高中数学-变化率与导数_提高
- 格式:doc
- 大小:828.03 KB
- 文档页数:10
高二数学变化率与导数知识点总结在高二数学学习中,变化率和导数是非常重要的概念。
它们是微积分的基础,也是我们理解函数变化规律和求解问题的重要工具。
下面是关于高二数学中变化率和导数的知识点总结。
1. 变化率的概念变化率是描述一个量相对于另一个量的变化程度的指标。
在数学中,我们通常用函数的导数来表示变化率。
对于函数y = f(x),它的变化率可以用以下两种方式表示:- 平均变化率:平均变化率是函数在某个区间上的变化量与该区间长度的比值。
如果x的取值从a到b,对应的y的取值从f(a)到f(b),则该区间上的平均变化率为:平均变化率 = (f(b) - f(a)) / (b - a)- 瞬时变化率:瞬时变化率是指在某一点上的瞬时变化速度。
如果函数在x点的导数存在,则该点的瞬时变化率为导数值,即:瞬时变化率 = f'(x)2. 导数的定义和性质导数是描述函数变化率的工具,它的定义如下:- 对于函数y = f(x),如果函数在某一点x上的导数存在,那么导数表示函数在该点的瞬时变化率。
导数的定义如下: f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f'(x)表示函数f(x)在点x处的导数。
导数具有以下几个重要的性质:- 导数存在的条件:函数在某一点x处的导数存在的充分必要条件是函数在该点的左导数和右导数存在且相等。
- 导数的几何意义:函数在某一点的导数等于函数曲线在该点切线的斜率。
切线的斜率可以用导数来表示。
- 导数与函数单调性的关系:如果函数在某区间内的导数大于0,则函数在该区间内单调递增;如果函数在某区间内的导数小于0,则函数在该区间内单调递减。
- 导数与函数极值的关系:如果函数在某一点的导数存在且为0,那么该点可能是函数的极值点。
3. 常见函数的导数- 幂函数导数:对于幂函数y = x^n,其中n为常数,它的导数为:dy/dx = n*x^(n-1)- 指数函数导数:对于指数函数y = a^x,其中a为常数且大于0且不等于1,它的导数为:dy/dx = a^x * ln(a)- 对数函数导数:对于对数函数y = log_a(x),其中a为常数且大于0且不等于1,它的导数为:dy/dx = 1 / (x * ln(a))- 三角函数导数:对于三角函数sin(x),cos(x),tan(x)等,它们的导数可以通过基本导数公式来求解。
2021年高考数学基础突破——导数与积分第1讲 变化率与导数(同学版,后附老师版)【学问梳理】1.函数()y f x =在x =x 0处的导数(1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()lim limx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 考点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s (1+Δt )-s (1)Δt,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【例3】某物体作直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒 C .8米/秒 D .674米/秒考点3.定义法求函数的导数【例4】.求函数y =x +1x 在x =1处的导数【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法.变式训练1.用定义求函数f (x )=x 2在x =1处的导数.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A. )(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f '【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s (t 0+Δt )-s (t 0)Δt 叫做这段时间内物体的平均速度C .Δs Δt 不肯定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度2.设函数()x f y =,当自变量x 由0x 转变到x x ∆+0时,函数的转变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min )( )A. 03.0B. 03.0-C. 003.0D. 003.0- 4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-35.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-37.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是8.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.9.某物体依据s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开头到4 s 时物体运动的平均速度和4 s 时的瞬时速度.10.求函数f (x )=x x +-2在1x =-四周的平均变化率,并求出在该点处的导数.11.若2)1()(-=x x f ,求(2)f ' .12.)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.2021年高考数学基础突破——导数与积分第1讲 变化率与导数(老师版)【学问梳理】1.函数()y f x =在x =x 0处的导数(1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1解析:v =Δs Δt =(8+2.12)-(8+22)2.1-2=2.12-220.1=4.1,故应选B.