高中数学-变化率与导数、导数的计算
- 格式:doc
- 大小:1.10 MB
- 文档页数:6
变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。
变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。
而导数则是描述函数在其中一点上的变化率的概念。
在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。
那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。
这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。
变化率可以通过求平均变化率和瞬时变化率来进行计算。
平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。
而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。
二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。
导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。
导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。
1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。
(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。
(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。
(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。
(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。
2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。
计算导数教学过程:一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。
(1)求函数的改变量)()(x f x x f y -∆+=∆(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()( (3)取极限,得导数/y =()f x '=x y x ∆∆→∆0lim 本节课我们将学习常见函数的导数。
首先我们来求下面几个函数的导数。
(1)、y=x (2)、y=x 2 (3)、y=x 3问题1:1-=x y ,2-=x y ,3-=x y 呢? 问题2:从对上面几个幂函数求导,我们能发现有什么规律吗?二、新授1、基本初等函数的求导公式:⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数)⑶ ()1x '= ⑷ 2()2x x '=⑸ 32()3x x '= ⑹ 211()x x '=-⑺'=由⑶~⑹你能发现什么规律? ⑻ 1()x xααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01)x xlnaa a '==>≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。
例1、求下列函数导数。
(1)5-=x y (2)x y 4= (3)x x x y =(4)x y 3log = (5)y=sin(2π+x) (6) y=sin 3π (7)y=cos(2π-x) (8)y=(1)f '例2:已知点P 在函数y=cosx 上,(0≤x≤2π),在P 处的切线斜率大于0,求点P 的横坐标的取值范围。
学 习 资 料 汇编§3 计算导数[对应学生用书P18]对于函数y =-x 2+2.问题1:试求f ′(1),f ′⎝ ⎛⎭⎪⎫-12. 提示:f ′(1)=li mΔx →0-+Δx2+2--1+Δx=li m Δx →0(-2-Δx )=-2. f ′⎝ ⎛⎭⎪⎫-12=li m Δx →0 -⎝ ⎛⎭⎪⎫-12+Δx 2+2-⎝⎛⎭⎪⎫-14+2Δx=li m Δx →0 (1-Δx )=1. 问题2:求f ′(x 0)的值. 提示:f ′(x 0)=li m Δx →0-x 0+Δx2+2--x 20+Δx=li m Δx →0(-2x 0-Δx )=-2x 0.问题3:利用f ′(x 0)可求f ′(1)和f ′⎝ ⎛⎭⎪⎫-12吗?提示:可以.只要令x 0=1,x 0=-12.问题4:若x 0是一变量x ,则f ′(x )还是常量吗?提示:因f ′(x )=-2x ,说明f ′(x )不是常量,其值随自变量x 而改变.1.导函数若一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=li m Δx →0f x +Δx -f xΔx,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,简称为导数.2.