自动控制matlab实验
- 格式:docx
- 大小:630.31 KB
- 文档页数:21
自动控制原理实验报告 ——控制系统的阶跃响应09021209 侯竟骁一、实验目的 1、观察学习控制系统的单位阶跃响应; 2、记录单位阶跃响应曲线; 3、掌握时间响应分析的一般方法。
二、实验步骤 1、开机执行程序c:\ml\bin\matlab-s.exe(用鼠标双击图标)进入MATLAB 命令窗口:“Command Windows ”。
2、建立系统模型 在MATLAB 命令窗口上,以立即命令方式建立系统的传递函数。
在MATLAB 下,系统传递函数有三种描述方式,在实验中只用到多项式模型和零点极点模型 多项式模型)()()(s s s den num G =式中“num(s)”表示分子多项式的系数,“den(s)”表示分母多项式的系数,全部按照复自变量s 的降幂排列,以行向量的方式输入。
例如,程序为 num=[0 1 3]; 分子多项式系数 den=[1 2 2 1]; 分母多项式系数 printsys(num,den); 构造传递函数G(s)并显示 零点极点模型∏∏--=ni mj s s s )()()(p z k G式中,k 为增益值,z j 为第j 个零点值,p i 为第i 个零点值。
例如,程序为 k=2; 赋增益值,标量 z=[1]; 赋零点值,向量 p=[-1 2 -3]; 赋极点值,向量 [num,den]=zp2tf(z,p,k); 零点极点模型转换成多项式模型 printsys(num,den); 构造传递函数G(s)并显示给定系统传递函数)(s G 的多项式模型,求系统的单位脉冲响应。
传递函数为)()()(s s s den num G =式中,num (s)为系统传递函数)(s G 的分子多项式系数向量,den (s)为系统传递函数)(s G 的分母多项式系数向量。
函数格式1:给定num 、den 求系统的阶跃响应。
时间向量t 的范围自动设定。
函数格式2:时间向量t 的范围可以由人工给定。
实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。
三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。
四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。
会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。
(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。
1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。
幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
实验七 控制系统的MATLAB 分析一、 实验目的1)、掌握如何使用Matlab 进行系统的时域分析 2)、掌握如何使用Matlab 进行系统的频域分析 3)、掌握如何使用Matlab 进行系统的根轨迹分析 4)、掌握如何使用Matlab 进行系统的稳定性分析 5)、掌握使用Bode 图法进行控制系统设计的方法 二、 实验内容 1、时域分析法根据下面传递函数模型:绘制其单位阶跃响应曲线并从图上读取最大超调量,绘制系统的单位脉冲响应、零输入响应曲线。
1)、某单位负反馈系统传递函数为:8106)65(5)(232+++++=s s s s s s Gt (seconds)c (t )t (seconds)c (t )结论:2)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ζ=0.7,ωn 取2、4、6、8、10、12的单位阶跃响应。
Step ResponseTime (seconds)00.51 1.52 2.53 3.54结论:3)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的单位阶跃响应。
Time (seconds)结论:2、频率分析法根据下面传递函数模型,绘制出系统的频率响应曲线,包括Bode 图和Nyquist 图,并从图上读取相角交接频率、截止频率,并求出幅值裕度和相角裕度。
1)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ζ=0.7,ωn 取2)、4)、6)、8、1)0、1)2)的伯德图和奈奎斯特图。
Wn=2M a g n i t u d e (d B )10101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/s) , Pm = 164 deg (at 0.4 rad/s)Frequency (rad/s)Real AxisI m a g i n a r y A x i sWn=4M a g n i t u d e (d B )10101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=6M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=8M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=10M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=12M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i s2)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的伯德图和奈奎斯特图。