【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 学问点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s (1+Δt )-s (1)Δt,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【解析】 由平均速度的概念知:v =s (1+Δt )-s (1)Δt=5Δt +10.故应选D.【例3】某物体作直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒 C .8米/秒 D .674米/秒【解析】∵ΔsΔt=(4+Δt )2+34+Δt -16-34Δt =Δt 2+8Δt +-3Δt 4(4+Δt )Δt =Δt +8-316+4Δt,∴lim Δt →0Δs Δt =8-316=12516. 故选B.考点3.定义法求函数的导数【例4】.求函数y =x +1x在x =1处的导数【解析】法一 ∵Δy =(1+Δx )+11+Δx -(1+11)=Δx -1+11+Δx =(Δx )21+Δx,∴Δy Δx =Δx1+Δx .∴y ′|x =1=lim Δx →0Δy Δx =lim Δx →0Δx1+Δx=0. 法二 ∵Δy =(x +Δx )+1x +Δx -(x +1x )=Δx -1x +1x +Δx =Δx (x 2+x ·Δx -1)x (x +Δx ),∴y ′=lim Δx →0Δy Δx =lim Δx →0x 2+x ·Δx -1x (x +Δx )=x 2-1x 2=1-1x 2.∴y ′|x =1=1-1=0.【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法.变式训练1.用定义求函数f (x )=x 2在x =1处的导数.解析:法一 Δy =f (1+Δx )-f (1)=(1+Δx )2-1=2Δx +(Δx )2,∴ f ′(1)=lim Δx →0ΔyΔx =lim Δx →02Δx +(Δx )2Δx=lim Δx →0 (2+Δx )=2,即f (x )=x 2在x =1处的导数f ′(1)=2.法二Δy =f (x +Δx )-f (x )=(x +Δx )2-x 2=2Δx ·x +(Δx )2,∴Δy Δx =2Δx ·x +(Δx )2Δx=2x +Δx . ∴0()lim(2)2x f x x x x ∆→'=+∆=,∴ (1)2f '=,即f (x )=x 2在x =1处的导数f ′(1)=2.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A.)(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f ' 【解析】00000x 0x 000()()()()limlim =()2()()f x x f x x f x x f x x f x x x x x x ∆→∆→+∆--∆+∆--∆'=∆+∆--∆,故选B. 【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s (t 0+Δt )-s (t 0)Δt 叫做这段时间内物体的平均速度C .Δs Δt 不肯定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度【解析】D 错误,应为t =t 0时的瞬时速度,选D2.设函数()x f y =,当自变量x 由0x 转变到x x ∆+0时,函数的转变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 2. 解析】D.3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min )( )A. 03.0B. 03.0-C. 003.0D. 003.0-【解析】B4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-3 【答案】C【解析】Δy Δx =(x +Δx )3-x 3Δx =3Δx ·x 2+3(Δx )2·x +(Δx )3Δx =3x 2+3Δx ·x +(Δx )2,∴lim Δx →0ΔyΔx=3x 2,∴y ′|x =1=3.5.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)【答案】 B【解析】 Δy =3(x 0+Δx )2+6(x 0+Δx )-3x 20-6x 0=6x 0·Δx +3Δx 2+6Δx ,∴lim Δx →0ΔyΔx=lim Δx →0(6x 0+3Δx +6)=6x 0+6=0.,∴x 0=-1,y 0=-2.6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-3【解析】A7.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 3.【答案】 17.58.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.【答案】 10米/秒【解析】v ′(5)=lim Δt →0s (5+Δt )-s (5)Δt=lim Δt →0(10+Δt )=10.9.某物体依据s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开头到4 s 时物体运动的平均速度和4 s 时的瞬时速度.【解析】自运动开头到t s 时,物体运动的平均速度v (t )=s (t )t =3t +2+4t,故前4 s 物体的平均速度为v (4)=3×4+2+44=15(m/s).由于Δs =3(t +Δt )2+2(t +Δt )+4-(3t 2+2t +4)=(2+6t )Δt +3(Δt )2.lim Δt →0ΔsΔt=lim Δt →0(2+6t +3·Δt )=2+6t , ∴4 s 时物体的瞬时速度为2+6×4=26(m/s). 