8第八章 电力系统的电压稳定性分析
- 格式:doc
- 大小:773.00 KB
- 文档页数:33
电力系统中的电压稳定分析与调整电力系统的电压稳定性是指系统中的电压在经历各种外界扰动或负载变化后,能够保持在合理的范围内,不发生剧烈波动或失控的能力。
这是电力系统运行中非常重要且必须保证的一项指标。
电压稳定与供电质量密切相关,对用户的用电设备和电网设备的正常运行至关重要。
因此,电力系统中的电压稳定分析与调整是保障电力系统稳定运行的重要环节。
首先要进行电力系统中的电压稳定性分析。
电压稳定性分析是通过建立电压稳定分析模型,对电力系统中的各种动态、静态因素进行综合评估和分析,以确定系统是否存在电压稳定问题,找出电压稳定问题的根源。
电压稳定性分析的核心内容是动态稳定和静态稳定。
动态稳定性分析主要研究系统发生大扰动后的动态响应过程,如故障发生时的系统频率衰减和转子振荡,以及系统在故障后的恢复过程。
动态稳定性分析需要进行瞬态稳定分析和暂态稳定分析,重点关注系统中的发电机、变压器、传动系统等关键设备。
静态稳定性分析主要是研究系统的静态稳定问题,如电压幅值的变化、功率平衡失调、电力负载变化等。
静态稳定性分析需要对系统中各个节点的功率平衡进行评估,并进行电压裕度计算,以确定系统中的潜在电压稳定问题。
在电压稳定性分析的基础上,根据分析结果,需要进行相应的电压调整操作,以保证系统的电压稳定。
电压调整方法主要分为静态电压补偿和动态电压调整两种。
静态电压补偿主要通过调整发电机励磁电流、变压器的调压器和无功补偿装置等来实现。
通过提高或降低励磁电流,可以改变发电机的输出电压,从而调整系统中的电压水平。
调压器和无功补偿装置可以根据系统需求,调整变压器与系统之间的电压比例关系,提供无功电力的支持,以保持系统的电压稳定。
动态电压调整主要通过自动电压控制装置(AVR)和功率调整装置(PTC)等来实现。
AVR主要负责调整发电机的励磁电流,通过检测系统中的电压变化,控制发电机的励磁状态,使输出电压保持在合理范围内。
PTC则通过调节发电机的有功输出功率,来调整系统中的电压水平。
电力系统中电压稳定性的分析在现代社会中,电力系统的稳定运行对于各行各业的正常运转以及人们的日常生活至关重要。
而电压稳定性作为电力系统稳定性的一个重要方面,直接影响着电能的质量和电力设备的安全可靠运行。
电压稳定性,简单来说,就是电力系统在给定的运行条件下,维持负荷节点电压在允许范围内的能力。
当系统中的电压失去稳定时,可能会导致一系列严重的问题,如设备损坏、大面积停电等,给社会经济带来巨大的损失。
电力系统是一个复杂的网络,由发电、输电、变电、配电和用电等多个环节组成。
在这个系统中,电压的稳定性受到多种因素的影响。
首先,负荷特性是影响电压稳定性的关键因素之一。
不同类型的负荷,如恒功率负荷、恒电流负荷和恒阻抗负荷,对电压变化的响应各不相同。
当负荷需求突然增加,而系统的供电能力无法及时跟上时,就容易出现电压下降的情况。
如果这种情况持续恶化,可能会引发电压崩溃。
其次,电源的分布和特性也对电压稳定性有着重要影响。
发电设备的容量、类型以及它们在电网中的位置,都会影响到电力的供应和电压的支撑能力。
例如,远离负荷中心的电源,在输电过程中可能会因为线路阻抗而导致电压损耗增大,从而影响负荷端的电压稳定性。
再者,电网的结构和参数也是不可忽视的因素。
输电线路的长度、电阻、电抗等参数,决定了电能传输过程中的电压降。
电网的拓扑结构,包括线路的连接方式和变电站的布局,也会影响电压的分布和稳定性。
