自动控制实验二
- 格式:doc
- 大小:196.00 KB
- 文档页数:11
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。
考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。
则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。
自动控制原理实验二系统的动态性能与稳态研究系统的动态性能与稳态是自动控制原理中的重要概念,对于系统的分析和设计具有重要意义。
本实验将通过实际的控制系统,研究动态性能与稳态的相关特性。
实验目的:1.理解系统的动态性能和稳态的概念。
2.通过实验研究不同参数对系统动态性能和稳态的影响。
3.掌握如何调节参数以改善系统的动态性能和稳态。
实验器材:1.控制系统实验装置。
2.控制器。
3.传感器。
4.计算机及相关软件。
实验步骤:1.将控制系统实验装置连接好,包括传感器和执行器。
2.设置基本的控制系统参数,如比例增益、积分时间和微分时间。
3.对系统进行稳态分析,记录输出信号的稳定值。
4.通过改变控制器的参数,观察系统的动态响应特性。
例如,改变比例增益,观察系统的超调量和调节时间的变化。
5.改变积分时间和微分时间,观察系统的超调量和调节时间的变化。
6.对不同参数组合进行实验,总结参数与系统性能之间的关系。
实验结果:通过实验可以得到一些重要的结论:1.比例增益的增大可以减小超调量,但同时也可能引起系统的震荡。
2.积分时间的增大可以减小偏差,但也可能导致系统的不稳定。
3.微分时间的增大可以提高系统的稳定性,但也可能引起系统的震荡。
实验结论:本实验通过实际的控制系统,研究了动态性能和稳态的相关特性。
通过改变控制器的参数,可以调节系统的动态性能和稳态。
在实际应用中,需要根据具体的控制要求,选择合适的参数组合,以达到系统的稳定性和性能要求。
实验结果对于掌握自动控制原理中的动态性能和稳态概念,以及参数调节方法具有重要意义。
实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。
利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。
学生实验报告PID 控制器是一种线性控制器,它根据给定值()t r 与实际输出值()t y 构成控制偏差()t e()()()t y t r t e -=(2.2.1)将偏差的比例()P 、积分()I 和微分()D 通过线性组合构成控制量,对被控对象进行控制,故称PID 控制器。
其控制规律为()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t u D tp 011(2.2.2)或写成传递函数的形式()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s G D p 111(2.2.3) 式中:p K ——比例系数;I T ——积分时间常数;D T ——微分时间常数。
在控制系统设计和仿真中,也将传递函数写成()()()sK s K s K s K s K K s E s U s G I p D D Ip ++=++==2(2.2.4) 式中:P K ——比例系数;I K ——积分系数;D K ——微分系数。
上式从根轨迹角度看,相当于给系统增加了一个位于原点的极点和两个位置可变的零点。
简单说来,PID 控制器各校正环节的作用如下:A 、比例环节:成比例地反映控制系统的偏差信号()t e ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。
B 、积分环节:主要用于消除稳态误差,提高系统的型别。
积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。
C 、微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。
2、 PID 参数的确定方法 (1) 根轨迹法确定PID 参数 PID 的数学模型可化为:()s K s K s K s G IP D ++=2从仿真曲线看出未校正系统震荡不稳定。
设球杆系统PID 校正的结构图为如图2.2.5 示:要求采用凑试法设计PID校正环节,使系统性能指标达到调节时间小于令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.1,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.4,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.6,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:PID参数整定:Time Offset(s) Kp Ki Kd SampleTime sT(s) %5 2.5 0.9 1.5 -1 23 4%学生实验报告从仿真曲线看出未校正系统震荡不稳定。
自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。
通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。
二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。
三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。
一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。
二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。
通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。
四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。
设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。
使用示波器观察并记录系统的输出响应。
2、二阶系统的阶跃响应实验同样按照电路图连接好设备。
改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。
用示波器记录输出响应。
五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。
随着时间的推移,输出逐渐稳定在一个固定值。
当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。
2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。
当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。
通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、实验报告1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
1) 程序代码如下: >> num=[1 3 7];den=[1 4 6 4 1 0]; impulse(num,den) grid曲线如下:2) 程序代码如下:num=[1 3 7 0]; den=[1 4 6 4 1 0]; step(num,den) grid曲线如下:2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