10.求函数f (x )=x x +-2在1x =-四周的平均变化率,并求出在该点处的导数.解析:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2, 200(1)(1)2(1)limlim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆. 11.若2)1()(-=x x f ,求)2('f .解析: xx f x x f x y o o ∆-∆+=∆∆)()(x x x f x f ∆---∆+=∆-∆+=22)12()12()2()2(=x x x x ∆+=∆∆+∆222 所以:f ’(2)= 2)2(lim 0=∆+→∆x x12.设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.解析:设2)()(m x a x f -=,则2222)(2)(+=-=-='x am ax m x a x f 解得1,1==m a ,所以12)1x ()(22++=-=x x x f 。
瞬时变化率——导数基础过关练题组一 曲线的割线、切线的斜率1.已知函数f (x )=x 2图象上四点A (1,f (1))、B (2,f (2))、C (3,f (3))、D (4,f (4)),割线AB 、BC 、CD 的斜率分别为k 1,k 2,k 3,则 ( )A.k 1<k 2<k 3B.k 2<k 1<k 3C.k 3<k 2<k 1D.k 1<k 3<k 22.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx ,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率为 ;当Δx =0.001时,割线的斜率为 .3.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为 .题组二 瞬时速度与瞬时加速度4.(2020江苏苏州中学高二下阶段调研)一个物体的位移s 关于时间t 的运动方程为s (t )=1-t +t 2,其中s 的单位:m,t 的单位:s,那么物体在t =3 s 时的瞬时速度是 ( )A.5 m/sB.6 m/sC.7 m/sD.8 m/s5.(2020江苏无锡一中高二下期中)一辆汽车做直线运动,位移s 与时间t 的关系为s =at 2+1,若汽车在t =2时的瞬时速度为12,则a = ( ) A.12 B.13 C.2 D.36.(2020江苏常熟高二下期中)火车开出车站一段时间内,速度v (单位:m/s)与行驶时间t (单位:s)之间的关系是v (t )=0.4t +0.6t 2,当加速度为2.8 m/s 2时,火车开出去 ( )A.32 s B.2 s C.52 s D.73 s7.(2020北京陈经纶中学高二下期中)若一辆汽车在公路上做加速运动,设t 秒时的速度为v (t )=12t 2+10,其中v 的单位是m/s,t 的单位是s,则该车在t =2 s 时的瞬时加速度为 .8.已知某物体的运动方程是s ={3t 2+2,0≤t <3,29+3(t -3)2,t ≥3,则该物体在t =1时的瞬时速度为 ;在t =4时的瞬时速度为 .9.航天飞机升空后一段时间内,第t s 时的高度为h (t )=5t 3+30t 2+45t +4,其中h 的单位为m,t 的单位为s .(1)h (0),h (1),h (2)分别表示什么?(2)求第2 s内的平均速度;(3)求第2 s末的瞬时速度.题组三导数的定义及其应用10.函数f(x)在x=x0处的导数可表示为()A.f'(x0)=limΔt→0t(t0+Δt)-t(t0)ΔtB.f'(x0)=limΔt→0[f(x0+Δx)-f(x0)]C.f'(x0)=f(x0+Δx)-f(x0)D.f'(x0)=t(t0+Δt)-t(t0)Δt11.汽车在笔直公路上行驶,如果v(t)表示t时刻的速度,则导数v'(t0) ()A.表示当t=t0时汽车的加速度B.表示当t=t0时汽车的瞬时速度C.表示当t=t0时汽车的位移变化率D.表示当t=t0时汽车的位移12.已知函数f(x)=ax+4,若f'(1)=2,则a=.13.函数f(x)=√t2+1在x=0处的导数为.题组四导数的几何意义14.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是()A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率15.已知函数f(x)在R上可导,且f(x)的图象如图所示,则下列不等式正确的是()A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)16.(2020江苏连云港智贤中学高二下月考)已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+3,则f(1)+f'(1)=.题组五求曲线的切线方程17.(2021江苏镇江八校高三上期中联考)曲线y=f(x)=x-x2在点(1,0)处的切线方程是()A.x-2y-1=0B.x+2y-1=0C.x-y-1=0D.x+y-1=018.若曲线y=f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则()A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-119.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是.20.过点M(1,1)且与曲线y=x3+1相切的直线方程为.能力提升练题组一瞬时速度与瞬时加速度1.(2020江苏无锡锡东高级中学4月线上检测,)若小球自由落体的运动方程为s(t)=12gt2(g为常数),该小球在t=1到t=3的平均速度为t,在t=2的瞬时速度为v2,则t和v2关系为()A.t>v2B.t<v2C.t=v2D.