此外,无功功率的平衡对于维持电压稳定至关重要。
无功功率不像有功功率那样直接用于做功,但它对维持电压水平起着关键作用。
当系统中的无功功率不足时,电压会下降;而无功功率过剩,则可能导致电压升高。
为了分析电力系统的电压稳定性,研究人员和工程师们采用了多种方法。
静态分析方法是常用的手段之一。
其中,潮流计算是基础。
通过潮流计算,可以得到系统在给定运行方式下的节点电压、功率分布等信息,从而判断系统是否处于电压稳定的状态。
还有一种常用的方法是动态分析。
电力系统中的电压稳定性分析与改进策略电力系统的电压稳定性分析与改进是确保系统正常运行和供电质量稳定的重要环节。
本文将详细介绍电力系统电压稳定性的分析方法,以及改进策略。
一、电压稳定性分析方法(一)静态分析法静态分析法是一种简化了电力系统模型的静态平衡法,通过忽略短期动态响应和系统的非线性特性来分析电压稳定性。
静态分析法可以使用功率流分析进行电压稳定性分析,主要包括节点电压法、导纳阻抗法和调整阻抗法等,通过计算得到系统的节点电压和功率偏差,从而判断系统的电压稳定性。
(二)动态分析法动态分析法是一种考虑了电力系统的瞬态响应和非线性特性的分析方法,通过考虑负载变化、故障和控制器动态响应等因素对系统进行动态模拟和仿真,计算系统响应过程中的电压波动情况。
常用的动态分析方法有振荡等效法、自衔接法、以及时域和频域模拟方法等。
动态分析法能够全面考虑系统的非线性特性和瞬态响应,对电压稳定性的评估更准确。
二、电压稳定性的改进策略(一)发电侧的控制策略1.发电机调整控制:通过调整发电机励磁系统使得电压保持稳定。
2.AVR和无功补偿:采用自动电压调节器(AVR)和无功补偿装置来调节系统电压,并通过改变电源电压变化率减小电压波动。
3.机组统一调度:通过合理的机组出力分配和协调运行,减少机组负荷波动,提高系统的电压稳定性。
(二)负荷侧的控制策略1.合理负荷预测和管理:对负荷进行准确预测,并采取合理的负荷管理措施,控制负荷波动范围,减小对系统电压的影响。
2.负荷调度和优化:通过负荷调度和优化方法,将考虑削峰填谷,均衡负荷和降低电压尖峰,提高系统的电压稳定性。
3.过载保护和限流:对负载过载和瞬态故障采取保护措施,如及时切除过载负荷,限制故障电流对电压的影响。
(三)系统拓扑优化和规划策略1.线路规划和交叉调度:通过合理规划系统线路布局和交叉调度,减小线路阻抗和负载不平衡,提高系统电压稳定性。
2.变电站布置和优化:根据负荷分布和功率流向情况,合理布置变电站和选择变电站参数,以降低系统的电压损耗和提高系统电压稳定性。
电力系统的电压稳定性分析与控制电力系统是现代社会不可或缺的核心基础设施,对维持社会经济稳定发挥着至关重要的作用。
而电力系统的稳定性则是保障电力供应的关键因素之一。
其中,电压稳定性作为电力系统的一个重要指标,直接关系到电力系统的正常运行和供电质量。
本文将对电力系统的电压稳定性进行分析与控制的相关内容进行探讨。
一、电力系统电压稳定性的概念与影响因素电力系统的电压稳定性是指系统能够在发生负荷突变、短路故障等异常情况下,保持电压的稳定性和合理的范围内波动。
电压稳定性的好坏直接影响到电力供应质量和用户设备的安全运行。
电力系统的电压稳定性主要受到以下因素的影响:1. 电力负荷变化:电力系统的负荷变化是影响电压稳定性的关键因素之一。
当负荷突然增加时,会导致电压下降;相反,当负荷突然减少时,会引起电压上升。
因此,合理的负荷调节措施对于保持电压稳定具有重要意义。