导数公式表(其中三角函数的自变量单位是弧度)1.f ′(x )是函数f (x )的导函数,简称导数,它是一个确定的函数,是对一个区间而言的;f ′(x 0)表示的是函数f (x )在x =x 0处的导数,它是一个确定的值,是函数f ′(x )的一个函数值.2.对公式y =x α的理解:(1)y =x α中,x 为自变量,α为常数;(2)它的导数等于指数α与自变量的(α-1)次幂的乘积,公式对α∈R 都成立.[对应学生用书P19][例1] 求函数f (x )=x 2+5x 在x =3处的导数和它的导函数.[思路点拨] 先用导函数的定义求f ′(x ),再将x =3代入即可得f ′(3). [精解详析] f ′(x )=li m Δx →0 x +Δx2+x +Δx -x 2+5xΔx=li m Δx →0 2Δx ·x +Δx 2+5ΔxΔx=li m Δx →0 (2x +Δx +5)=2x +5. ∴f ′(3)=2×3+5=11.[一点通] 利用定义求函数y =f (x )的导函数的一般步骤: (1)确定函数y =f (x )在其对应区间上每一点是否都有导数; (2)计算Δy =f (x +Δx )-f (x ); (3)当Δx 趋于0时,得到导函数f ′(x )=lim Δx →0f x +Δx -f xΔx.1.利用导数定义求f (x )=1的导函数,并求f ′(2),f ′(3). 解:Δy =f (x +Δx )-f (x )=1-1=0,ΔyΔx =0.Δx 趋于0时,ΔyΔx 趋于0.所以f ′(x )=0.所以有f ′(2)=0,f ′(3)=0. 2.求函数y =x 的导函数. 解:Δy =x +Δx -x ,Δy Δx =x +Δx -x Δx =1x +Δx +x , 所以y ′=lim Δx →0 Δy Δx =lim Δx →01x +Δx +x =12x .[例2] 求下列函数的导数.(1)y =x 13,(2)y =4x ,(3)y =log 3x ,(4)y =15x2.[思路点拨] (1)(3)直接套用公式,(2)(4)先将分式、根式转化为幂的形式,再求解. [精解详析] (1)y ′=(x 13)′=13x13-1=13x 12;(2)y ′=(4x )′=(x 14)′=14x 114-=14x 34;(3)y ′=(log 3x )′=1x ln 3; (4)y ′=⎝ ⎛⎭⎪⎪⎫15x 2′=(x -25)′=-25x 215--=-25x 75-.[一点通] 求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给函数的特征,将题中函数的结构进行调整,再选择合适的求导公式.3.函数y =sin ⎝⎛⎭⎪⎫π2-x 的导数是________.解析:y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x ,所以y ′=-sin x . 答案:-sin x4.若f (x )=x 2-e x,则f ′(-1)=________. 解析:f ′(x )=2x -e x ,∴f ′(-1)=-2-e -1. 答案:-2-e -1 5.求下列函数的导数: (1)y =x2 014;(2)y =3x3;(3)y =5x;(4)y =3x 2.解:(1)y ′=(x2 014)′=2 014x2 013;(2)y ′=⎝ ⎛⎭⎪⎫3x3′=-9x -4;(3)y ′=(5x)′=5xln 5;(4)y ′=(3x 2)′=23x ⎛⎫ ⎪⎝⎭′=2313x -[例3] 点P 是曲线y =e x上任意一点,求点P 到直线y =x 的最小距离.[精解详析] 根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1, 即f ′(x 0)=1. ∵y ′=(e x)′=e x,∴e x 0=1,得x 0=0,代入y =e x,y 0=1, 即P (0,1).利用点到直线的距离公式得最小距离为22. [一点通] 利用基本初等函数的求导公式,结合导数的几何意义可以解决一些与距离、面积相关的最值问题.解题的关键是将问题转化为切点或切线的相关问题,利用导数求解.6.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,2B.⎝ ⎛⎭⎪⎫-12,-2或⎝ ⎛⎭⎪⎫12,2C.⎝ ⎛⎭⎪⎫-12,-2 D.⎝ ⎛⎭⎪⎫12,-2 解析:由y ′=-1x 2=-4,得x =±12,故点P 的坐标为⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2. 答案:B7.曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是________.解析:由⎩⎪⎨⎪⎧y =1x,y =x 2联立得交点为(1,1),而⎝ ⎛⎭⎪⎫1x′=-1x2;(x 2)′=2x ,∴斜率分别为:-1和2, ∴切线方程为:y -1=-(x -1), 及y -1=2(x -1).令y =0得与x 轴交点为(2,0)及⎝ ⎛⎭⎪⎫12,0,∴S △=12·⎝ ⎛⎭⎪⎫2-12×1=34.答案:348.已知直线y =kx 是y =ln x 的一条切线,求k 的值. 解:设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x .