实验二二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。
实验二 二阶系统的瞬态响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。
二、实验设备同实验一。
三、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);四、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(n n n S S S R S C ωζωω++= (2-1) 闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况:1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。
它的数学表达式为:式中21ζωω-=n d ,ζζβ211-=-tg 。
2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。
3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。
)t (Sin e 111)t (C d t 2n βωζζω+--=-(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
自动控制实验报告二-二阶系统阶跃响应
本实验以三角波输入作为扰动源,考察了二阶系统的阶跃响应。
本实验共分为准备和实验两部分,具体过程如下:
1. 准备:
(1)准备理论分析
根据二阶系统的理论分析,比例的系统的输出响应可以用“先过斜坡,后弹跳”的曲线来描述。
当输入为阶跃信号时,最终的输出也应随之发生阶跃。
(2)安装系统设备
系统的设备由负反馈比例控制器与多功能电路板组成,本实验采用比例控制实现,用一个三角波发生器后装置来产生三角波控制信号。
2. 实验:
(1)稳态响应
调整三角波周期参数,使系统实现稳态响应,测量得出输出与输入的闭环增益值,满足系统的稳态要求;
(2)阶跃响应
设定参数使得系统实现阶跃响应,测量得出系统的时间常数值以及输出响应与输入阶跃幅度之比,画图分析出输出在某一个阶跃时刻趋近系统的稳态响应值时所需的时间。
以上就是本次实验的概况。
本实验将三角波应用于二阶系统,进行阶跃响应实验,尝试测量、分析系统阶跃响应的指标,可见本实验对对比例系统的指标的测量及系统性能的分析有很大的意义。
实验二、线性系统的根轨迹法1. 设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)*(s+5)), (1)绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较;clf>> num=1;>> den=conv([1 1 0],[1 5]);>> rlocus(num,den)(2)从实验结果上观察系统稳定的K值范围;由图可知K值范围为0~29.9(3)用simulink环境观察系统临界稳定时的单位阶跃响应。
2.设单位反馈控制系统的开环传递函数为G(s)=K*(s+3)/(s*(s+1)*(s+2));(1)仿照上题绘制系统的根轨迹,并判断系统的稳定性;clf>> num=[1 3];>> den=conv([1 1 0],[1 2]);>> rlocus(num,den)由图知,该系统始终保持稳定.(2)分别取K=5 和K=50,利用simulink环境观察系统的单位阶跃响应,并比实验结果。
K=5时,该系统呈现欠阻尼状态,阻尼系数接近于1。
K=50时,该系统呈现欠阻尼状态,阻尼系数接近于0.3.完成教材第四章习题4-7,4-8,4-10(1)习题4-7,已知开环传递函数为K/(s(s+4)(s^2+4s+20));试概略画出其闭环系统根轨迹图。
clf>> num=1;>> den=conv([1 4 0],[1 4 20]);>> rlocus(num,den)该系统K值范围为0~260时系统稳定。
(2)习题4-8,已知开环传递函数为K(s+2)/((s^2+4s+9)^2);试概略画出其闭环系统根轨迹图。
clf>> num=[1 2];>> den=conv([1 4 9],[1 4 9]);>> rlocus(num,den)该系统K值范围为0~95.6时稳定。
沈阳航空航天大学北方科技学院
实验报告
课程名称:自动控制理论(一)
实验题目:给定单位反馈系统传递函数
实验环境:MATLAB操作平台
实验内容:绘制传递函数的根轨迹
班级:B241301
姓名:王崇瑶
学号:B24130124
实验内容:
(1)I.确定系统稳定的控制范围。
II分析给出系统在单位阶跃和单位斜坡作用下的输出响应曲线。
III分别计算误差系数和稳态误差。
IV 绘制根轨迹增益从0变化到正无穷时的根诡计。
(2)当单位反馈系统开环传递函数变为:
请绘制:I 当a=6时的根轨迹。
II当a=16时的根轨迹。
i 在MATLAB上进行根轨迹的仿真测试。
I确定系统稳定的控制范围。
(1)程序代码如下:
(2)画出根轨迹如图:
由根轨迹可知:系统的稳定范围在左半平面即0<k<158.7148。
II (1)该系统在单位阶跃作用下的输出响应曲线。
当k=50时,
程序如图所示:
响应曲线如下:
当k变化时:
程序如下:
响应曲线如下图所示:
由图像可知,当k变大时,阶跃响应变得越来越不稳定(2)该系统在单位斜坡作用下的输出响应曲线。
当k=50时,
程序如图所示:
响应曲线如下图所示:
III 分别计算误差系数和稳态误差。
当输入单位阶跃响应时:
静态位置误差系数Kp为无穷。
稳态误差ess=1/(1+Kp)=0。
当输入单位斜坡响应时:
静态速度误差系数Kv=(Kg/100)。
稳态误差ess=1/Kv。
IV 绘制根轨迹增益从0变化到正无穷时的根轨迹。
经过多次绘制,发现根轨迹和k的取值关系不大。
ii 当单位反馈系统开环传递函数变为:Array
I 当a=6时的根轨迹。
程序如图所示:
根轨迹如下:
由根轨迹图可知:该系统稳定时,k的取值范围为0<k<33.8450。
有4个共轭极点,1个实轴极点。
由于实轴极点与离虚轴最近的极点相差十倍.故可以忽略掉。
此外,该系统的为超调量
为91.2%。
阻尼系数为0.0292。
频率为1.32(rad/s)。
当a=16时:
程序如图所示:
根轨迹如下:
由根轨迹图可知:该系统稳定时,k的取值范围为0<k<11.3472。
有4个共轭极点,1个实轴极点。
由于实轴极点与离虚轴最近的极点相差十倍.故可以忽略掉。
此外,该系统的为超调量为95.7%。
阻尼系数为0.0139。
频率为1.23(rad/s)。
iii 实验结果:
(1)经过多次改变k的值绘制根轨迹发现,根轨迹图像并没有发生明显的变化。
由此可知:在此开环系统内k值的变化不影响根轨迹。
(2)经过实验可知:在虚轴左边的极点如果离虚轴最近的和最远的两极点之间相差很大,则较远的极点对该系统的影响可以忽略。
iv 心得体会:
通过这次实验的亲身操作和实践,我发现了MALTAB这个软件的强大,学习掌握了许多原本不知道的或者不太熟悉的命令。
我做这个实验时我查阅了许多资料。
但是发现自己并没有很好的理解有一些功能和函数不会运用。
matlab我们真正的能把它学懂学透的话还是需要下非常大的功夫和努力的。
然而,不是说兴趣才是最大的老师嘛,我也相信,只要你自己有兴趣,即使它再怎么强大和难搞,我们能做的还是非常多的,关键的就只是在于你自己的态度了。
11。