2. 发电机容量和调度策略:发电机的容量和调度策略也是影响电力系统电压稳定性的重要因素。
发电机的容量过小或者调度策略不合理,会导致系统负荷无法得到满足,电压无法稳定在正常范围内。
3. 输电线路和变压器的损耗:输电线路和变压器的电阻和电抗性损耗是导致电力系统电压下降的主要原因之一。
特别是在长距离输电和高负荷情况下,损耗会更为明显。
二、电力系统电压稳定性分析方法为了保持电力系统的电压稳定性,在设计和运行电力系统时,需要进行相应的电压稳定性分析,以提前预测和解决潜在问题。
1. 潮流分析法:潮流分析法是电力系统电压稳定性分析中最基本的方法之一。
其基本思想是通过计算各个节点的电压和功率,并分析其变化情况,以判断电力系统是否稳定。
2. 稳定状态分析法:稳定状态分析法是通过建立电力系统的稳定状态方程,结合系统的负荷和发电机等参数,通过求解方程组,得到电力系统的稳定状况。
3. 动态响应分析法:动态响应分析法是根据电力系统的动态特性,建立系统的状态方程,从而分析系统的稳定性。
电力系统中的电压稳定性分析电力系统是由发电机、变电所、输电线路、负荷等组成的一个复杂的能源系统。
在电力系统中,保持稳定的电压是非常重要的。
因为电压的不稳定将会导致电力设备的损坏,甚至失去供电,引发重大事故。
因此,电压稳定性分析是电力系统调度和运行的重要问题之一。
一、电压稳定性的基本概念电压稳定性指电力系统的电压波动或变化的程度,通常以电压的净波动指数(NSI)描述。
NSI是电压波动的数量与系统额定电压的比值。
当NSI大于5%时,说明电网电压变化不稳定。
二、电压稳定性的原因电力系统的电压稳定性是由许多因素决定的,其中最主要的因素是电力负荷,其次是输电线路和发电机。
1. 电力负荷:电力系统中的负荷是不断变化的。
当负荷超过一定范围时,电压将出现波动甚至暂时停电,造成电网不稳定。
2. 输电线路:输电线路是电力系统中电能输送的重要部分。
输电线路的阻抗会引起电压波动。
3. 发电机:发电机的负载变化和电压调节引起的电压波动是影响电力系统电压稳定性的两个重要因素。
三、电压稳定性的分析方法电压稳定性的分析方法主要包括静态分析和动态分析两种。
1. 静态分析:通过计算得出电力系统的状态,对电网的电压稳定性进行分析。
静态分析方法主要有潮流计算、潮流灵敏度分析、潮流约束方法等。
2. 动态分析:电压稳定性的动态分析是指对电力系统的电压-功角特性进行分析,寻找系统中临界支路或节点,以及电气机械暂态过程的动态稳定性。
动态分析方法主要有转子运动方程、应用李雅普诺夫定理、频域分析等。
四、提高电压稳定性的措施通过对电力系统的电压稳定性分析,可以提出一些措施来提高电网的稳定性。
1. 选用适当的控制模式和调节参数。
2. 加强智能化的电力监控系统,及时监测电网的各种参数。
3. 增加电容器补偿以提高输电线路的功率因数,减少系统的阻抗。
4. 优化电网结构,调整负荷分布,并加强对发电机的调节。
综上所述,电力系统中的电压稳定性是保证电力系统安全稳定运行的关键之一。
电力系统中的电压稳定性分析电力系统作为现代社会不可或缺的基础设施,一直以来都承载着巨大的能源供应压力。
而电压稳定性作为电力系统中的一个重要指标,在保障电网运行安全和提供优质电能方面扮演着重要的角色。
本文将对电力系统中的电压稳定性进行分析和探讨。
一、电压稳定性的概念电压稳定性通常指的是电力系统中电压的动态和静态稳定性。
动态稳定性主要指电力系统在扰动下恢复到原有的稳态工作状态的能力;静态稳定性则是指系统在负荷变化或外界干扰下保持合理的电压水平的能力。