实验一、控制系统数学模型一、实验目的1、 掌握控制系统数学模型——传递函数的求取方法;2、 利用MATLAB 命令求取控制系统传递函数。
二、实验原理在MA TLAB 命令窗口上,以命令的方式建立系统的传递函数。
在MA TLAB 下,系统的数学模型有3种描述方式,此实验用多项式模型。
(1)多项式模型:线性定常系统的数学模型传递函数G(s)一般可以表示成:m n a s a s a s a b s b s b s b s R s C s G n n n n m m m m ≥+++++++==----,......)()()(01110111 其中分子分母多项式中的a n 与b m 均为常系数。
MATLAB 语言描述:构造分子多项式:num=[b m ,b m-1,…,b 1,b 0];或num=[b m b m-1 … b 1 b 0]构造分母多项式:den=[a n ,a n-1,…,a 1,a 0];或den=[a n a n-1 … a 1 a 0]构造并显示传递函数:printsys(num,den);其中num 与den 是习惯用法,也可用其它变量名代替,但在显示时会出现num/den ,这是通用输出显示格式,与输入变量名称无关。
例1:>>num=[1 12 44 48];>>den=[1 16 86 176 105];>>printsys(num,den)显示:num/den =s^3 + 12 s^2 + 44 s + 48-----------------------------------s^4 + 16 s^3 + 86 s^2 + 176 s + 105例2:系统开环传递函数为)106)(2()1(5)(22++++=s s s s s s G 写出多项式模型。
>>n=conv([5],[1 1]);>>d=conv([1 0 0],conv([1 2],[1 6 10]));>>printsys(n,d)显示:num/den =5 s + 5-----------------------------s^5 + 8 s^4 + 22 s^3 + 20 s^2(2)模型的连接函数[num]=cloop()用于计算单位反馈时闭环传递函数多项式模型的参数向量,右变量为开环参数,左变量返回系统的闭环参数,反馈极性1为正反馈,-1为负反馈。
实验一信号继电器特性测试实验一、实验目的通过本次实验使学生加深理解安全性继电器的动作原理,掌握测试继电器电气特性、时间特性等参数的程序、方法。
二、实验内容1. JWXC-1700型继电器绝缘电阻、线圈电阻、释放值、工作值、接点电阻的测试。
2. JZXC-480型继电器释放值、工作值的测试。
3. JYJXC-135/220型继电器反位转极值、定位转极值的测试。
4. JPXC-1000型继电器释放值、工作值、反向不工作值的测试。
5. JWXC-H340型继电器缓放时间、缓吸时间的测试。
6. J SBXC1-850型继电器延时时间的测试。
三、实验设备与仪器JWXC-1700型、JYJXC-135/220型、JWXC-H340型、JZXC-480型、JPXC-1000型、JSBXC1-850型继电器各一台,万用表一块,兆欧表一块,调压器一台,开关、连接线、指示灯若干等。
四、实验方法1.线圈电阻测试5Ω以下用凯尔文电桥,误差不得超过±5%, 5Ω以上用惠斯登电桥,误差不得超过±10%,也可用万用表电阻挡测试。
2.绝缘电阻测试用500 V兆欧表测试下列绝缘电阻(继电器处于释放状态):(1)线圈间;(2)线圈与型别盖间;(3)线圈与接点间;(4)各接点间。
3.释放值测试按图1、图2接线,合上开关,调变阻器,使继电器端电压升至工作值的四倍,然后逐渐降低电源电压,当全部前接点与动接点断开的瞬间测得的电压或电流值即为释放值(以表示灯为准)。
图1 工作值、释放值、反向工作值测试电路图2 JZXC-480工作值、释放值测试电路继电器工作值的四倍也称为充磁值,JWXC-1700型为67V, JWXC-H340为46V,JZXC-480型为37V。
4.工作值测试当测试释放值后,继续降低电源电压至零,切断电路1s后,再闭合电路,逐渐升高电压,当继电器衔铁止片与铁芯(极靴)密贴及全部接点闭合时达到规定压力所测得的电压或电流值即为工作值。
二阶系统的matlab 性能分析一、实验目的1、研究二阶系统的两个重要参数阻尼比ξ和自然振荡频率n ω对系统动态性能的影响;2、比较比例微分控制的二阶系统和典型二阶系统的性能;3、比较输出量速度反馈控制的二阶系统和典型二阶系统的性能。
二、实验任务1、典型二阶系统二阶系统的传递函数为()s Φ=2222nn ns s ωξωω++。
(1)令n ω=10不变,ξ取不同值:1ξ=0,2ξ、3ξ(01ξ<<),4ξ=1,5ξ>1,观察其单位阶跃响应曲线变化情况;(2)令ξ=0不变,n ω取不同值,观察其单位阶跃响应曲线变化情况;(3)令ξ=0.2不变,n ω取不同值,观察其单位阶跃响应曲线变化情况,并计算超调量%Mp 和s t ;(4)令n ω=10不变,ξ取不同值(01ξ<<),观察其单位阶跃响应曲线变化情况,并计算超调量%Mp 和s t 。
2、比例微分控制的二阶系统比例微分控制的二阶系统的结构图如图2-1。
图2-1 比例微分控制的二阶系统的结构图系统中加入比例微分控制,使系统阻尼比增加,并增加一个闭环零点,可以通过仿真比较典型二阶系统和比例微分控制的二阶系统的单位阶跃响应的性能指标。
上图所示的控制系统,令225(2)(2)nns s s sωξω=++,0.1dT=,其中5,0.2nωξ==,从Simulink图形库浏览器中拖曳Step(阶跃输入)、Sum(求和模块)、Pole-Zero(零极点)模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图2-2所示。
图中Pole-Zero(零极点)模块建立()G s。