不能确定2.()一物体沿斜面自由下滑,测得下滑的位移s与时间t之间的函数关系为s=3t3,则当t=1时,该物体的瞬时加速度为()A.18B.9C.6D.3题组二导数的定义及其应用3.(2021江苏苏州陆慕高级中学高二下质检,)已知函数f(x)可导,则limΔt→0t(1-Δt)-t(1)-Δt等于()A.f'(1)B.不存在f'(1) D.以上都不对C.134. (2019江苏南通启东中学高二下月考,)若函数f(x)满足f'(x0)=-3,则当h无限趋近无限趋近于.于0时,t(t0+t)-t(t0-3t)t5.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组三导数的几何意义6.(2020江苏南京中华中学高二上段测,)函数y=f(x)的图象如图所示,f'(x)为函数f(x)的导函数,则下列结论正确的是 ()A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)7.(多选)(2021江苏无锡一中高三上10月检测,)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-t(t)-t(t)的大小评价在[a,b]这段时间内企业污水治理能力的强t-t弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.则结论正确的是()A.在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强B.在t2时刻,甲企业的污水治理能力比乙企业强C.在t3时刻,甲、乙两企业的污水排放都已达标D.甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强8.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是 ()A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0C.f(t1+t22)>t(t1)+t(t2)2D.f(t1+t22)<t(t1)+t(t2)2题组四求曲线的切线方程9.(2020江苏淮安淮阴中学高二下期末,)设函数f(x)=x3+(a-1)x2+ax为奇函数,则曲线y=f(x)在x=1处的切线方程为.10.(2019江苏南通海安中学高二下月考,)已知曲线f(x)=ax2+bx+14与直线y=x相切于点A(1,1),若对任意x∈[1,9],不等式f(x-t)≤x恒成立,则所有满足条件的实数t组成的集合为.11.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1t,过两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率)答案全解全析 基础过关练1.A k 1=t (2)-t (1)2-1=4-1=3,k 2=t (3)-t (2)3-2=9-4=5,k 3=t (4)-t (3)4-3=16-9=7,则k 1<k 2<k 3,故选A. 2.答案 2.1;2.001解析 ∵Δy =(1+Δx )2+1-(12+1)=2Δx +(Δx )2,∴Δt Δt=2+Δx ,∴割线的斜率为2+Δx.当Δx =0.1时,割线的斜率为2+0.1=2.1. 当Δx =0.001时,割线的斜率为2+0.001=2.001. 3.答案 4 解析抛物线在点P处切线的斜率为k =limΔt →0ΔtΔt =limΔt →0[(-2+Δt )2-(-2+Δt )+t ]-(6+t )Δt=limΔt →0-5Δt +(Δt )2Δt=-5,因为点P 的横坐标是-2, 所以点P 的纵坐标是6+c , 故直线OP 的斜率为-6+t 2,根据题意有-6+t 2=-5,解得c =4.4.A 因为Δt Δt =t (3+Δt )-t (3)Δt=1-(3+Δt )+(3+Δt )2-1+3-9Δt=Δt +5,所以当Δt 无限趋近于0时,Δt +5无限趋近于5,即物体在t =3s 时的瞬时速度是5m/s,故选A.5.D 因为Δt Δt =t (2+Δt )-t (2)Δt=t (2+Δt )2+1-4t -1Δt=a Δt +4a ,所以当Δt 无限趋近于0时,a Δt +4a 无限趋近于4a ,所以汽车在t =2时的瞬时速度为4a ,即4a =12,解得a =3.故选D. 6.B 设当加速度为2.8m/s 2时,火车开出x s . 则Δt Δt =t (t +Δt )-t (t )Δt=0.4(t +Δt )+0.6(t +Δt )2-0.4t -0.6t 2Δt=0.4+1.2x +0.6Δt ,当Δt 无限趋近于0时,0.4+1.2x +0.6Δt 无限趋近于0.4+1.2x ,所以0.4+1.2x =2.8,解得x =2.故选B. 7.答案 2m/s 2解析 因为Δt Δt =t (2+Δt )-t (2)Δt=12(2+Δt )2+10-12×4-10Δt=12Δt +2,所以当Δt 无限趋近于0时,12Δt +2无限趋近于2,即物体在t =2s 时的瞬时加速度为2m/s 2.8.答案 6;6解析 当t =1时,Δs =3(1+Δt )2+2-3×12-2=3(Δt )2+6Δt , ∴Δt Δt=3Δt +6,∴limΔt →0ΔtΔt=6,即当t =1时的瞬时速度为6.当t =4时,Δs =29+3(4+Δt -3)2-29-3(4-3)2=3(Δt )2+6Δt , ∴ΔtΔt =3Δt +6,∴limΔt →0ΔtΔt=6,即当t =4时的瞬时速度为6.9.解析 (1)h (0)表示航天飞机发射前的高度;h (1)表示航天飞机升空后第1s 时的高度; h (2)表示航天飞机升空后第2s 时的高度.(2)航天飞机升空后第2s 内的平均速度为t (2)-t (1)2-1=5×23+30×22+45×2+4-(5×13+30×12+45×1+4)1=170(m/s).