电力系统分析基础(第八章)
- 格式:pdf
- 大小:367.66 KB
- 文档页数:28
电力系统分析第八章习题(栗然)第八章习题8-1 :图(a)所示输电系统,在f点发生接地短路,试绘出各序网络,并计算电源的组合电势E和各序组合电抗X i、X2和X。
已知系统各元件参数如下:发电机G : 50MW V cos 0.8,X d 0.15,X2 0.18,E1 1.08 变压器T-1、T-2 : 60MVA V S%=10.5,中性点接地阻抗X. 22负荷:X LD=1.2, X LD2=0.35线路L: 50km x1 0.4 /km,x° 3x〔37kV解(1)各元件参数标幺值计算。
选取基准功率S B=100MVA和基准电压V B V av,计算各元件的各序电抗的标幺值,计算结果标于各序网络图中。
100 发电机:X G1 0.1550/0.8X T2221003721008150.41003720.24 X G210.5 100 100 601.607X LD 2 0.350.18 0.175100 151.461 X L0 3100 0.288 50/0.82.3331.416 4.383G IO.5kV变压器T-1、T-2 : X T1中性点接地阻抗:x n输电线路L:X L1 50负荷LD: X LD1 1.2(2)制订各序网络正序和负序网络不包括中性点接地电抗和空载变压器T-2,因此,正序和负序网络中包括发电机 G 变压器T-1、负荷LD 以及输电线路L ,如图(b )和(c )所示。
由于零序电流不流经发电机和负荷,因此,零序网络中只包括变压器T-1、T-2和输电线路L ,如图(d )所示。
0J4 0J75 t.461 AAAAAAAAA(b)0.175 l.4«] AAA AAA 2333(c)图747电力系统接线图(a )及正疥(时、负序5)、零序(刃网络(3)网络化简,求组合电势和各序组合电抗 由图(b )可得X , (0.24//8) 0.175 1.461 1.869由图(b )和图(c )可得X 2 (0.288//2.333) 0.175 1.461 1.8920.2«81.08 8 0.24 81.05X 0 (0.175 4.821 4.383)//0.175 0.1728-2 :如图(a )所示电力系统,各元件参数如下:发电机 G-1: 100MW V cos =0.85 , X d 0.183, X 20.223 ; G-2: 50MW V cos =0.8 ,X d 0.141 , X 2 0.172 ;变压器 T-1 : 120MVA V S %=14.2; T-2 : 63MVAV%=14.5;输电线路 L :每回 120km x 10.432 / km, x 0 5x 1。
第八章习题8-1: 图(a )所示输电系统,在f点发生接地短路,试绘出各序网络,并计算电源的组合电势∑E 和各序组合电抗∑1X 、∑2X 和∑0X 。
已知系统各元件参数如下:发电机G :50MW ,8.0cos =ϕ,15.0=''dX ,18.02=X ,08.11=E 变压器T-1、T-2:60MVA ,V s %=10.5,中性点接地阻抗Ω=22n x负荷:X LD1=1.2, X LD2=0.35 线路L :50km ,km x /4.01Ω=,103x x =解 (1)各元件参数标幺值计算。
选取基准功率B S =100MVA 和基准电压av B V V =,计算各元件的各序电抗的标幺值,计算结果标于各序网络图中。
发电机:24.08.0/5010015.01=⨯=G X 288.08.0/5010018.02=⨯=G X 变压器T-1、T-2:175.0601001005.1021=⨯==T T X X 中性点接地阻抗:607.137100222=⨯=n x 负荷LD :8151002.11=⨯=LD X 333.21510035.02=⨯=LD X 输电线路L :461.1371004.05021=⨯⨯=L X 383.4416.130=⨯=L X(2)制订各序网络正序和负序网络不包括中性点接地电抗和空载变压器T-2,因此,正序和负序网络中包括发电机G 、变压器T-1、负荷LD 以及输电线路L ,如图(b )和(c )所示。
由于零序电流不流经发电机和负荷,因此,零序网络中只包括变压器T-1、T-2和输电线路L ,如图(d )所示。
(3)网络化简,求组合电势和各序组合电抗。
由图(b )可得05.1824.0808.1=+⨯=∑E869.1461.1175.0)8//24.0(1=++=∑X由图(b )和图(c )可得892.1461.1175.0)333.2//288.0(2=++=∑X172.0175.0//)383.4821.4175.0(0=++=∑X8-2:如图(a )所示电力系统,各元件参数如下:发电机G-1:100MW ,cos ϕ=0.85,223.0,183.02==''X X d;G-2:50MW ,cos ϕ=0.8,141.0=''d X ,172.02=X ;变压器T-1:120MVA ,V s %=14.2;T-2:63MVA ,V s %=14.5;输电线路L :每回120km ,1015,/432.0x x km x =Ω=。
电力系统与分析第八章的答案【篇一:电力系统分析习题集及答案(杨淑英)】集华北电力大学前言本书是在高等学校教材《电力系统稳态分析》和《电力系统暂态分析》多次修改之后而编写的与之相适应的习题集。
电力系统课程是各高等院校、电气工程专业的必修专业课,学好这门课程非常重要,但有很大的难度。
根据国家教委关于国家重点教材的编写要求,为更好地满足目前的教学需要,为培养出大量高质量的电力事业的建设人材,我们编写了这本《电力系统分析习题集》。