图2-2 典型二阶系统和比例微分控制的二阶系统比较仿真框图3、输出量速度反馈的二阶系统输出量速度反馈的二阶系统的结构图如图2-3。
图2-3 输出量速度反馈的二阶系统的结构图系统中加入输出量的速度反馈控制,使系统阻尼比增加,可以通过仿真比较典型二阶系统和输出量速度反馈控制的二阶系统的单位阶跃响应的性能指标。
自动控制原理matlab实验报告1.由题意得:C(s)=R(s)*(11s+K)/(s2+12s+K)-N(S)/(S2+12S+k)该系统显然是稳定的。
为了减少扰动的影响,希望增益K>0。
扰动引起的稳态误差e ssn=1/K,现使扰动引起的稳态误差小于0.05,最大超调量小于0.1,则K的取值范围是:20<k<100。
实验中,选取K=20,25,30,40,100进行五次实验,实验结果记录如下:由表中数据可得,使扰动引起的稳态误差较小,且使单位阶跃输入下超调量也相对小的情况下,本系统应选取K=25。
实验中K取不同值时的响应如下:K=20 K=25K=30 K=40K=1002.C(s)=R(s)*Ka/(s2+k1s+Ka)-N(S)/(S2+k1S+ka)(1)在阶跃指令r(t)作用下,系统输出的超调量小于或等于10%; 由解得:代入σ=0.1,求出 ζ=0.59,取ζ=0.6。
因而,在满足σ%≤10%指标要求下,应选(2)在斜坡输入作用下,稳态误差达到最小; 令斜坡输入为r(t)=Bt,可得斜坡输入作用下的稳态误差:结合要求(1)可得此式表明K a 应取尽可能大(3)减小单位阶跃扰动的影响。
阶跃扰动作用下的稳态误差22)(ln 11σπ+=ζaa 1K 2.1K 2K =ζ=a 1ssrK BK K B e ==assrK B 2.1e =)s (sC )s (sEe n 0s ns ssn l i m l i m →→-==aa 12s 00s K 1s1K s K s 1s)s (N )s (G 1)s (G s l i m l i m -=++-=+-=→→%e100%21 / ζ- πζ - =σ可见,增大K a可以同时减小e ssn及e ssr。
在实际系统中,K a的选取必须受到限制,以使系统工作在线性区。
实验中选取以下几组数据进行仿真。
KA=100,K1=12 KA=576,K1=30KA=625,K1=30 KA=900,K1=40KA=1000,K1=45由上表及仿真图分析可知应取K a =1000,K 1=45.3. 此系统的特征方程为:s 4+8s 3+17s 2+(10+K 1)s+aK 1=0 由题目要求可得: 斜坡输入下的稳态误差:K K )a 64116(12600aK 126K 21111>--+><令斜坡输入为r(t)=At令稳态误差等于输入指令幅度的24%。
实验一 Matlab 使用方法和程序设计 热动102班 2010031294 唐旭一、实验目的1、理解 Matlab 软件使用的基本方法;2、理解 Matlab 的数据表示、基本运算和程序控制语句3、熟悉 Matlab 绘图命令及基本绘图控制4、学习使用 SIMULINK 进行系统仿真的方法二、实验内容:1、基本绘图命令(1)绘制余弦曲线 y=cos(t),t ∈[0,2π] >> x=0:pi/15:2*pi;y=[cos(x)];plot(y)5101520253035-1-0.8-0.6-0.4-0.200.20.40.60.81(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t ∈[0,2π]>> x=0:pi/15:2*pi;y=[sin(x-0.5);cos(x-0.25)];plot(x,y)1234567-1-0.8-0.6-0.4-0.200.20.40.60.812、基本绘图控制绘制[0,4π]区间上的 y1=10sint 曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)坐标轴控制:x 轴和y 轴的显示范围(X 轴0:4Pi ;Y 轴:-10:10)、单位刻度大小相等、有网格线(3)标注控制:坐标轴名称(X 轴t ;Y 轴:y1)、标题(Sin 函数)指定位置创建说明性文本;>> x=linspace(0,4*pi,30);y1=10*sin(x); axis([0,4*pi,-10,10]); plot(x,y1,'r-.+') axis equal gridxlabel('t') ; ylabel('y1') ; title('Sin 函数');text(3,4,'热动102:唐旭') ; axis([0,4*pi,-10,10]);ty 1Sin 函数3、系统仿真PID 控制系统的结构如图所示,系统输入为斜坡输入,分别采用P 、PD 、PI 、PID 控制进行仿真,并分析P 、I 、D 对系统性能的影响。
实验一 典型环节得M AT LAB 仿真一、实验目得1.熟悉M ATLAB 桌面与命令窗口,初步了解SIM ULINK 功能模块得使用方法、 2.通过观察典型环节在单位阶跃信号作用下得动态特性,加深对各典型环节响应曲线得理解。
3、定性了解各参数变化对典型环节动态特性得影响、二、实验原理1、比例环节得传递函数为其对应得模拟电路及SIMULI NK 图形如图1所示。
2.惯性环节得传递函数为uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=其对应得模拟电路及S IMULINK 图形如图2所示。
3.积分环节(I)得传递函数为其对应得模拟电路及SI MULINK 图形如图3所示。
4.微分环节(D)得传递函数为其对应得模拟电路及SIMULINK 图形如图4所示、 ﻩ5.比例+微分环节(PD)得传递函数为其对应得模拟电路及SIMUL INK 图形如图5所示。
6.比例+积分环节(PI)得传递函数为其对应得模拟电路及SIMU LI NK 图形如图6所示。