(3)第2s 末的瞬时速度为limΔt →0ΔtΔt =limΔt →0t (2+Δt )-t (2)Δt=lim Δt →05(2+Δt )3+30(2+Δt )2+45(2+Δt )+4-(5×23+30×22+45×2+4)Δt=limΔt →05(Δt )3+60(Δt )2+225ΔtΔt=225(m/s).因此第2s 末的瞬时速度为225m/s . 10.A 由导数的定义知A 正确.11.A 由于v (t )表示t 时刻的速度,因此v'(t 0)表示当t =t 0时汽车的加速度,故选A. 12.答案 2解析 由题意得,Δy =f (1+Δx )-f (1)=a (1+Δx )+4-a -4=a Δx ,∴lim Δt →0ΔtΔt=a ,∴f'(1)=a =2. 13.答案 0解析 Δy =√(0+Δt )2+1-√0+1 =2√(Δt )2+1+1=2√(Δt )2+1+1,∴ΔtΔt =√(Δt )2+1+1,∴当Δx →0时,√(Δt )2+1+1→0,即limΔt √(Δt )2+1+1=0,∴f (x )在x =0处的导数为0,即f'(0)=0.14.D f'(x 0)的几何意义是函数y =f (x )的图象在点(x 0,f (x 0))处的切线的斜率.15.A 由题意可知,f'(a ),f'(b ),f'(c )分别是函数f (x )在x =a 、x =b 和x =c 处切线的斜率,则有f'(a )<0<f'(b )<f'(c ),故选A. 16.答案 5解析 由导数的几何意义可得,f'(1)=1,又M (1,f (1))在切线上,所以f (1)=1+3=4,则f (1)+f'(1)=4+1=5.17.D 由题意得,f'(1)=lim Δt →0ΔtΔt=limΔt →0(1+Δt )-(1+Δt )2-1+1Δt=lim Δt →0(-Δx -1)=-1,所以曲线y =f (x )=x -x 2在点(1,0)处的切线方程为y =-1×(x -1),即x +y -1=0,故选D. 18.B 由题意得,f'(1)=limΔt →0ΔtΔt=lim Δt →0(1+Δt )2+t (1+Δt )+t -1-t -tΔt=limΔt →0(Δt )2+2Δt +t ΔtΔt=2+a.∵曲线y =f (x )=x 2+ax +b 在点(1,1)处的切线方程为3x -y -2=0, ∴2+a =3,解得a =1.又∵点(1,1)在曲线y =f (x )=x 2+ax +b 上, ∴1+a +b =1,解得b =-1, ∴a =1,b =-1.故选B. 19.答案 2x -y -1=0 解析设切点坐标为(x 0,y 0),y =f (x )=x 2,则由题意可得,切线斜率f'(x 0)=limΔt →0t (t 0+Δt )-t (t 0)Δt =2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y -1=2(x -1),即2x -y -1=0. 20.答案 27x -4y -23=0和y =1 解析 Δt Δt=(t +Δt )3+1-t 3-1Δt=3t (Δt )2+3t 2Δt +(Δt )3Δt=3x Δx +3x 2+(Δx )2, 则limΔt →0ΔtΔt=3x 2,因此y'=3x 2. 设过点M (1,1)的直线与曲线y =x 3+1相切于点P (x 0,t 03+1),根据导数的几何意义知曲线在点P 处的切线的斜率k =3t 02①,过点M 和点P 的切线的斜率k =t 03+1-1t 0-1②,由①-②得3t 02=t 03t 0-1,解得x 0=0或x 0=32,所以k =0或k =274,因此过点M (1,1)且与曲线y =x 3+1相切的直线有两条,方程分别为y -1=274(x -1)和y =1,即27x -4y -23=0和y =1. 易错警示要注意“在某点处的切线”和“过某点的切线”的差别,在某点处的切线中该点为切点,过某点的切线中该点可能是切点,也可能不是切点.能力提升练1.C t =t (3)-t (1)3-1=12t ×(32-12)2=2g ,因为Δt Δt =t (2+Δt )-t (2)Δt=12t (2+Δt )2-2t Δt=2g +12g Δt ,所以当Δt 无限趋近于0时,2g +12g Δt 无限趋近于2g ,所以v 2=2g ,即t =v 2.故选C. 2.答案 A信息提取 ①物体下滑位移s 与时间t 之间的关系式为s =3t 3;②求t =1时,该物体的瞬时加速度.数学建模 本题以物理中的瞬时加速度为背景构建函数模型,将物理中的瞬时加速度转化为数学中的瞬时变化率来求解.求解时可先由位移函数求得瞬时速度,再由瞬时速度求得瞬时加速度. 解析ΔtΔt =t (t +Δt )-t (t )Δt =3(t +Δt )3-3t 3Δt =9t 2+9t Δt +3(Δt )2,当Δt 无限趋近于0时,9t 2+9t Δt +3(Δt )2无限趋近于9t 2,即该物体的瞬时速度v 与时间t 的关系为v (t )=9t 2.Δt Δt=t (1+Δt )-t (1)Δt=9(1+Δt )2-9Δt=9Δt +18,当Δt 无限趋近于0时,9Δt +18无限趋近于18,所以当t =1时,该物体的瞬时加速度为18.故选A. 3.A 因为Δx →0,所以(-Δx )→0,所以lim Δt →0t (1-Δt )-t (1)-Δt =lim -Δt →0t (1-Δt )-t (1)-Δt =f'(1).故选A. 4.答案 -12解析 当h 无限趋近于0时,t (t 0+t )-t (t 0-3t )t =4×t (t 0+t )-t (t 0-3t )4t,因为f'(x 0)=-3, 所以lim t →0t (t 0+t )-t (t 0-3t )4t =-3, 所以lim t →0t (t 0+t )-t (t 0-3t )t =4×limt →0t (t 0+t )-t (t 0-3t )4t =-3×4=-12. 5.