力求使该书具有较强的系统性、针对性和可操作性,以便能够使学生扎实的掌握电力系统基本理论知识,同时也能够为广大电力工程技术人员提供必要的基础理论、计算方法,从而更准确地掌握电力系统的运行情况,保证电力系统运行的可靠、优质和经济。
全书内容共分十五章,第一至第六章是《电力系统稳态分析》的习题,第七至第十四章是《电力系统暂态分析》的习题,第十五章是研究生入学考试试题。
本书适用于高等院校的师生、广大电力工程技术人员使用,同时也可作为报考研究生的学习资料。
由于编写的时间短,内容较多,书中难免有缺点、错误,诚恳地希望读者提出批评指正。
目录第一部分电力系统稳态分析第一章第二章第三章第四章第五章第六章电力系统的基本概念电力系统的元件参数及等值电路简单电力系统的计算和分析电力系统潮流的计算机算法电力系统的有功功率和频率调整电力系统的无功功率和电压调整第二部分电力系统暂态分析第七章电力系统故障分析的基本知识第八章同步发电机突然三相短路分析第九章电力系统三相短路的实用计算第十章对称分量法及元件的各序参数和等值电路第十一章不对称故障的分析、计算第十二章电力系统各元件的机电特性第十三章电力系统静态稳定第十四章电力系统暂态稳定第十五章研究生入学考试试题附录第一部分电力系统稳态分析电力系统稳态分析,研究的内容分为两类,一类是电力系统稳态运行状况下的分析与潮流分布计算,另一类是电力系统稳态运行状况的优化和调整。
第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。
短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。
除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。
直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。
本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。
§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。
设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。
正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。
此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。
负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。
100110. 电力系统中发生概率最多的短路故障是( )A.三相短路B.两相短路C.两相短路接地D 单相短路接地三相短路是对称的,其他短路都是不对称的,其中单 相短路接地故障发生的概率最高,可达65%,两相短 路约占10%,两相短路接地约占20%,三相短路约为 占5%,但它对电力系统的影响最严重。
11. 根据对称分量法, 系是()p236A.a 相超前b 相 C.c 相超前b 相13•中性点直接接地系统中,发生单相接地故障时,零 序回路中不包含( A.零序电流 C 零序阻抗20.中性点接地系统中发生不对称短路后,越靠近短路 点,零序电压变化趋势为()p263a 、b 、c 三相的零序分量相位关B.b 相超前a 相 D 相位相同)p251 B.零序电压 D 电源电势A.越高B.越低C.不变D无法判断39•下图所示网络中,线路L长为lOOkm,正序电抗xi=0.4Q / km,零序电抗 xo=3xi ;发电机 Gi 、G2 相同,S 、=15MVA, x"尸0.125,正序电抗等于负序 电抗;变压器 T1、T2、T3相同,S N =15MVA, U K % = 10o(1) 计算当K 点发生两相短路接地时,短路点的短路 电流。
(2) 求T2中性点电压。
Tiq ©4*(3^T20910系统发生短路故障后,越靠近短路点,正序电压 )p263越低 B.越高 不变 D.无穷大中性点不接地系统中,发生单相接地时,非故障相 电压将升高至相电压的()p254A. 1倍B.运倍C.丿^倍D. 3倍15.中性点接地电力系统发生短IIM LMT3K …7. A. C. 8.路后没有零序电流的不对称短路类型是( )p255A.单相接地短路B.两相短路C.三相短路D.两相短路接地16. 在下列各种故障类型中,属于纵向故障的是o P236 28.电力系统中发生两相短路时,故障点的短路电流 的大小为其正序电流分量的 _________ 倍。
第八章电力系统不对称故障的分析和计算8-1 简单不对称短路的分析8-2 电压和电流对称分量经变压器后的相位变换8-3 非全相断线的分析8-4 应用节点阻抗矩阵计算不对称故障8-5 复杂故障的计算方法第八章电力系统不对称故障的分析和计算本章主要内容各种简单不对称故障的序分量边界条件复合序网的概念和正序等效定则电压电流对称分量经过变压器后的相位变换利用阻抗矩阵计算不对称故障的原理和方法序网方程(1)(1)(1)fa eq ff fa V E Z I =− (2)(2)(2)fa ff fa V Z I =− (0)(0)(0)fa ff fa V Z I =− (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (1)fa I (1)ff jX (1)fa V (0)fV8-1 简单不对称短路的分析1. 