8磁感强度 毕奥-萨伐尔定律
- 格式:ppt
- 大小:813.50 KB
- 文档页数:34
1820年,法国物理学家比奥特(Biot)和萨瓦特(Savart)通过实验,测量了一条长直电流线附近的小磁针的力定律,并发表了一篇论文,题为“传递给运动中的金属的电的磁化力”。
后来被称为比奥-萨瓦特定律。
后来,在数学家拉普拉斯(Laplace)的帮助下,该定律以数学公式表示。
毕奥-萨伐尔定律:载流导线上的电流元Idl在真空中某点P的磁感度dB的大小与电流元Idl的大小成正比,与电流元Idl和从电流元到P点的位矢r之间的夹角θ的正弦成正比,与位矢r的大小的平方成反比。
dB的方向垂直于Idl和r所确定的平面,当右手弯曲,四指从方向沿小于π角转向r时,伸直的大拇指所指的方向为dB的方向,即dB、Idl、r三个矢量的方向符合右手螺旋法则。
叠加原理:
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和。
特点:
从课程论和物理学课自身特点的角度来分析毕奥-萨伐尔定律,它体现的学科特点有以下几点:(1)是稳恒电流磁场的关键知识点;(2)具有高度的抽象性;(3)使用数学工具的复杂性;(4)掌握“方法”比掌握“内容”更重要;(5)在探索知识的过程中体现“把握本质联
系,揭示事物发展内在规律性”的唯物辩证法观点。
毕奥—萨伐尔定律1820年,毕奥和萨伐尔通过实验得到了载流导线周围磁场与电流的定量关系,拉普拉斯又以公式的形式概括得出电流元产生磁感强度d B 的规律。
为计算电流为I 的导线在空间某点户产生的磁感强度B ,设想将载流导线分割成许多电流元,用矢量dl I 表示.线元dl的方向与电流流向一致。
毕奥—萨伐尔定律指出:载流导线上的电流元dl I 在真空中某点P 的磁感度dB 的大小与电流元dl I 的大小成正比,与电流元dl I 和从电流元到P 点的位矢r 之间的夹角θ的正弦成正比,与位矢r 的大小的平方成反比,即20sin 4r dl I dB θπμ= (9-2a ) 上式中,πμ40为比例系数,0μ称为真空磁导率,其值为 270104--∙⨯=A N πμ dB 的方向垂直于dl I 和r 所确定的平面,当右手弯曲,四指从dl I 方向沿小于π角转向r 时,伸直的大姆指所指的方向为dB 的方向, 即dB 、dl I 、r 三个矢量的方向符合右手螺旋法则,如图9—2所示,因此,可将式(9—2a)写成矢量形式204r rdlI dB ⨯=πμ(9-2b)上式中,r0为位矢r的单位矢量.此即毕奥——萨伐尔定律的公式表述。
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和,即⎰⎰⨯==L r rIdldBB204πμ(9-3)例9-1例9-1求载流直导线周围的磁场。
解:设有长为L的直导线上通有电流I,求距离此导线为a处一点P的磁感应强度。
在直导线上任取一电流元Idl,它到P点的位矢为r,P点到直线的垂足为O,电流元到O的距离为l,Idl与r的夹角为θ,如左图所示。
根据毕萨定律可得该电流元在P点的磁感应强度dB的大小为20sin 4r l d I dB θπμ= dB 的方向垂直于纸面向里,图中用⊗表示.由于直导线上所有电流元在P 点的磁感应强度dB 的方向度相同,所以, P 点的磁感应强度B 的大小等于各电流元在P 点dB 的大小之和,即20sin 4r l d I B L θπμ⎰= 将上式中l 、r 、θ等变量统一为一个变量,以便积分.由图9-3所得()θπ-=ctg a lθθd adl 2sin =()θθπsin sin a a r =-=于是()2100c o s c o s 4s i n 421θθπμθθπμθθ-==⎰aI d a I B (9-4)式中,θ1和θ2分别为直导线两端的电流元与它到P 点的位矢之间的夹角。