图1 比例环节得模拟电路及SIMULINK 图形图3 积分环节得模拟电路及及SIMULINK 图形 图4 微分环节得模拟电路及及SIMULINK 图形图2惯性环节得模拟电路及SIMULINK 图形图5比例+微分环节得模拟电路及SIMULINK 图形曲线三、实验内容按下列各典型环节得传递函数,建立相应得SIMULINK仿真模型,观察并记录其单位阶跃响应波形。
①比例环节与;②惯性环节与③积分环节④微分环节⑤比例+微分环节(PD)与⑥比例+积分环节(PI)与四、实验报告记录各环节得单位阶跃响应波形,并分析参数对响应曲线得影响。
①比例环节:(如图7所示)(如图8所示)②惯性环节:(如图9所示) (如图10所示)③积分环节: (如图11所示)④微分环节:(如图12所示)⑤比例+微分环节(PD):(如图13所示) (如图14所示)⑥比例+积分环节(PI):(如图15所示) (如图16所示)实验二基于MATLAB控制系统单位阶跃响应分析一、实验目得1、学会使用MATLAB编程绘制控制系统得单位阶跃响应曲线。
实验名称:自动控制系统的MATLAB仿真分析一、实验目的1.熟悉MATLAB在自动控制系统仿真中的应用;2.对自动控制系统进行仿真研究;3.掌握用MATLAB绘制自动控制系统根轨迹及对数频率特性的方法,掌握根据系统根轨迹及对数频率特性分析自动控制系统性能的方法。
二、实验设备1.计算机2.MATLAB软件三、实验内容1.用MATLAB提供的Simulink仿真软件工具对实验一中的各个典型环节及二阶系统进行阶跃响应仿真研究,将仿真获得的阶跃响应结果与模拟电路获得的阶跃响应结果进行比较。
(1)比例环节传递函数为200 ()51 G s=建立仿真模型,得到的输出结果如图所示:(2)积分环节传递函数为9.8 ()G ss=建立仿真模型,得到的输出结果如图所示:(3)一阶惯性环节传递函数为3.9 ()0.21G ss=+建立仿真模型,得到的输出结果如图所示:(4)比例积分环节传递函数为0.39781 ()0.102sG ss+=建立仿真模型,得到的输出结果如图所示:(5)比例微分环节传递函数为10 ()220s G ss=++建立仿真模型,得到的输出结果如图所示:(6)比例微分积分环节传递函数为51050 ()220sG ss s+=+++建立仿真模型,得到的输出结果如图所示:(7) 二阶系统的阶跃响应 ①0.325K ξ==传递函数为2()250()10250C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:②0.510K ξ==传递函数为2()100()10100C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:③0.75K ξ==传递函数为2()50()1050C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:2. 单位负反馈系统的开环传递函数为:(1)()()(21)k s G s H s s s +=+仿真绘制K 从0~∞变化时的根轨迹,分析系统的稳定性。
《自动控制原理》Matlab求解控制系统数学模型实验一、实验目的(1)熟练运用matlab软件,求解控制系统数学模型(2)掌握传递函数在matlab中的表达方法(3)掌握matlab求解拉氏变换和反变换(4)掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器装配Matlab7.0的计算机三、实验原理传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den)其中,sys为系统传递函数。
如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。
MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。
四、实验内容及步骤2、用MATLAB展求拉氏变换和反变换在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 1263、连续系统稳定性分析的MATLAB函数roots函数:求多项式的根句法: r=roots(p)其中,r为由多项式根组成的列向量。
➢pole函数:计算系统的极点句法: p=pole(sys)其中,p为由极点组成的列向量zero函数:计算系统的零点句法: r=zero(sys) 或 [z, k]=zero(sys)其中,r为由多项式根组成的列向量。
k为零极点增益模型之增益pzmap函数:绘制零极点分布图句法: pzmap(sys) 或 [p,z] = pzmap(sys)五、实验原始数据记录与数据处理在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 126六、实验结果与分析讨论七、结论掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型.八、实验心得体会(可略)通过该试验我们熟悉 MATLAB 实验环境,掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型:完成实验的范例题和自我实践,并记录结果;编写M文件程序,完成简单连接的模型等效传递函数,并求出相应的零极点。