单相(a 相)接地短路—序分量边界条件0, 0(1), 0fa fb fcV I I === 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)0002fafa fa fa fb fb fb fb fc fc fc fc V V V V I I I I I I I I =++==++==++= ()对称分量表示的边界条件0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)2(1)(2)(0)2(1)(2)(0)0030fafa fa fa fb fa fa fa fc fa fa fa a V V V VI I I I I I I I αααα=++==++==++= ()以相为参考相(1)(2)(0)(1)(2)(0)0(8-42)fa fa fa fa fa fa V V V I I I ⎫++=⎪⎬==⎪⎭()序分量边界条件:8-1 简单不对称短路的分析1. 单相(a 相)接地短路—联立方程求解0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)(1)(2)(0)0(82)fa fa fa fa fa fa V V V I I I ⎫++=⎪−⎬==⎪⎭ (0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭ (0)(1)(1)(2)(0)(83)()ffa ff ff ff V I j X X X =−++ ()(0)(1)(1)(1)(2)(0)(1)(2)(2)(2)(0)(0)(0) (84)fa f ff fa ff ff fa fa ff fa fa ff fa V V jX I j X X I V jX I V jX I ⎫=−⎪⎪=+⎪−⎬=−⎪⎪=−⎪⎭8-1 简单不对称短路的分析1. 单相(a 相)接地短路—复合序网0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)(1)(2)(0)0(82)fa fa fa fa fa fa V V V I I I ⎫++=⎪−⎬==⎪⎭ (0)(1)(1)(2)(0)(83)()ffa ff ff ff V I j X X X =−++ ()(0)(1)(1)(1)(2)(0)(1)(2)(2)(2)(0)(0)(0) fa f ff fa ff ff fa fa ff fa fa ff fa V V jX I j X X I V jX I V jX I ⎫=−⎪⎪=+⎪⎬=−⎪⎪=−⎪⎭ ——将各序网络在故障端口连接起来所构成的网络(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—故障点各相电流电压222(1)(2)(0)(2)(0)(1)22(1)(2)(0)(2)(0)(1)0()(1)()(1)fafb fa fa fa ff ff fa fc fa fa fa ff ff fa V V V V V j X X I V V V V j X X I αααααααααα=⎡⎤=++=−+−⎣⎦⎡⎤=++=−+−⎣⎦ (1)(2)(0)2(1)(2)(0)2(1)(2)(0)fa fa fa fa fb fa fa fa fc fa fa fa I I I I I I I I I I I I αααα=++=++=++ (0)(1)(1)(2)(0)3()0, 0ff faff ff ff fb fcV I I j X X X I I ==++== ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1), , fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—相量图(1)fa I (1)fb I (1)fc I (2)fa I (2)fc I(2)fb I (0)fa I faI (0)fb I(0)fa I (0)fc I (2)fa I (2)fb I (2)fc I (1)fa I(1)fc I (1)fb I (1)fa I 以为参考相量(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (1)fa V (2)fa V (0)fa VfcV fbV (2)fb V (0)fa V 0fa V = ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(I&II)(0)(0(1)(1)(2)(0)(1))(()3)0)1(3Case I >()ff faff ff ff f f f f ff f f V V I j X X X I X jX I X ==⇒=+>+ :(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (2)fb V fbV fcV 0fa V = (0)Case II ff X →:短路点靠近中性点直0,接接地点()(1)(2)(0)(1)(2)(2)(1)(1(0)(01)))(0fa ff ff fa f fa a ff fa fa ff fa V j X X I V jX I V V jX I ≈−=−≈=+=− (0)0, 32fa fb fc f V V V V ===(1)(2)(0)2fa ffa V VV ≈≈8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(III)(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(0)faV (0)fbV (0)fcV 0fa V = fbV f cV (0)(0)fa faV V =− 60D(1)fb V(1)fc V (0)Case III ff X →∞:中性点,不接地系统()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− (0)(0)0, 3fa fb fc f abV V V V V ====(0)(0)(1)(2)(0), 0, fa f fa fa f V V V V V ===− (1)(2)(0)22(1)(2)(0)(1)2(1)(2)(0)(1)=0(1)(1)fa fa fa fa fb fa fa fa fa fc fa fa fa fa V V V V V V V V V V V V V V αααααα=++=++=−=++=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(IV)(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(2)(0)(2)(0)(1)Case IV 12ff ff fa fa fa X X V V V =⇒==− :()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− (1)fb V (1)fc V (2)fc V (1)fa V (2)fa V (0)fa V fcV fbV (2)fb V 0faV = 120D(0)(1)(1(2)(0))()fff ff ff fa V j X X X I =++ ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)(0)(0)(0)231313fa ff ff fa fa ff fa fa ff f fffa V j X X I V jX I V jX I V V V −=+==−==−=− (0)(1)32fb fc fa f V V V V ===8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—序分量边界条件, 0(1), 0fb fc fa fb fcV V I I I ==+= 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)002fb fb fb fc fc fc fa fa fa fb fb fb fc fc fc V V V VV V I I I I I I I I I ++=++++=+++++= ()对称分量表示的边界条件fa V fb fcV V = 0faI = fbI fcI a bc(1)(2)(1)(2)(0)40(8-7)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=⎬⎪=⎪⎭()序分量边界条件:22(1)(2)(1)(2)(0)22(1)(2)(0)()()0()()203fa fa fa fa fa fa fa fa VV I I I I I a I αααααααα−+−=++=++++= ()以相为参考相8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—联立方程求解(0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭(0)(1)(1)(2)(88)()ffa ff ff V I j X X =−+ (2)(1)(1)(2)(2)(2)(2)(1)(0)(0)(0)(89)0fa fa fa fa ff fa ff fa fa ff fa I I V V jX I jX I V jX I ⎫=−⎪⎪==−=−⎬⎪=−=⎪⎭(1)(2)(1)(2)(0),0(87)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=−⎬⎪=⎪⎭ fa V fb fcV V = 0faI = fbI fcI a bc8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—复合序网(0)(1)(1)(2)(88)()ffa ff ff V I j X X =−+ fa V fb fcV V = 0faI = fbI fcI a bc(1)(2)(1)(2)(0),0(87)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=−⎬⎪=⎪⎭ (2)(1)(1)(2)(2)(1)(0)(0)(0)(89)0fa fa fa fa ff fa fa ff fa I I V V jX I V jX I ⎫=−⎪⎪==−⎬⎪=−=⎪⎭(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—故障点各相电流电压(1)(2)(0)(1)(2)(1)2(1)(2)(0)(1)2(1)(2)(0)(1)2222fa fa fa fa fa ff fa fb fa fa fa fa fa fc fa fa fa fa faV V V V V j X I V V V V V V V V V V V V αααα=++===++=−=−=++=−=− (1)(2)(0)22(1)(2)(0)(1)(1)(1)+ 0+ ()33fa fa fa fa fb fa fa fa fa fa fc fb fa I I I I I I I I I j I I I j I αααα=+==+=−=−=−= (2)(1)(0)(1)(2)(2)(1)(0), 0, , 0fa fa fa fa fa ff fa fa I I I V V jX I V =−==== fa V fb fcV V = 0faI = fbI fcI a