.毕奥-萨伐尔定律摘要:1.引言2.毕奥- 萨伐尔定律的定义3.毕奥- 萨伐尔定律的公式表示4.毕奥- 萨伐尔定律的应用领域5.我国在毕奥- 萨伐尔定律研究方面的贡献6.结论正文:1.引言毕奥- 萨伐尔定律是电磁学中的一个基本定律,它描述了电流在磁场中的作用力。
这个定律是由法国物理学家毕奥和萨伐尔在19 世纪初提出的,为电磁学的发展奠定了基础。
2.毕奥- 萨伐尔定律的定义毕奥- 萨伐尔定律指出,一个电流在磁场中受到的磁场力与电流的大小、磁场的强度和电流与磁场之间的夹角有关。
具体来说,磁场力F 的大小与电流I、磁感应强度B 以及电流与磁场之间的夹角θ的关系可以表示为:F = I * (Bl * sinθ)。
3.毕奥- 萨伐尔定律的公式表示毕奥- 萨伐尔定律可以用数学公式表示为:F = I * (Bl * sinθ),其中F 表示磁场力,I 表示电流,B 表示磁感应强度,l 表示电流元的长度,θ表示电流与磁场之间的夹角。
4.毕奥- 萨伐尔定律的应用领域毕奥- 萨伐尔定律在许多领域都有广泛的应用,如电磁制动、电磁起重机、磁悬浮列车等。
此外,这个定律还为研究电磁波、电磁感应和磁流体等现象提供了理论基础。
5.我国在毕奥- 萨伐尔定律研究方面的贡献我国科学家在毕奥- 萨伐尔定律研究方面取得了举世瞩目的成果。
例如,中国科学院物理研究所的科学家们通过对磁性材料的研究,为理解毕奥- 萨伐尔定律提供了新的视角。
此外,我国在磁悬浮列车、电磁制动等领域的研究也取得了重要突破,为国民经济的发展做出了巨大贡献。
6.结论毕奥- 萨伐尔定律是电磁学的基本定律之一,它对电磁学的发展产生了深远的影响。
在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度 dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。
定义在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。
电流(沿闭合曲线)毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。
这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。
采用国际单位制,用方程表示:电流(整个导体体积)当电流可以近似为穿过无限窄的电线时,上面给出的配方工作良好。
如果导体具有一定厚度,则适用于Biot-Savart定律(再次以SI为单位):Biot-Savart:毕奥萨伐尔定律定律是实验定律,以一些简单的典型的载流导体产生的磁场为基础,经分析、归纳出的定律,而不是由电流元直接得出的,实际上不可能得到单独的电流元。
高中物理磁场中的毕奥-萨伐尔定律高中物理磁场中的毕奥萨伐尔定律在高中物理的学习中,磁场是一个十分重要的概念,而毕奥萨伐尔定律则是描述磁场产生的基本规律之一。
理解并掌握毕奥萨伐尔定律,对于我们深入认识磁场的本质和特性具有至关重要的意义。
那么,什么是毕奥萨伐尔定律呢?简单来说,毕奥萨伐尔定律是用来计算电流元在空间中产生的磁场的大小和方向的。
我们先来看一下这个定律的数学表达式。
毕奥萨伐尔定律表述为:电流元 Idl 在空间某点 P 处产生的磁感应强度 dB 的大小与电流元的大小 Idl、电流元到 P 点的距离 r 的平方成反比,与电流元 Idl 和矢径 r 之间的夹角的正弦成正比,其方向垂直于 Idl 和 r 所组成的平面,并且遵循右手螺旋定则。
为了更直观地理解这个定律,我们来举一个简单的例子。
假设有一根直导线,通有电流 I。
我们想要知道这根导线在周围空间某一点产生的磁场强度。
我们可以把这根导线分割成无数个小段,每一小段都可以看作是一个电流元。
对于每一个电流元,我们都可以根据毕奥萨伐尔定律计算出它在该点产生的磁场强度。
然后,把所有电流元在该点产生的磁场强度进行矢量叠加,就可以得到这根导线在该点产生的总的磁场强度。