在电力系统中,电压稳定性问题的出现可能导致诸多问题,例如电子设备的异常运行、线路过载、电压不平衡等。
因此,确保电力系统的电压稳定性,对于维护供电的可靠性和提高电能质量至关重要。
二、电压暂态稳定性分析电压暂态稳定性是指电力系统在发生大幅度的短时扰动时,恢复到新的工作状态的过程。
典型的电压暂态稳定性问题可以通过进行暂态稳定分析来解决。
暂态稳定分析通常涉及考虑发电机、负荷和传输线路的动态响应。
在这个过程中,需要建立系统的等值模型,并进行仿真计算,以评估系统的暂态响应。
三、电压静态稳定性分析与暂态稳定性不同,电压静态稳定性是指电力系统在长期负荷波动或电网参数变化的情况下,能够保持合理的电压水平。
电压静态稳定性分析旨在评估系统的稳定裕度,并确定是否需要采取一些措施来改善电压稳定性。
静态稳定性分析的过程中,需要考虑电网的负荷水平、电源容量和传输线路的阻抗等因素。
通常使用受控源这一概念来模拟电力系统中的电源,以确定电压稳定性的情况。
四、电力系统中的电压控制措施为了确保电力系统的电压稳定性,可采取一系列的控制措施。
这些措施包括调整电源输出、控制电力网络中的输电容量、调整负荷功率等。
另外,现代电力系统中还引入了静态无功补偿装置,例如STATCOM和SVC 等。
这些装置能够通过调整无功功率的注入或吸收,来改善电力系统中的电压稳定性。
五、电压稳定性与可再生能源随着可再生能源的快速发展,如风电和光伏发电等,电力系统的电压稳定性面临了新的挑战。
电力系统电压暂态稳定性分析随着电力系统规模的不断扩大和复杂性的增加,电力系统的暂态稳定性问题显得尤为重要。
电力系统的暂态稳定性是指在受到外部扰动时,电力系统能够在较短的时间内恢复到稳态,并保持稳态运行的能力。
电压暂态稳定性是电力系统暂态稳定性的一个重要指标。
当电力系统发生短路故障、大负荷突然变化或其它意外情况时,电网内各节点的电压会发生明显的波动。
如果电网节点的电压过度波动,超出了一定范围,就会导致设备的故障甚至损坏。
因此,对电力系统电压暂态稳定性进行分析和评估,对于保障电网的可靠运行具有重要意义。
电力系统电压暂态稳定性分析主要包括以下几个方面:1. 暂态稳定性分析方法:暂态稳定性分析是通过数学模型和计算方法来模拟电力系统在暂态过程中的电压变化情况。
目前常用的暂态稳定性分析方法包括:暂态稳定性分析程序(Transient Stability Analysis Program,TSAP)、暂态稳定性蒙特卡洛分析方法(Transient Stability Monte Carlo Simulation,TSMCS)等。
这些方法可以对电力系统在暂态过程中的电压变化进行精确计算,评估电网的暂态稳定性。
2. 暂态过程中的电压暂动:暂态过程中的电压暂动是指电网节点电压在受到扰动后的瞬时变化。
这种暂动可以分为两类:电压暂降和电压暂升。
电压暂降是指电网节点电压在短时间内下降的现象,而电压暂升则是指电网节点电压在短时间内上升的现象。
电压暂动的大小和持续时间直接影响到电力系统的暂态稳定性。
3. 影响电压暂动的因素:电力系统电压暂动的大小和持续时间受到多种因素的影响。
其中包括电力系统的结构、负荷特性、故障类型、电力设备的参数、保护装置的动作特性等。
理解和分析这些因素对电压暂动的影响,是进行电力系统电压暂态稳定性分析的前提。
4. 电压稳定控制策略:为了提高电力系统的电压暂态稳定性,需要采取一系列的措施和控制策略。
常见的电压稳定控制策略包括发电机励磁控制、无功补偿装置的投入、线路电压补偿等。
