解掌握.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,AB=DE,∠B=∠E,使得△ABC≌△DEC,请你添加一个适当的条件(填一个即可).【答案】BC=EC【解析】解:添加条件是:BC=EC,在△ABC与△DEC中,,∴△ABC≌△DEC.故答案为:BC=EC.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG ≌△NMH.【答案】△EFG≌△NMH【解析】根据等式的性质得出EG=NH,再利用全等三角形的判定证明即可.证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,已知在△ABC和△ABD中,AD=BC,∠DAB=∠CBA,求证:∠C=∠D.【答案】∠C=∠D【解析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明∠C=∠D.证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴∠C=∠D讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【答案】AC=ED【解析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】已知:如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,求证:BC=EF.【答案】EF=BC【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出EF=BC.证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,,∴△ABC≌△DEF.∴EF=BC讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018。
八年级数学《三角形全等的判定(二)》评课稿听了刘老师的课感受非常深,有一种受益非浅的感觉,学到了很多教学经验,课讲得非常务实,非常实用。
没有花架子,听起来没有作秀的感觉。
首先,我从总体上对刘老师的课进行一下点评。
刘老师在授课的过程中教态非常自然,举止从容,热情,有亲和力,这为学生课堂学习创造了一个宽松、和谐的课堂气氛,使学生能大胆地猜想、思考,不受拘束,敢于向困难挑战,发表自己的见解。
其次,刘老师的课语言准确清楚,精练,没有废话,说的全是普通话,学生易理解,而且生动形象,快慢适度。
再次,刘老师基本功比较扎实,这一点体现在板书上,板书的设计条理清晰,字迹工整。
下面在细节方面,我将从四个方面来评价。
一、评教学目标:教学目标是教学的出发点和归宿,刘老师的三维教学目标确立的比较明确,而且整堂课都是围绕教学目标进行,并且能体现在各个教学环节当中。
教学手段都是围绕教学目标进行。
本节课主要让学生学会三角形全等的判定,并会用SAS来判定三角形全等,同时,通过学生的合作探究,动手实践培养学生分析问题和解决问题的能力,实践和探索能力。
二、评教材处理:刘老师对教材的处理很精心,由于现在我们使用的是新教材,新教材给我们提供的是一种教学素材,是一个纲,知识点比新教材难度有所降低,但要求的高了,所以需要我们老师要对教材重新进行整合,使之符合自己学生的知识水平和自己的教学特点,刘老师在这一点上做得很好,并不是就教材讲教材,同时,在教学中能结合具体问题使重点得到突出,难点得到突破。
三、评教学程序:刘老师的课教学环节比较齐全,教学思路比较清晰,而且有创新意识,课堂结构安排比较严谨,环环相扣,知识点过度比较自然,时间分配合理,特别是在重点内容上能够给学生充足的时间去探究。
四、评教学方法和手段:刘老师在授课当中能根据知识的内容合理地运用教学方法,采用先学后教的高效课堂教学方法,敢于向新教学方法挑战,同时也体现了有书就得让学生读,方法要让学生归纳、结论要让学生去发现,符合新的课程标准,这是刘老师这一节课的亮点。
AB C A ’B ’C ’AB C A ’B ’C ’第六讲 全等三角形的判定(二)知识要点1、三角形全等的判定二、三:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。
书写格式: 在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA )知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。
书写格式: 在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS )知识延伸:“AAS ”可以看成是“ASA ”的推论。
规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。
无论这个一边是“对边”还是“夹边”,只要对应相等即可。
典型例题例1. 如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2. 如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=ADAB CDA’B’C’D’例3.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.例4.如图,已知△ABC≌△A’B’C’,AD,A’D’分别是△ABC和△A’B’C’的边BC和B’C’上的高。
求证:AD=A’D’例5.如图,点E在AC上,∠1=∠2,∠3=∠4.试证明BE= DE.例6.求证:角平分线上的点到角的两边的距离相等。
A CBDEF反馈练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。
A
D
B C E F
第八讲:全等三角形的判定(二)SSS ,ASA ,AAS
【知识要点】
1.求证三角形全等的方法(判定定理):①SAS ;②ASA ;③AAS ;④SSS ;⑤HL ; 需要三个边角关系;其中至少有一个是边; 2.“SSS ”定理:三边对应相等的两个三角形全等; 如:
3.①“ASA ”定理:两角及两角所夹的边对应相等的两个三角形全等; ②“AAS ”定理:两角及其中一角所对的边对应相等的两个三角形全等; 如:
4. “SAS ”、“SSS ”、 “ASA ”、“AAS ”四种基本方法的综合运用. 【定理运用】
例1、如图,E 、F 两点在线段BC 上,AB=CD ,AF=DE ,BE=CF ,求证:∠AFB=∠DEC.
巩固练习:
1.如图,已知,AB=AC ,AD=AE ,BD=CE ,延长BD 交CE 于点P ,求证:∠BAC=∠DAE ;
在△ABC 和△DEF 中: AB DE BC EF AC DF =⎧⎪
=⎨⎪=⎩
∴△ABC ∽△DEF.(SSS )
在△ABC 和△DEF 中: B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ∽△DEF.(ASA ) 在△ABC 和△DEF 中:
A D
B E B
C EF ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ABC ∽△DEF.(AAS )
C
A E
B
D
例2.已知命题:如图,点A ,D ,B ,E 在同一条直线上,且AD=BE ,BC=EF ,则△ABC ≌△DEF.(1)判断这个命题是真命题还是假命题? (2)如果是真命题,请给出证明;如果是假命题,请添加一个..