实验一matlab基本指令练习例1:num=[1,5];>> den=[1,2,3,4,5];>> G=tf(num,den)Transfer function:s + 5-----------------------------s^4 + 2 s^3 + 3 s^2 + 4 s + 5例2:num=6*[1,5];den=conv(conv([,3,1],[1,3,1]),[1,6]);>> tf(num,den)Transfer function:6 s + 30----------------------------------3 s^4 + 28 s^3 + 66 s^2 + 37 s + 6例3:Z=[-1.9294;-0.0353+0.9287j;-0.0353-0.9287j];P=[-0.9567+1.2272j;-0.9567-1.2272j;0.0433+0.6412j;0.0433-0.6412j]; G=zpk(Z,P,KGain)Zero/pole/gain:6 (s+1.929) (s^2 + 0.0706s + 0.8637)----------------------------------------------(s^2 - 0.0866s + 0.413) (s^2 + 1.913s + 2.421)例4:G1=tf(1,[1,2,1]);>> G2=tf(1,[1,1]);>> G=feedback(G1,G2)Transfer function:s + 1---------------------s^3 + 3 s^2 + 3 s + 2G1=tf(1,[1,2,1]);G2=tf(1,[1,1]);G=feedback(G1,G2,1)Transfer function:s + 1-----------------s^3 + 3 s^2 + 3 s例5G1=tf([1,7,24,24],[1,10,35,50,24]);G2=tf([10,5],[1,0]);H=tf([1],[0.01,1]);G_a=feedback(G1*G2,H)Transfer function:0.1 s^5 + 10.75 s^4 + 77.75 s^3 + 278.6 s^2 + 361.2 s + 120-------------------------------------------------------------------- 0.01 s^6 + 1.1 s^5 + 20.35 s^4 + 110.5 s^3 + 325.2 s^2 + 384 s + 120 例6:num=[6.8,61.2,95.2];>> den=[1,7.5,22,19.5,0];>> G=tf(num,den);>> G1=zpk(G)Zero/pole/gain:6.8 (s+7) (s+2)-------------------------s (s+1.5) (s^2 + 6s + 13)例7:Z=[-2,-7];>> P=[0,-3-2j,-3+2j,-1.5];>> K=6.8;>> G=zpk(Z,P,K);>> G1=tf(G)Transfer function:6.8 s^2 + 61.2 s + 95.2-------------------------------s^4 + 7.5 s^3 + 22 s^2 + 19.5 s例8:实验二应用MATLAB进行控制系统的根轨迹分析1.To get started, select MATLAB Help or Demos from the Help menu.>> b=[1 1];>> a1=[1 0];>> a2=[1 -1];>> a3=[1 4 16];>> a=conv(a1,a2);>> a=conv(a,a3);>> rlocus(b,a)>> p=1.5i;>> [k,poles]=rlocfind(b,a,p) k =22.5031poles =-1.5229 + 2.7454i-1.5229 - 2.7454i0.0229 + 1.5108i0.0229 - 1.5108i>> p=1.5108i;>> [k,poles]=rlocfind(b,a,p) k =22.6464poles =-1.5189 + 2.7382i -1.5189 - 2.7382i0.0189 + 1.5197i0.0189 - 1.5197i>> p=1.5197i;>> [k,poles]=rlocfind(b,a,p) k =22.7642poles =-1.5156 + 2.7323i-1.5156 - 2.7323i0.0156 + 1.5269i0.0156 - 1.5269i>> p=1.5269i;>> [k,poles]=rlocfind(b,a,p)k =22.8593poles =-1.5129 + 2.7275i-1.5129 - 2.7275i0.0129 + 1.5329i0.0129 - 1.5329i>> p=1.5329i;>> [k,poles]=rlocfind(b,a,p) k = 22.9385poles =-1.5107 + 2.7235i-1.5107 - 2.7235i0.0107 + 1.5378i0.0107 - 1.5378i>> p=1.5378i;>> [k,poles]=rlocfind(b,a,p) k =23.0031poles =-1.5088 + 2.7202i-1.5088 - 2.7202i0.0088 + 1.5418i0.0088 - 1.5418i>> p=1.5418i;>> [k,poles]=rlocfind(b,a,p) k =23.0558poles =-1.5073 + 2.7175i-1.5073 - 2.7175i0.0073 + 1.5451i0.0073 - 1.5451i>> p=1.5451i;>> [k,poles]=rlocfind(b,a,p) k =23.0992poles =-1.5061 + 2.7152i-1.5061 - 2.7152i0.0061 + 1.5479i0.0061 - 1.5479i>> p=1.5479i;>> [k,poles]=rlocfind(b,a,p) k =23.1361poles =-1.5051 + 2.7133i-1.5051 - 2.7133i0.0051 + 1.5502i0.0051 - 1.5502i >> p=1.5502i;>> [k,poles]=rlocfind(b,a,p) k = 23.1663poles =-1.5042 + 2.7118i-1.5042 - 2.7118i0.0042 + 1.5521i0.0042 - 1.5521i>> p=1.5521i;>> [k,poles]=rlocfind(b,a,p) k =23.1913poles =-1.5035 + 2.7105i-1.5035 - 2.7105i0.0035 + 1.5537i0.0035 - 1.5537i>> p=1.5537i;>> [k,poles]=rlocfind(b,a,p) k =23.2123poles =-1.5029 + 2.7094i-1.5029 - 2.7094i0.0029 + 1.5550i0.0029 - 1.5550i>> p=1.5550i;>> [k,poles]=rlocfind(b,a,p) k =23.2293poles =-1.5024 + 2.7085i-1.5024 - 2.7085i0.0024 + 1.5561i0.0024 - 1.5561i>> p=1.5561i;>> [k,poles]=rlocfind(b,a,p) k =23.2438poles =-1.5020 + 2.7077i-1.5020 - 2.7077i0.0020 + 1.5570i0.0020 - 1.5570i>> p=1.5570i;>> [k,poles]=rlocfind(b,a,p) k =23.2556poles =-1.5017 + 2.7071i-1.5017 - 2.7071i0.0017 + 1.5578i0.0017 - 1.5578i>> p=1.5578i;>> [k,poles]=rlocfind(b,a,p) k =23.2661poles =-1.5014 + 2.7066i-1.5014 - 2.7066i0.0014 + 1.5584i0.0014 - 1.5584i>> p=1.5584i;>> [k,poles]=rlocfind(b,a,p) k =23.2740 poles =-1.5012 + 2.7062i-1.5012 - 2.7062i0.0012 + 1.5589i0.0012 - 1.5589i>> p=1.5589i;>> [k,poles]=rlocfind(b,a,p) k =23.2805poles =-1.5010 + 2.7058i-1.5010 - 2.7058i0.0010 + 1.5593i0.0010 - 1.5593i>>实验三根轨迹(课本)例4-16:num=1;den=conv([1,0],conv([1,4],[1,4,20]));rlocus(num,den)例4-17:num=1;den=conv([1,1],[1,2,9]);sys=tf(num,den);rlocus(sys)[r,k]=rlocus(sys)r =1.0e+002 *Columns 1 through 6-0.0100 + 0.0283i -0.0095 + 0.0283i -0.0090 + 0.0283i -0.0082 +0.0285i -0.0067 + 0.0289i -0.0043 + 0.0300i-0.0100 - 0.0283i -0.0095 - 0.0283i -0.0090 - 0.0283i -0.0082 -0.0285i -0.0067 - 0.0289i -0.0043 - 0.0300i-0.0100 -0.0110 -0.0119 -0.0136 -0.0166 -0.0215Columns 7 through 12-0.0024 + 0.0312i -0.0009 + 0.0323i 0.0031 + 0.0363i 0.0079 +0.0420i 0.0136 + 0.0497i 0.0204 + 0.0598i-0.0024 - 0.0312i -0.0009 - 0.0323i 0.0031 - 0.0363i 0.0079 -0.0420i 0.0136 - 0.0497i 0.0204 - 0.0598i-0.0251 -0.0281 -0.0363 -0.0459 -0.0572 -0.0708Columns 13 through 150.0231 + 0.0640i 0.7526 + 1.3212i Inf0.0231 - 0.0640i 0.7526 - 1.3212i Inf-0.0763 -1.5352 Infk =1.0e+006 *Columns 1 through 110 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0001 0.0001Columns 12 through 150.0003 0.0003 3.5494 Inf>> kg=spine(real(r(2,(9:12))),k(9:12),0)kg =24.0000例4-18:num=[1];>> den=conv([1,0],conv([1,1],conv([1,3.5],[1,6,13]))); >> rlocus(num,den);>> axis equal>> [kg,p]=rlocfind(num,den)Select a point in the graphics windowselected_point =-11.5789 +10.9846ikg =6.4164e+005p =-16.6028-6.5912 +13.7908i-6.5912 -13.7908i9.6426 + 8.5111i9.6426 - 8.5111i例4-19:n=[1,4];d=[1,1,0];>> sys=tf(n,d);>> rlocus(sys)>> axis equal>> [r,k]=rlocus(sys);>> ri=r(2,10:18)ri =Columns 1 through 6-0.9648 + 1.6697i -1.1358 + 1.9484i -1.5056 + 2.4038i -1.8755 + 2.7361i -2.2756 + 3.0044i -2.6756 + 3.2009iColumns 7 through 9-3.0757 + 3.3385i -3.4758 + 3.4242i -3.9086 + 3.4629i>> t=10:18;>> ma=min(angle(ri));>> ti=spline(angle(ri),t,mati =10>> hold on>> plot([0,2*real(r(2,10))],[0,2*imag(r(2,10))]);>> [wn,z]=damp(r(2,10))wn =1.9284z =0.5003>> mpmax=exp(-z*pi/sqrt(1-z*z))mpmax =0.1628实验四典型环节及阶跃响应测试一.比例环节二.积分环节三. 微分环节四. 惯性环节五.震荡环节。
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些? 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
《自动控制原理与系统》实验报告院系:材料科学与工程学院班级: 1204022姓名:朱子剑学号: 120402227时间: 2014 年 12 月实验一控制系统的时域分析一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、利用tf2zp求出系统零极点;3、利用roots求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab提供了求取连续系统的单位阶跃响应函数step、单位脉冲响应函数impulse、零输入响应函数initial以及任意输入下的仿真函数lsim.三、实验步骤(一) 稳定性已知系统的传递函数23221()6116s sG ss s s++=+++,1)绘制系统的零、极点图2)求系统的极点3)试问该系统的稳定性num=[1 2 1];den=[1 6 11 6];G=tf(num,den);pzmap(G);p=roots(den)p =-3.0000-2.0000-1.00001)系统的零极点图2)系统的极点S1= -3.0000;s2=-2.0000;s3=-1.00003)由计算结果可知,该系统所有的极点均无正实部,故系统稳定。
(二)阶跃响应二阶系统1)绘制系统的单位阶跃响应曲线2)计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录3)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:num=[25];den=[1 4 25];step(num,den);title('Step Response of G(s)=25/(s^2+4s+25)');1)系统的单位阶跃响应曲线2)num=[25];den=[1 4 25];G=tf(num,den);[wn,z,p]=damp(G)wn =5.00005.0000z =0.40000.4000p =-2.0000 + 4.5826i-2.0000 - 4.5826i由上面的计算结果得系统的闭环根s= -2±4.5826i ,阻尼比0.4000、无阻尼振荡频率,wn= 5.00003)(三)系统动态特性分析用Matlab求二阶系统和的峰值时间上升时间调整时间超调量。
1) G1=tf([0.01],[1 0.002 0.01]);step(G1);grid on;title('Step Response of G1(s)=0.01/(s^2+0.002s+0.01)');峰值时间tp=31.4;上升时间tr=10.5;调整时间ts=3.9e+03;=96.9%实验二控制系统的根轨迹分析一实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律二实验方法(一)方法:当系统中的开环增益k从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。
设系统的开环传函为:,则系统的闭环特征方程为:根轨迹即是描述上面方程的根,随k变化在复平面的分布。
(二)MATLAB画根轨迹的函数常用格式:利用Matlab绘制控制系统的根轨迹主要用pzmap,rlocus,rlocfind,sgrid函数。
1、零极点图绘制[p,z]=pzmap(a,b,c,d):返回状态空间描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
[p,z]=pzmap(num,den):返回传递函数描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
pzmap(a,b,c,d)或pzmap(num,den):不带输出参数项,则直接在s复平面上绘制出系统对应的零极点位置,极点用×表示,零点用o表示。
pzmap(p,z):根据系统已知的零极点列向量或行向量直接在s复平面上绘制出对应的零极点位置,极点用×表示,零点用o表示。
2、根轨迹图绘制rlocus(a,b,c,d)或者rlocus(num,den):根据SISO开环系统的状态空间描述模型和传递函数模型,直接在屏幕上绘制出系统的根轨迹图。
开环增益的值从零到无穷大变化。
rlocus(a,b,c,d,k)或rlocus(num,den,k):通过指定开环增益k的变化范围来绘制系统的根轨迹图。