第8章电力系统的电压稳定性分析8.1 概述20世纪70年代以来,世界上许多国家的电力系统相继发生了电压崩溃事故,造成了巨大的经济损失和社会影响。
例如,1978年12月19日法国电力系统发生的电压崩溃事故,失去负荷29GW和100 GWh,直接经济损失达2亿到3亿美元;1987年7月23日东京电力系统的电压崩溃事故,导致失去8168MW的负荷,涉及2800多万用户;1973年7月12日我国大连地区的电网因电压崩溃而造成大面积停电事故。
因此,电网电压稳定性问题引起了世界各国电力工业界和学术界的极大重视,并进行了大量的研究工作。
IEEE和CIGRE等学术组织也相继成立了专门工作小组,从不同侧面对电压稳定性问题进行调查和研究。
目前,在越来越多的电力系统中,电压不稳定已成为系统正常运行的最大威胁,人们已将系统的电压稳定性和热过载、功角稳定性等放在同等重要的地位加以研究和考虑。
电压稳定性,是指正常运行情况下或遭受干扰后电力系统维持所有母线电压在可以接受的稳态值的能力。
当一些干扰发生时,例如负荷增加或系统状态变化引起电压不可控制地增高或下降时,系统进入电压不稳定状态。
引起电压不稳定的主要原因是电力系统没有满足无功功率需求的能力。
问题的核心常常是由于有功和无功功率流过感应电抗时产生的电压降。
判断电压稳定的准则是,在正常运行情况下,对于系统中的每个母线,母线电压的幅值随着该母线注入无功功率的增加而升高。
如果系统中至少有一个母线,其母线电压的幅值随着该母线注入无功功率的增加而降低,则该系统是电压不稳定的。
这显然和我们通常对于提高母线电压所采取的无功补偿控制措施是相一致的。
电压崩溃(Voltage Collapse)比电压稳定性要复杂得多,它常常是系统发生一系列事件后导致一些母线电压持续性降低,其中央杂着电压不稳定和功角不稳定。
这里应当指出的是,网络中的母线电压逐渐降低与功角失步有着一定的关系,在功角失步过程中,电压降低只是功角失步的结果而不是其发生的原因。
但是与电压不稳定有关的电压崩溃发生时,功角稳定并不是问题的焦点。
总体来讲,某些运行状况下的电力系统,在遭受干扰后的几秒或几分钟内,系统中一些母线电压可能经历大幅度、持续性降低,从面使得系统的完整性遭到破坏,功率不能正常地传送给用户。
这种灾变称为系统电压不稳定,其灾难性后果则是电压崩溃。
通过较长时间的研究,人们正在逐渐认识电网电压稳定性的动态本质和电压崩溃的机理,并提出了一些有关电压稳定性的分析方法和防止电压崩溃的对策。
起初人们观察到,发生电压不稳定或电压崩溃时的系统负荷较大,因此直观地将电压崩溃的原因归结为系统过载。
但这种解释是含糊不清的,它没有回答一个至关重要的问题,即:“当系统过载时,电压崩溃是如何发生的?”。
后来的研究工作主要集中在分析电压崩溃的机理,从而为系统的电压控制器设计提供理论基础。
现代大型互联电力系统中一般总包含从遥远发电厂到负荷中心的长距离输电线路,并且各于系统之间的联系薄弱,当有功和无功功率流过具有电感特性的输电线路时,会产生较大的电压降落,这就使得系统的电压控制面临挑战。
电力系统中一般有两种基本的电压控制方式。
一种是借助于励磁控制器调整发电机的端电压。
然而当输电线路很长时,这种控制方式对于改善负荷电压的效果并不明显。
因此,要使负荷电压维持在正常的水平,就需要其他的电压控制器。
通常在负荷点附近加装并联电容器,从而可以补偿交流电流的感性分量。
另一种是通过控制有载调压(Under-Load Tap Chaging,ULTC)变压器的分接头来调整负荷电压。