解析 f'(10)=1.5表示服药后10min 时,血液中药物的质量浓度上升的速度为1.5μg/(mL·min),也就是说,如果保持这一速度,那么每经过1min,血液中药物的质量浓度将上升1.5μg/mL .f'(100)=-0.6表示服药后100min 时,血液中药物的质量浓度下降的速度为0.6μg/(mL·min),也就是说,如果保持这一速度,那么每经过1min,血液中药物的质量浓度将下降0.6μg/mL.6.B 由题图可知,f (x )在x =2处的切线斜率大于在x =3处的切线斜率,且斜率为正, ∴0<f'(3)<f'(2), ∵f (3)-f (2)=t (3)-t (2)3-2,∴f (3)-f (2)可看作过(2,f (2))和(3,f (3))的割线的斜率,由题图可知f'(3)<f (3)-f (2)<f'(2),即0<f'(3)<f(3)-f(2)<f'(2).故选B.7.ABC设y=-t(t)-t(t)t-t,由已知条件可得甲、乙两个企业在[t1,t2]这段时间内污水治理能力强弱的数值计算式为-t(t2)-t(t1)t2-t1,由题图易知y甲>y乙,因此甲企业的污水治理能力比乙企业强,A正确;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,B正确;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,C正确;由计算式-t(t)-t(t)t-t可知,甲企业在[0,t1]这段时间内污水治理能力最弱,D错误.8.AD由题中图象可知,导函数f'(x)的图象在x轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A选项表示x1-x2与f(x1)-f(x2)异号,即f(x)图象的割线斜率t(t1)-t(t2)t1-t2为负,故A正确;B选项表示x1-x2与f(x1)-f(x2)同号,即f(x)图象的割线斜率t(t1)-t(t2)t1-t2为正,故B不正确;f(t1+t22)表示t1+t22对应的函数值,即图中点B的纵坐标,t(t1)+t(t2)2表示当x=x1和x=x2时所对应的函数值的平均值,即图中点A的纵坐标,显然有f(t1+t22)<t(t1)+t(t2)2,故C不正确,D正确.故选AD.9.答案4x-y-2=0解析∵f(x)是奇函数,∴f(-x)=-f(x),即(-x)3+(a-1)(-x)2+a(-x)=-x3-(a-1)x2-ax,即a=1,∴f(x)=x3+x,∴f'(1)=limΔt→0t(1+Δt)-t(1)Δt=lim Δt→0(1+Δt)3+(1+Δt)-2Δt=limΔt→0[(Δx)2+3Δx+4]=4,f(1)=2,∴曲线y =f (x )在x =1处的切线方程为y -2=4(x -1),即4x -y -2=0. 10.答案 {4} 解析 f'(1)=limΔt →0t (1+Δt )-t (1)Δt=limΔt →0t (1+Δt )2+t (1+Δt )+14-t -t -14Δt=lim Δt →0(2a +b +a Δx )=2a +b.因为曲线f (x )=ax 2+bx +14与直线y =x 相切于点A (1,1),所以{t +t +14=1,2t +t =1,解得{t =14,t =12,所以f (x )=(t +12)2,由f (x -t )≤x (1≤x ≤9)得(t -t +12)2≤x (1≤x ≤9),解得(√t -1)2≤t ≤(√t +1)2(1≤x ≤9),由此可得(√t -1)max 2=4≤t ≤(√t +1)min 2=4(1≤x ≤9), 所以所有满足条件的实数t 组成的集合为{4}.11.解析 由{t =t 2,t =1t ,得{t =1,t =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=limΔt →0t (Δt +1)-t (1)Δt =limΔt →0(Δt +1)2-12Δt=lim Δt →0(Δx +2)=2,g'(1)=lim Δt →0t (Δt +1)-t (1)Δt =lim Δt →01Δt +1-11Δt=lim Δt →0(-1Δt +1)=-1.所以两条切线的方程分别为y -1=2(x -1),y -1=-(x -1),即y =2x -1与y =-x +2,两条切线与x 轴的交点坐标分别为(12,0),(2,0),所以两切线与x 轴围成的三角形的面积为12×1×|2-12|=34.。
课时提升作业十三变化率与导数、导数的计算(25分钟60分)一、选择题(每小题5分,共25分)1.函数y=x2cosx在x=1处的导数是( )A.0B.2cos1-sin1C.cos1-sin1D.1【解析】选B.因为y′=(x2cosx)′=(x2)′cosx+x2(cosx)′=2xcosx-x2sinx,所以y′|x=1=2cos1-sin1.2.已知f(x)=x(2014+lnx),f′(x0)=2015,则x0=()A.e2B.1C.ln2D.e【解析】选B.由题意可知f′(x)=2014+lnx+x·=2015+lnx.由f′(x0)=2015,得lnx0=0,解得x0=1.3.已知函数f(x)=e x,则当x1<x2时,下列结论正确的是( )A.>B.<C.>D.<【解析】选C.设A(x1,f(x1)),B(x2,f(x2)),则表示曲线f(x)=e x在B点处的切线的斜率,而表示直线AB的斜率,由数形结合可知:>.4.(2016·临川模拟)若幂函数f(x)=mxα的图象经过点A,则它在点A处的切线方程是( )A.2x-y=0B.2x+y=0C.4x-4y+1=0D.4x+4y+1=0【解析】选 C.根据函数f(x)=mxα为幂函数,所以m=1,根据图象经过点A,则有α=,所以f(x)=,f′(x)=,f′=1,根据直线方程的点斜式,求得切线方程是4x-4y+1=0.【加固训练】(2016·保定模拟)已知曲线y=lnx的切线过原点,则此切线的斜率为( )A.eB.-eC.D.-【解析】选 C.y=lnx的定义域为(0,+∞),设切点为(x0,y0),则k=y′=,所以切线方程为y-y0=(x-x0),又切线过点(0,0),代入切线方程得y0=1,则x0=e,所以k=y′==.5.