r=rlocus(num,den,k) 或者[r,k]=rlocus(num,den) :不在屏幕上直接绘出系统的根轨迹图,而根据开环增益变化矢量k ,返回闭环系统特征方程1+k*num(s)/den(s)=0的根r,它有length(k)行,length(den)-1列,每行对应某个k值时的所有闭环极点。
或者同时返回k与r。
若给出传递函数描述系统的分子项num为负,则利用rlocus函数绘制的是系统的零度根轨迹。
(正反馈系统或非最小相位系统)3、rlocfind()函数[k,p]=rlocfind(a,b,c,d)或者[k,p]=rlocfind(num,den)它要求在屏幕上先已经绘制好有关的根轨迹图。
然后,此命令将产生一个光标以用来选择希望的闭环极点。
命令执行结果:k为对应选择点处根轨迹开环增益;p为此点处的系统闭环特征根。
不带输出参数项[k,p]时,同样可以执行,只是此时只将k的值返回到缺省变量ans中。
三实验内容1.绘制下列各系统根轨迹图,且完成:1)记录根轨迹的起点、终点与根轨迹的条数;2)确定根轨迹的分离点与相应的根轨迹增益;3)确定临界稳定时的根轨迹增益开环传递函数:(1);1)z=[-0.2];p=[0 0 -3.6];k=1;G=zpk(z,p,k);figure(1);pzmap(G);figure(2);rlocus(G)title('实验(1)所作曲线');起点分别为0,-3.6,终点为-0.2,共两条根轨迹.2)z=[-0.2];p=[0 0 -3.6];k=1;G=zpk(z,p,k);rlocus(G)title('实验(1) 根轨迹的分离点与相应的根轨迹增益曲线图'); [k,p]=rlocfind(G)Select a point in the graphics windowselected_point =0.0041 - 0.0031ik =4.7383e-04p =-3.5999-0.0001 + 0.0051i-0.0001 - 0.0051i分离点0.0041 - 0.0031i,相应的根轨迹增益k=4.7383e-04 3) z=[-0.2];p=[0 0 -3.6];k=1;G=zpk(z,p,k);rlocus(G)title('实验(1) 临界稳定时的根轨迹增益Kgl');[k,p]=rlocfind(G)Select a point in the graphics windowselected_point =0.0041 - 0.0031i4.7383e-04p =-3.5999-0.0001 + 0.0051i-0.0001 - 0.0051i临界稳定时的根轨迹增益=临界稳定时的根轨迹增益=临界稳定时的根轨迹增益=临界稳定时的根轨迹增益=4.7383e-04(2)1)s=solve('x^2+0.6*x+10=0')s =- 0.3 + 3.1480152477394387614370455935223*i- 0.3 - 3.1480152477394387614370455935223*iz=[];p=[0 -0.5 -0.3+3.1480152477394387614370455935223*i-0.3-3.1480152477394387614370455935223*i];k=1;G=zpk(z,p,k);figure(1);pzmap(G);figure(2);rlocus(G)title('实验(2)所作曲线');起点分别为0;-0.5;-0.3+3.1480152477394387614370455935223*i;-0.3-3.1480152477394387614370455935223*i,终点为无穷远处,共四条根轨迹.2)z=[];p=[0 -0.5 -0.3+3.1480152477394387614370455935223*i-0.3-3.1480152477394387614370455935223*i];k=1;G=zpk(z,p,k);rlocus(G)title('实验2 根轨迹的分离点与相应的根轨迹增益曲线图');[k,p]=rlocfind(G)Select a point in the graphics windowselected_point =-0.3199 - 0.0466ik =0.5959p =-0.3003 + 3.1385i-0.3003 - 3.1385i-0.2987-0.2007得分离点d= -0.3199 - 0.0466i,相应的根轨迹增益k=0.5959 3)z=[];p=[0 -0.5 -0.3+3.1480152477394387614370455935223*i-0.3-3.1480152477394387614370455935223*i];k=1;G=zpk(z,p,k); rlocus(G)title('实验(1) 临界稳定时的根轨迹增益Kgl');[k,p]=rlocfind(G)Select a point in the graphics windowselected_point =0.0355 + 2.1894ik =26.8076 p =-0.5986 + 2.3266i -0.5986 - 2.3266i 0.0486 + 2.1547i 0.0486 - 2.1547i临界稳定时的根轨迹增益=26.80762.试绘制下面系统根轨迹图x1=[1 0];x2=[1 -1];x3=[1 4 16];y1=conv(x1,x2);y2=x3;z=conv(y1,y2) z =1 3 12 -16num=[1 1];den=[1 3 12 -16 0];G0=tf(num,den); G=feedback(G0,1,-1);rlocus(G)title('实验2系统根轨迹图')实验三控制系统的频域分析及系统校正综合实验一实验目的1. 利用计算机作出开环系统的波特图2. 观察记录控制系统的开环频率特性3. 控制系统的开环频率特性分析二实验方法1、奈奎斯特图(幅相频率特性图)对于频率特性函数G(jw),给出w从负无穷到正无穷的一系列数值,分别求出Im(G(jw))和Re(G(jw))。