∴f ′(x 0)=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上,∴⎩⎪⎨⎪⎧y 0=kx 0, ①y 0=ln x 0, ②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e. ∴k =1x 0=1e.1.f ′(x 0)与f ′(x )的异同:2.在应用正余弦函数及指数、对数函数的求导公式时应注意的问题:(1)对于公式(sin x )′=cos x ,(cos x )′=-sin x ,一是注意函数的变化,二是注意符号的变化.(2)对于公式(ln x )′=1x 和(e x )′=e x 很好记,但对于公式(log a x )′=1x ln a 和(a x)′=a xln a 的记忆就较难,特别要注意ln a 所在的位置.[对应课时跟踪训练七1.设函数f (x )=cos x ,则⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π2′=( ) A .0 B .1C .-1D.以上均不正确解析:注意此题中是先求函数值再求导,所以导数是0,故答案为A. 答案:A2.下列各式中正确的是( ) A .(log a x )′=1xB .(log a x )′=ln 10xC .(3x)′=3x D.(3x )′=3x·ln 3解析:由(log a x )′=1x ln a,可知A ,B 均错;由(3x )′=3xln 3可知D 正确. 答案:D3.已知f (x )=x α,若f ′(-1)=-4,则α的值是( ) A .-4 B .4 C .±4D.不确定解析:f ′(x )=αx α-1,f ′(-1)=α(-1)α-1=-4,∴α=4.答案:B4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12D.-1解析:因为y ′=2ax ,所以切线的斜率k =y ′|x =1=2a . 又由题设条件知切线的斜率为2, 即2a =2,即a =1,故选A. 答案:A5.若f (x )=x 2,g (x )=x 3,则适合f ′(x )+1=g ′(x )的x 值为________. 解析:由导数的公式知,f ′(x )=2x ,g ′(x )=3x 2. 因为f ′(x )+1=g ′(x ),所以2x +1=3x 2, 即3x 2-2x -1=0,解得x =1或x =-13.答案:1或-136.正弦曲线y =sin x (x ∈(0,2π))上切线斜率等于12的点为________________.解析:∵y ′=(sin x )′=cos x =12,∵x ∈(0,2π), ∴x =π3或5π3.答案:⎝⎛⎭⎪⎫π3,32或⎝ ⎛⎭⎪⎫5π3,-327.求与曲线y =f (x )=3x 2在点P (8,4)处的切线垂直,且过点(4,8)的直线方程. 解:∵y =3x 2,∴y ′=(3x 2)′=(x 23)′=23x 13-.∴f ′(8)=23·813-=13.即曲线在点P (8,4)处的切线的斜率为13.∴适合条件的直线的斜率为-3.从而适合条件的直线方程为y -8=-3(x -4). 即3x +y -20=0. 8.求下列函数的导数: (1)y =log 2x 2-log 2x ; (2)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4.解:(1)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2.(2)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝⎛⎭⎪⎫2cos 2x4-1=2sin x 2cos x2=sin x ,∴y ′=cos x .敬请批评指正。
第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。
23.变化率与导数教学目标 班级____姓名________1.通过具体的自然现象,认识函数的平均变化率.2.掌握变化率的基本概念.3.理解变化率的物理意义及几何意义.教学过程一、变化率的概念.1.反映变化快慢的量,就是我们要研究的变化率.2.定义:我们把1212)()(x x x f x f --称为函数)(x f y =从1x 到2x 的平均变化率. 习惯上,用x ∆表示12x x -,即12x x x -=∆.(x ∆是相对于1x 的变化量,可能大于0,可能小于0,但不能等于0.)类似12y y y -=∆. 平均变化率可表示为x y ∆∆或x x f x x f ∆-∆+)()(11. 3.变化率的两个应用:(1)物理意义:平均速度.(2)几何意义:割线斜率.二、导数.1.瞬时变化率:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x ∆-∆+→∆)()(lim 000,我们称它为函数)(x f y =在0x x =处的导数,记作)('0x f 或0|'x x y =,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(l i m l i m )('00000. 2.瞬时速度:tt s t t s v t ∆-∆+=→∆)()(lim 1101. 3.切线斜率:xx f x x f k x ∆-∆+=→∆)()(lim 110. 三、例题分析.1.求平均变化率.例1:求函数652+=x y 在[2,4]内的平均变化率.练1-1:已知函数532)(2-+=x x x f ,当41=x ,1=∆x 时,求函数增量y ∆和平均变化率xy ∆∆.练1-2:某盏路灯距离地面高8m ,一个身高2m 的人从路灯下出发,以1m/s 的速度匀速沿直线离开路灯,求人影长度的平均变化率.2.求函数在某处的导数.例2:利用导数的定义,求函数x x x f 3)(2+-=在2=x 处的导数.练2:求函数x x y 232-=在1=x 处的导数.作业:求32)(2+-=x x x f 在4=x 处的导数.。