(2016·泸州模拟)若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a等于( )A.-1或-B.-1或C.-或-D.-或7【解题提示】点(1,0)不在曲线y=x3上,只是曲线y=x3的特定切线经过点(1,0),故设出切点坐标,写出切线方程,把点(1,0)代入切线方程求得切点坐标,得出切线方程后,再根据切线与y=ax2+x-9相切求出a值. 【解析】选A.设过点(1,0)的直线与y=x3相切于点(x0,),所以切线方程为y-=3(x-x0),即y=3x-2,又(1,0)在切线上,则x0=0或x0=,当x0=0时,由y=0与y=ax2+x-9相切可得a=-,当x0=时,由y=x-与y=ax2+x-9相切可得a=-1.二、填空题(每小题5分,共15分)6.(2016·湖南十二校联考)若函数f(x)=lnx-f′(-1)x2+3x-4,则f′(1)=.【解析】因为f′(x)=-2f′(-1)x+3,所以f′(-1)=-1+2f′(-1)+3,解得f′(-1)=-2,所以f′(1)=1+4+3=8.答案:8【加固训练】已知f(x)=x2+2xf′(2014)+2014lnx,则f′(2014)=.【解析】由题意得f′(x)=x+2f′(2014)+,所以f′(2014)=2014+2f′(2014)+,即f′(2014)=-(2014+1)=-2015.答案:-2015。
变化率与导数【学习目标】(1)理解平均变化率的概念;(2)了解瞬时速度、瞬时变化率的概念;(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】知识点一:平均变化率问题1.变化率事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;2.平均变化率一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121()()f x f x x x --要点诠释:① 本质:如果函数的自变量的“增量”为x ∆,且21x x x ∆=-,相应的函数值的“增量”为y ∆,21()()y f x f x ∆=-,则函数()f x 从1x 到2x 的平均变化率为2121()()f x f x y x x x -∆=∆- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势.即递增或递减幅度的大小。
对于不同的实际问题,平均变化率富于不同的实际意义。
如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。
高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。
3.如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=- ②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-。
要点诠释:1. x ∆是1x 的一个“增量”,可用1x x +∆代替2x ,同样21()()y f x f x ∆=-。
2. x 是一个整体符号,而不是与x 相乘。
3. 求函数平均变化率时注意,x y ,两者都可正、可负,但x 的值不能为零,y 的值可以为零。
若函数()y f x =为常函数,则y =0. 知识点二:导数的概念定义:函数()f x 在0x x =处瞬时变化率是()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0x x y ='()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 要点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0。
0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数。
② 0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数。
即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近。
③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
如瞬时速度即是位移在这一时刻的瞬间变化率。
知识点三:求导数的方法: 求导数值的一般步骤:① 求函数的增量:00()()y f x x f x ∆=+∆-;② 求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③ 求极限,得导数:00000()()'()lim limx x f x x f x yf x x x∆→∆→+∆-∆==∆∆。
也可称为三步法求导数。
【典型例题】类型一:求平均变化率 例1 函数()y f x==在区间[1,1+Δx]内的平均变化率为________。
【解析】 ∵(1)(1)1y f x f ∆=+∆-===(11)1xx x-∆=++∆+∆,∴1(11)1y x x x∆=-∆++∆+∆ 【总结升华】 由于平均变化率是函数值增量与自变量增量之比,所以求函数在给定区间[x 0,x 0+Δx]上的平均变化率问题,就是求00()()f x x f x y x x +∆-∆=∆∆的值。
本例的关键是对111x x-+∆+∆进行分子有理化。
举一反三:【变式1】 求函数y=2x 2+5在区间[2,2+Δx]上的平均变化率;并计算当12x ∆=时,平均变化率的值。
【答案】 ∵222(2)(2)2(2)5(225)82()y f x f x x x ∆=+∆-=+∆+-⋅+=∆+∆∴82yx x∆=+∆∆,函数在区间[2,2+Δx]上的平均变化率为82x +∆。