bc8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—相量图(1)fa I(1)fb I (1)fc I (2)fa I(2)f c I(2)fb I f bI (1)f a V (1)fc V (1)fb Vfc I(2)f b V(2)fc Vf bV f c V f a V(1)fa I以为参考相量(2)fa V (2)(1)(0)(1)(2)(2)(1)(0), 0, , 0fa fa fa fa fa ff fa fa I I I V V jX I V =−==== 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—序分量边界条件(1)0, 0fb fc faV V I === 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)0002fb fb fb fc fc fc fa fa fa V V V V V V I I I ++=++=++= ()对称分量表示的边界条件faV 0fb fc V V == 0faI = fbI fcI a bc(1)(2)(0)(1)(2)(0)(8-13)04fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭()序分量边界条件:2(1)(2)(0)2(1)(2)(0)(1)(2)(0)0003fa fa fa fa fa fa fa fa fa V V VV V V I I a I αααα++=++=++= ()以相为参考相8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—联立方程求解(0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭(0)(1)(1)(2)(0)(814)(//)ffa ff ff ff V I j X X X =−+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)(815)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪−⎬⎪=−⎪+⎭faV 0fb fc V V == 0faI = fbI fcI a bc(1)(2)(0)(1)(2)(0)(8-13)0fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+ 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—复合序网(1)(2)(0)(1)(2)(0)(8-13)0fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ (2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭faV 0fb fc V V == 0faI = fbI fcI a bc(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—故障点各相电流电压(2)(0)(1)(2)(0)(1)(1)(2)(0)30ff ff fa fa fa fa fa fa ff ff fb fcX X V V V V V j I X X V V =++==+== (1)(2)(0)(2)(0)22(1)(2)(0)(1)(2)(0)2(2)(0)2(1)(2)(0)(1)(2)(0)+ 0+ + fa fa fa fa ff ff fb fa fa fa fa ff ff ff ff fc fa fa fa fa ff ff I I I I X X I I I I I X X X X I I I I I X X αααααααα=+=⎛⎞+=+=−⎜⎟⎜⎟+⎝⎠⎛⎞+=+=−⎜⎟⎜⎟+⎝⎠(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—相量图(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (2)fb V (0)fa V faV (1)fa I (2)fa I (0)fa IfcIfbI 0faI = (1)fc I (1)fb I (2)fc I (2)fb I 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—故障点入地电流(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ faV 0fb fc V V == 0faI = fbI fcI abceI (2)(0)(1)(2)(0)33ff e fb fc fa fb fc fa fa ff ff X I I I I I I I I X X =+=++==−+ (0)(0)(1)(0)(1)(0)(2)33fe fa ff ff ff ff ff VI I jX X X X X ==++ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭8-1 简单不对称短路的分析8-1 简单不对称短路的分析—小结简单不对称短路的分析方法小结¾制定各序网络;根据系统运行方式确定故障口正常电压、各序输入阻抗,建立序网方程;(Chapter 7)¾根据故障情况选取参考相,确定用序分量表示的边界条件;¾由序网方程和序分量边界条件求解故障口电流电压各序分量(复合序网、方程求解等);¾对电流电压各序分量进行综合即可得到故障口的电流和电压相量。