然而,所有电压控制器都存在限值。
正常运行情况下,在控制器未达其限值之前,所有母线电压能够维持在指定的电压水平。
而在一些严重情况下,例如重要的输电线路停运、重负荷等,控制器可能达到其限值。
系统的电压控制显然是一个动态过程,各控制器自身的时间常数大约在几秒到几分钟之间。
在实际系统中,由于包含众多的控制器且网络结构庞大,负荷也随电压或频率的波动而变化,因此这个动态过程是相当复杂的。
当电压低于一定水平时,各种保护装置还可能动作,从而切除一些设备和/或断开网络的一些联系。
所有这些事件的综合后果可能使得系统电压逐渐降低,即发生电压崩溃。
总体来讲,输电网络的强度,系统传送功率的水平,负荷特性,各种无功电压控制装置的特性和限制及其协调等等,都对系统的电压不稳定甚至电压崩溃起着重要的作用。
电力系统是典型的动态系统,它可以用微分-代数方程加以描述。
由于通常意义上的“稳定性”是针对动态系统而言的,因此毫无疑问,和功角稳定性一样,系统的电压稳定性也属于一类动态系统的稳定性问题。
在前面研究系统的功角稳定性时,我们关注的是在遭受干扰后发电机的转子运动规律。
而在系统的电压稳定性分析时,则主要关注负荷点电压的行为,因此有时又将电压稳定性称为负荷稳定性。
关于电压稳定性的定义、研究方法等方面的问题,国际上已召开了多次专家讨论会,CIGRR、IEEE也出版了相应的专题报告[4-10]。
但迄今为止还没有公认的关于电压稳定性的准确定义。
一般地讲,电压稳定性,是指正常运行情况下的电力系统遭受干扰后系统维持所有母线电压在可以接受的稳态值的能力。
在当前的研究中,为了便于分析,和功角稳定性一样,也常将电压稳定性划分为小干扰电压稳定性和大干扰电压稳定性:(1)小干扰电压稳定性,是指在遭受小的干扰(例如负荷的变化等)后系统控制电压的能力。
这种形式的稳定性主要由系统的负荷特性、各种连续控制和指定时刻的离散控制所决定。
判断系统小干扰电压稳定的准则是,对于给定运行情况下系统中的每个母线,母线电压的数值随着该母线注入无功功率的增加而升高。
如果系统中至少有一个母线,其母线电压的数值随着该母线注入无功功率的增加而降低,则该系统是电压不稳定的。
换言之,如果所有母线的V-Q灵敏度为正,则系统是电压稳定的,如果至少一个母线的V-Q灵敏度为负,则系统是电压不稳定的。
(2)大干扰电压稳定性,是指在遭受大的干扰(例如网络故障、切除发电机或其他输电设备等)后系统控制电压的能力。
这个能力主要由系统的负荷特性、各种连续和离散控制以及保护的相互作用所决定。
对于给定的干扰和随后的系统控制措施,如果系统中所有母线的电压能够保持在可以接受的水平,我们就说系统是大干扰电压稳定的。
电压稳定或电压崩溃常常被人们看作是电力系统的“稳态生存能力”问题,即系统“平衡点”的存在性问题,因此静态(潮流)分析方法可有效地用1:确定系统的“稳定极限”识别影响“稳定”的因素,并且考察系统在各种运行情况和预想事故后的电压“稳定性”。
然而,必须清楚地认识到,由于静态分析方法未涉及系统的动态,出而所得到的“极限”通常只是“功率极限”而非“电压稳定极限”。
要研究系统遭受小干扰下的电压稳定性,必须考虑系统中各种动态元件的作用。
而要研究系统遭受大干扰下的电压稳定性,由于电压失稳或崩溃的过程相当缓慢,需要在充分长的时间内考察系统中各种动态元件的作用,以便捕捉到一些装置,如ULTC 、发电机励磁电流限制等之间的相互影响。
因此需要对系统的动态过程进行校长时间的仿真。
值得注意的是,电压不稳定现象并不总是孤立地发生。