当12x ∆=时,829yx x∆=+∆=∆,即平均变化率的值为9.【变式2】 (2015春 松山区校级月考)在曲线2y x x =+上取点P (2,6)及邻近点Q ()2,6x y +∆+∆ ,那么yx∆∆ 为( ) A.2x ∆+ B. 22()x x ∆+∆ C. 5x ∆+ D. 23()x x ∆+∆【答案】 ∵ 26(2)(2)y x x +∆=+∆++∆,∴ 2(2)(2)65y x x x x x∆+∆++∆-==∆+∆∆ 故选C【变式3】已知函数,,分别计算在区间[-3,-1],[0,5]上函数及的平均变化率. 【答案】函数在[-3,-1]上的平均变化率为在[-3,-1]上的平均变化率为函数在[0,5]上的平均变化率为在[0,5]上的平均变化率为类型二:利用定义求导数值例2 用导数的定义,求函数()y f x x==在x=1处的导数。
【解析】∵(1)(1)11y f x f x∆=+∆-=-+∆111(11)1x x x x -+∆==+∆++∆+∆(11)1x x=++∆+∆ ∴(11)1y x x x∆=∆++∆+∆ ∴01'(1)lim2x y f x ∆→∆==-∆。
【总结升华】 利用定义求函数的导数值,需熟练掌握求导数的步骤和方法,即三步法。
举一反三:【高清课堂:变化率与导数 383113 例1】【变式1】(1)求函数 2()3f x x =在x =1处的导数.(2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.【答案】 (1) 22(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆263()63y x x x x x∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=.所以 函数 2()3f x x =在x =1处的导数为6 .(2) 依照定义,f (x )在1x =-的平均变化率,为两增量之比,需先求2200()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,再求:23()3y x x x x x∆∆-∆==-∆∆∆,即为f (x )=x x +-2在1x =-附近的平均变化率。
再由导数定义得: 00(1)lim lim(3)3x x yf x x ∆→∆→∆'-==-∆=∆【变式2】已知函数1y x x=x=4处的导数.【答案】(1)0011(2)(4)(4)44'(4)lim lim x x f x f x f x x∆→∆→-+∆-+∆==∆∆0112)44lim x x x ∆→⎛⎫-- ⎪+∆⎝⎭=∆0limx ∆→=15lim 4(4)16x x ∆→⎛-==- +∆⎝, 【变式3】(2015春 宝鸡校级月考)已知函数()f x 可导,且'(1)1f = ,则0(1)(1)limx f x f x∆→-∆--∆ 等于( )A.1B. 1-C.(1)1f =D. (1)1f -= 【答案】 A类型三:实际问题中导数的应用例3. 设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度,时间单位为s, 求:t=2s时的瞬时速度(函数s(t)的瞬时变化率)。
【解析】a v s t 220+=∴时,瞬时速度是【总结升华】 t =2s 时的瞬时速度就是t =2s 附近平均速度的极限,亦即速度在t =2s 时导数。
举一反三:【变式1】 质点按规律s (t)=at 2+1做直线运动(位移单位:m ,时间单位:s )。
若质点在t=2 s 时的瞬时速度为8 m / s ,求常数a 的值。
【答案】 ∵Δs=s(2+Δt)―s(2)=a(2+Δt)2+1―a ×22-1=4a Δt+a(Δt)2,∴4sa a t t∆=+∆∆。
∴在t=2 s 时,瞬时速度为0lim4t sa t ∆→∆=∆,即4a=8。
∴a=2。
【变式2】如果一个质点从固定点A 开始运动,关于时间t 的位移函数是3()3s t t =+ 002200000000()()11[()()][]2212s t t s t s t tv t t a t t v t at tv at a t+∆-∆=∆∆+∆++∆-+=∆=++∆求(1)t=4时、物体的位移是s(4); (2)t=4时、物体的速度v(4); (3)t=4时、物体的加速度a(4). 【答案】(1) 3(4)4367s =+=(2) t=4时,332(4)3(43)4812()s t t t t t∆+∆+-+==+∆+∆∆∆ 200limlim 4812()48t t s t t t ∆→∆→∆⎡⎤=+∆+∆=⎣⎦∆ ∴v(4)=48(3) 3322()3(3)33()s t t t t t t t t t∆+∆+-+==+∆+∆∆∆ ∴22200()limlim 33()3t t s v t t t t t t t ∆→∆→∆⎡⎤==+∆+∆=⎣⎦∆ t=4时 ()(4)v v t t v t t∆+∆-==∆∆23(4)234243t t t +∆-⨯=+∆∆ []00limlim 24324t t vt t ∆→∆→∆=+∆=∆∴a (4) = 24【变式3】 枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是a=5×105 m / s 2,枪弹从枪口射出所用的时间为1.6×10―3 s 。
求枪弹射出枪口时的瞬时速度。
【答案】 运动方程为212s at =。
因为 222000111()()222s a t t at at t a t ∆=+∆-=∆+∆, 所以 012s at a t t ∆=+∆∆。
当Δt →0时,0s at t∆→∆。
由题意知,a=5×105 m / s 2,t 0=1.6×10-3 s , 所以at 0=8×102 m / s=800 m / s即枪弹射出枪口时的瞬时速度为800 m / s【巩固练习】 一、选择题1.(2015春 保定校级月考)函数在一点的导数是( ) A.在该点的函数值的增量与自变量的增量的比 B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率。