高中数学公式大全导数的计算与应用公式高中数学公式大全:导数的计算与应用公式1. 导数的定义与计算在微积分中,导数是用来描述函数变化率的重要工具。
对于函数f(x),导数可以用极限来定义,并可以使用以下公式进行计算:(1) 一阶导数:f'(x) = lim (h→0) [f(x+h) - f(x)] / h(2) 高阶导数:f''(x) = (d/dx) [f'(x)](3) 链式法则:若函数f(x)和g(x)都可导,则复合函数 (f(g(x))) 的导数可以计算为:(f(g(x)))' = f'(g(x)) * g'(x)2. 常用导数公式(1) 常数函数导数:如果f(x)是一个常数c,则f'(x) = 0(2) 幂函数导数:对于函数f(x) = x^n,其中n是实数常数,则f'(x) = n * x^(n-1)(3) 指数函数导数:对于函数f(x) = a^x,其中a是常数且a>0且a≠1,则f'(x) = a^x * ln(a)(4) 对数函数导数:对于函数f(x) = log_a(x),其中a是常数且a>0且a≠1,则f'(x) = 1 / (x * ln(a))(5) 三角函数导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)3. 导数的应用导数在数学中有广泛的应用,以下介绍几个常见的应用领域。
(1) 切线与法线:导数可以用来求解函数在某一点的切线和法线。
函数在某一点的导数即为该点切线的斜率,法线的斜率为切线斜率的负倒数。
(2) 极值点与拐点:通过求解函数的导数为零的点,可以判断函数的极大值和极小值。
高中数学-变化率与导数、导数的计算
一、选择题(每小题5分,共35分)
1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为( )
A.0
B.3
C.4
D.-
【解析】选B.因为f(x)=x3+2x+1,
所以f′(x)=x2+2.
所以f′(-1)=3.
2.已知函数f(x)=cos x,则f(π)+f′= ( )
A.-
B.-
C.-
D.-
【解析】选C.因为f′(x)=-cos x+(-sin x),
所以f(π)+f′=-+·(-1)=-.
3.(·吉林模拟)已知曲线y=ln x的切线过原点,则此切线的斜率
为( )
A.e
B.-e
C.
D.-
【解析】选C.y=ln x的定义域为(0,+∞),且y′=,设切点为(x0,ln x0),则y′=,切线方程为
y-ln x0=(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为.
【变式备选】曲线y=e x在点A(0,1)处的切线斜率为( )
A.1
B.2
C.e
D.
【解析】选A.由题意知y′=e x,故所求切线斜率k=e x=e0=1.
4.(·沈阳模拟)若曲线y=x3+ax在坐标原点处的切线方程是2x-y=0,则实数a= ( )
A.1
B.-1
C.2
D.-1
【解析】选C.导数的几何意义即为切线的斜率,由y′=3x2+a得在x=0处的切线斜率为a,所以a=2.
【变式备选】直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值
为( )
A.2
B.ln 2+1
C.ln 2-1
D.ln 2
【解析】选C.y=ln x的导数为y′=,由=,解得x=2,所以切点为(2,ln 2).将其代入直线方程y=x+b,可得b=ln 2-1.
5.已知f(x)=2e x sin x,则曲线f(x)在点(0,f(0))处的切线方程为( )
A.y=0
B.y=2x
C.y=x
D.y=-2x
【解析】选B.因为f(x)=2e x sin x,所以f(0)=0,f′(x)=2e x·(sin x+cos x),所以f′(0)=2,所以曲线f(x)在点(0,f(0))处的切线方程为y=2x.
6.设曲线y=在点处的切线与直线x-ay+1=0平行,则实数a等
于( )
A.-1
B.
C.-2
D.2
【解析】选A.因为y′=,所以y′=-1,
由条件知=-1,所以a=-1.
7.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于 ( )
A.2
B.-1
C.1
D.-2
【解析】选C.依题意知,y′=3x2+a,
则由此解得
所以2a+b=1.
二、填空题(每小题5分,共15分)
8.若曲线y=2x2的一条切线l与直线x+4y-8=0垂直,则切线l的方程为________________.
【解析】设切点为(x0,y0),y′=4x,则4x0=4⇒x0=1,所以y0=2,所以切线方程为:y-2=4(x-1)⇒4x-y-2=0.
答案:4x-y-2=0
9.(·长沙模拟)若函数f(x)=ln x-f′(-1)x2+3x-4,则f′(1)=________.
【解析】因为f′(x)=-2f′(-1)x+3,
所以f′(-1)=-1+2f′(-1)+3,
解得f′(-1)=-2,所以f′(1)=1+4+3=8.