功角不稳定和电压不稳定的发生常常交织在一起,一般情况下其中的一种占据主导地位,但并不易区分。
然而,人为地将功角稳定性和电压稳定性区分开来,对于充分了解系统不稳定的原因,进而制定系统的运行方式和稳定控制策略是相当重要的。
电力系统的电压稳定性是一个相当复杂的问题。
迄今为止,电压稳定性问题从概念到分析方法还处于形成阶段,各个研究者从不同的侧面提出了许多有关电压稳定性的分析方法和控制策略,但这方面的研究工作离成熟还有相当的距离,因此成为目前电力系统稳定问题研究的热点。
要了解近年来电压稳定性分析和控制的更多内容,可参阅有关的著作[11,12]和教材[11,12]以及近年来有关电压稳定问题研究的文献综述[13]。
本章首先以—个简单的辐射系统为例,说明电压不稳定的现象及其物理解释和其中涉及到的一些基本概念。
然后介绍了复杂系统电压稳定性的动态分析方法和三种静态分析方法。
最后,对电力系统电压稳定分析方法进行了展望。
8.2 电压不稳定现象及其物理解释下面以恒定电压源(假定为同步发电机的行为)通过输电线路和有载调压变压器〔ULTC)供应负荷的简单系统为例,说明电压不稳定的现象和其中的一些基本概念。
1. 电力网络的特性如图8-1所示,电源电压为S SE E =&,变压器的非标准变比为k ,输电线路阻抗为L Z θ∠,负荷阻抗为D Z ϕ∠。
可以计算出线路电流为图8-1 带有ULTC的简单电力系统线路电流的幅值可表示为则电流幅值的规格化表达式为式中:受端电压为受端电压幅值的规格化表达式为传输功率为由上式可得当负荷阻抗D Z 变化时,功率,R R P Q 存在极大值。
由0R dP dx =可得,当21k k=,即当2D L Z k Z =时,功率达到极大值:它也就是系统能够传输的极限功率。
R P 和R Q 的规格化表达式为图8-2给出了当10,cos 0.95,1tg k θϕ===时,max ,,SC R S R R I I V E P P 、随L D Z Z 变化的曲线。
从式(8-9)可以看出,系统传输给负荷的最大功率max R P 与电源电压S E 、线路阻抗L Z θ∠和负荷功率出数角ϕ有关,与变压器的变比k 无关。
达到max R P 的系统运行状态称为临界状态,相应的I 和R V 的值称为临界值。
另外,由图8-2可以看出,R P 在到达最大值max R P 之前是随着D Z 的减小而增大的,之后随着D Z 的减小而减小。
在max R R P P <阶段,当D Z 很大时,L D Z Z 很小,功率R P 很小;随着D Z 的减小,相应地L D Z Z 增大,电流I 增大,电压R V 减小,由于I 的增大相对于R V 的减小来说占据主导地位,因此功率R P 随D Z 的减小而增大。
在max R R P P >阶段,随着D Z 继续减小,电流I 继续增大,电压R V 继续减小,这时R V 的减小相对I 的增大来说占主导地位,因此功率R P 随D Z 的减小而减小。
对于给定的传输功率R P (例如max 0.8R R P P =),出图8-2可以看出,系统存在两个不同的运行点,它们分别对应丁两个不同的D Z ,左边的点相应于正常运行状态,右边的点由于其处于低电压和大电流,因而属于不正常(我们不希望的)运行状态。
图8-2 电压、电流、功率与负荷阻抗间的关系曲线2. 电压的不稳定现象及其物理解释系统的电压不稳定现象有多种表现形式。
首先,当负荷需求大于系统能够传输的最大功率P时,试图通过减小负maxR荷阻抗从而使负荷获得更大功率的控制是不稳定的。