适当条件使它成为真命题,并能运用“SSS ”公理加以证明.
巩固练习:
1.如图,已知,AB=CD ,BE=DF ,AF=CE ,求证:AD ∥BC.
2.已知:如图,AB=AC ,AD=AE ,∠1=∠2,求证:AF=AG.
例3.、如图,C 为线段AB 的中点,AD ∥CE ,∠D=∠E ,求证:CD=EB.
巩固练习 1.如图,AD 为△ABC 的高线,E 、F 为直线AD 上两点,DE=DF ,BE ∥CF ,求证:AB=AC.
E
A
F D
C
B
E A
D C
B
2.如图,∠ABC=∠DCB,BD 、CA 分别是∠A BC 、∠DCB 的平分线,求证:AB=DC.
例4.如图,△ABC 中,AB=AC ,D 、E 分别在BC 、AC 的延长线上,∠1=∠2=∠3,求证:AD=AE.
巩固练习:
1.已知:如图,∠A=∠D ,OA=OD ,求证:∠1=∠
2.
2.已知:AD ∥BC ,AE ⊥BD ,CF ⊥BD ,AE=CF ,求证:AB=CD.
例5.已知:如图,AB=CD ,∠A=∠D ,求证:∠ABC=∠DCB.
巩固练习:1.已知:如图,AB=AC ,AD=AE ,求证:∠DBC=∠ECB.
E
B
C
D C
E
A
B
E A D B C
F A
D
F
图1
图2
图3
F
2.已知:如图,△ABC 中,∠BAC=∠BCA ,延长BC 边的中线AD 到E 点,使AD=DE ,F 为BC 延长线上一点,且CE=CF , 求证:AF=2AD.
例6.在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD ,AC 、BD 交于点P. (1)①如图1,∠AOB=∠COD=60°,则∠APD= ,AC 与BD 的数量关系是 ;
②如图2,∠AOB=∠COD=90°,则∠APD= ,AC 与BD 的数量关系是 ; (2)如图3,∠AOB=∠COD=α°,则∠APD 的度数为 (用含α的式子表示),
AC 与BD 之间的等量关系是 ;填写你的结论,并给出你的证明;
图1 图2 图3
巩固练习:点C 为线段AB 上一点,分别以AC 、BC 为腰在直线AB 的同侧作等腰△ACD 和等
腰△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 、BD 交于点F. (1)如图1,若∠ACD=60°,则∠AFB= ;
(2)如图2,若∠ACD=α°,则∠AFB= ;(用α的代数式表示)
(3)如图3,将图2中的△ACD 绕点C 顺时针旋转一个角度,延长BD 交线段AE 于点F ,
试探究∠AFB 与α之间的数量关系,并给出你的证明.
A
B
C
E
F
D
O P D C B
A O P D C
B A
ααO P D C
B A
例7.已知:AB=AC,AD=AE,AF⊥CD,AG⊥BE,求证:AF=AG.
巩固练习:1.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CM的数量关系,并证明你的结论.
2.如图,已知,AB=AD,AC=AE,∠1=∠2.
(1)求证:BC=DE;
(2)若AF平分∠BAC,求证:AF=AC.
3.已知:如图,AB=AC,AD=AE,求证:AO平分∠BAC. B C
A D
M
N
A
B
E
D
C
A D
B
C
E
A
D
C
B
4.如图,等腰Rt △ABC 中,AB=AC ,过A 任作直线l ,BD ⊥l 于点D ,CE ⊥l 于点E. (1) 若l 与BC 不相交,求证:BD+CE=DE ;
(2) 当直线l 绕A 点旋转到与BC 相交时,其它条件不变,试猜想BD 、CE 和DE 的关系? 画图并给出证明.
课后作业:
1.如图,等腰Rt △ABC 和等腰Rt △ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE=90°. (1)求证:BD=CE ; (2)求证:BD ⊥CE.
2.已知:如图,AB=AC ,AD=AE ,BD=CE ,求证:∠BAE=∠CAD.
3.如图,四边形ABCD 中,AB=CD ,AD=BC ,求证:AB ∥CD ,AD ∥BC.
A B C D
E
A
C
4.已知:如图,在四边形ABCD中,AB=CB,AD=CD,求证:∠A=∠C.
5.已知:如图,AD=BC,AC=BD,求证:∠D=∠C.
D C
O
A B 6.如图1,等腰△ABC中AB=AC,D、E分别在AC、AB上,且AD、AE,M、N分别BE、CD的中点.
(1)CD BE,AM AN;(填“>”、“=”、“<”)
(2)如图2,把图1中的△ADE绕A点逆时针旋转任意一个角度,(1)中的两个结论是否仍然成立?若成立请证明,若不成立请说明理由.
7.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.
求证:△ABC∽△DEF.
8.如图,点B、F、C、E在同一条直线上,点A、点D在直线BE的两侧,AB∥DE,AC∥DF,BF=CE,求证:AC=DF.
A D
B C
O D B C A C M E A B
D 9.如图,AB ∥CD ,AB=CD ,求证:O 为AC 的中点.
10.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F ,求证:BE=CF .
11.如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,求证:AB=CD ,AD=BC.
12.如图,在△ABC 中,∠C=90°,点D 是AB 边上一点,DM ⊥AB 且DM=AC ,过点M 作ME ∥BC 交AB 于点E ,求证:△ABC ≌△MED.
14.如图,在△ABC 中,D 是BC 边的中点,F 、E 分别是AD 及 其延长线上的点,请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段),并能用“ASA ”或 “AAS ”公理进行证明.
(1)你添加的条件是: ; (2)证明:。