在实际计算中,我们常常会用到一些常见的几何关系和三角函数来简化计算。
比如说,如果电流元与矢径的夹角为 90 度,那么sinθ = 1,计算就会相对简单一些。
毕奥萨伐尔定律的应用非常广泛。
比如说,在计算环形电流在中心轴线上产生的磁场时,我们就可以利用这个定律。
对于一个环形电流,我们同样可以把它分成无数个小段电流元。
通过毕奥萨伐尔定律计算每个电流元在中心轴线上一点产生的磁场强度,然后进行矢量叠加,就可以得到环形电流在中心轴线上产生的磁场强度的表达式。
再比如,在分析螺线管内部的磁场时,也离不开毕奥萨伐尔定律。
螺线管是由很多圈环形电流组成的。
通过对每一圈环形电流应用毕奥萨伐尔定律,并考虑它们的叠加效果,我们可以得出螺线管内部磁场的分布规律。
毕奥萨伐尔定律内容及公式毕奥萨伐尔定律(比尔定律)内容及公式Introduction•毕奥萨伐尔定律(也称为比尔定律)是电磁学中的重要定律之一,描述了磁场和电流之间的关系。
•这个定律由法国数学家、物理学家让-巴蒂斯特·比尔著名,于1820年首次发表。
原理•毕奥萨伐尔定律指出,电流产生的磁场的大小和方向与电流成正比,并与距离电流的距离成反比。
•该定律是绕定则(右手法则)的一个推论,根据这个法则,我们可以通过右手的手指规则判断电流所产生的磁场的方向。
公式•毕奥萨伐尔定律的公式表示为:–磁场B = (μ0 / 4π) * (I * L × r / r³)•公式中的符号含义如下:–B:磁场的大小–μ0:真空磁导率(常数)–I:电流大小–L:电流所形成的线段的长度–r:距离电流线段的距离应用•毕奥萨伐尔定律在实际中有广泛的应用,包括但不限于以下领域:–电磁感应:描述了磁通量和感应电动势之间的关系。
–电磁场的计算:通过该定律,我们可以计算出复杂电流产生的磁场。
–电动机和电磁铁:这些设备的设计和工作原理基于毕奥萨伐尔定律。
总结•毕奥萨伐尔定律是电磁学中一个重要而基础的定律,可以帮助我们理解和应用电磁现象。
•通过了解这个定律和相关的公式,我们可以更好地理解电流和磁场之间的关系,并在实际应用中取得更好的效果。
补充说明•在应用毕奥萨伐尔定律时,需要注意以下几个方面:单位•在公式中,磁场大小B的单位是特斯拉(T),电流I的单位是安培(A),线段长度L的单位是米(m),距离r的单位也是米(m)。
方向•根据毕奥萨伐尔定律,磁场的方向由右手的手指规则决定。
将右手的大拇指指向电流方向,其他四指的伸出方向就代表了磁场的方向。
磁场的线密度•磁场的线密度(B线束)是指垂直穿过单位面积的磁感线的根数,可以通过公式B线束=μ0 * B计算得出。
其中μ0是真空磁导率。
磁感应强度和磁场强度•磁感应强度(B)和磁场强度(H)之间的关系是B=μ0 * H。
毕奥萨伐尔定律表达式
毕奥萨伐尔定律公式: k=107T·m·A-1。
在静磁学中,毕奥-萨伐尔定律(英文:Biot-SavartLaw)描述电流元在空间任意点P处所激发的磁场。
具体表述如下:毕奥-萨伐尔公式,它指出,曲线涡丝段d l所诱导的速度d v,其方向垂直子d l和 r,大小则与距离 r的平方成反比,而且同d l和d l与 r
时夹角的正弦成正比。
毕奥萨伐尔定律介绍:
在恒定磁场中引入电流元的概念,分析电流元产生磁场的规律,即B-S定律,最后利用磁场的叠加原理,可以解决任意载流体所产生的稳恒磁场的分布。
B-S(毕奥萨伐尔定律)的物理意义:表明一切磁现象的根源是电流(运动电荷)产生的磁场。
反映了载流导线上任一电流元在空间任一点处产生磁感应强度在大小和方向上的关系。
由此定律原则上可以解决任何载流导体在其周围空间产生的磁场分别。
磁场,物理概念,是指传递实物间磁力作用的场。
磁场是一种看不见、摸不着的特殊物质。
磁场不是由原子或分子组成的,但磁场是客观存在的。
磁场具有波粒的辐射特性。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用。