答案:8
10.已知定义在R上的函数f(x)满足f(1-x)+f(1+x)=2,且当x>1时,f(x)=xe2-x,则曲线y=f(x)在x=0处的切线方程是________.
【解析】因为f(x)满足f(1-x)+f(1+x)=2,
所以y=f(x)的图象关于点(1,1)对称.
当x<1时,取点(x,y),该点关于(1,1)的对称点是(2-x,2-y),
代入f(x)=xe2-x可得:
2-y=(2-x)e2-(2-x),
所以y=2-(2-x)e x=xe x,
y′=(x+1)e x,y′|x=0=1,
所以切线方程为y=x,即x-y=0.
答案:x-y=0
1.(5分)已知函数f(x)在R上满足f(2-x)=2x2-7x+6,则曲线y=f(x)在(1,f(1))处的切线方程是 ( )
A.y=2x-1
B.y=x
C.y=3x-2
D.y=-2x+3
【解析】选C.令x=1得f(1)=1,令2-x=t,可得x=2-t,代入f(2-x)=2x2-7x+6得f(t)=2(2-t)2-7(2-t)+6,化简整理得f(t)=2t2-t,即f(x)=2x2-x,所以f′(x)=4x-1,所以f′(1)=3.
所以所求切线方程为y-1=3(x-1),即y=3x-2.
【巧思妙解】选C.令x=1得f(1)=1,由f(2-x)=2x2-7x+6,两边求导可得f′(2-x)·(2-x)′=4x-7,令x=1可得-f′(1)=-3,即f′(1)=3.
所以所求切线方程为y-1=3(x-1),即y=3x-2.
2.(5分)(·上饶模拟)若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2距离的最小值为
( )
A.1
B.
C.
D.
【解析】选B.对于曲线y=x2-ln x上任意一点P,当过该点的切线斜率与直线y=x-2的斜率相同时,点P到直线的距离最小.
因为定义域为(0,+∞),所以y′=2x-=1,解得x=1,则在P(1,1)处的切线方程为x-y=0,所以两平行线间的
距离为d==.
【变式备选】曲线y=ln(2x)上任意一点P到直线y=2x的距离的最小值是________.
【解析】如图,所求最小值即曲线上斜率为2的切线与y=2x两平行线间的距离,
也即切点到直线y=2x的距离.由y=ln(2x),
则y′==2,得x=,y=ln =0,
即与直线y=2x平行的曲线y=ln(2x)的切线的切点坐标是,y=ln(2x)上任意一点P到直线y=2x的距离的最小值,即=.
答案:
3.(5分)(·沧州模拟)若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的值为________.
【解析】易知点O(0,0)在曲线f(x)=x3-3x2+2x上,
(1)当O(0,0)是切点时,切线方程为y=2x,则联立y=2x和y=x2+a得x2-2x+a=0,
由Δ=4-4a=0,解得a=1.
(2)当O(0,0)不是切点时,设切点为P(x0,y0),则y0=-3+2x0,且k=f′(x0)=3-6x0+2.①
又k==-3x0+2,②
由①,②联立,得x0=(x0=0舍),
所以k=-,
所以所求切线l的方程为y=-x.
由得x2+x+a=0.
依题意,Δ′=-4a=0,所以a=.
综上,a=1或a=.
答案: 1或
【易错警示】(1)片面理解“过点O(0,0)的直线与曲线f(x)=x3-3x2+2x相切”.这里有两种可能:一是点O 是切点;二是点O不是切点,但曲线经过点O,解析中易忽视后面情况.
(2)本题还易出现以下错误:一是当点O(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l 的方程,导致解题复杂化,求解受阻.
4.(12分)已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线的方程.
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.
【解析】(1)可判定点(2,-6)在曲线y=f(x)上.
因为f′(x)=(x3+x-16)′=3x2+1,
所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.
所以切线的方程为y+6=13(x-2),即y=13x-32.
(2)设切点坐标为(x0,y0),
则直线l的斜率k为f′(x0)=3+1,
y0=+x0-16,
所以直线l的方程为y=(3+1)(x-x0)++x0-16.
又因为直线l过原点(0,0),
所以0=(3+1)(-x0)++x0-16,整理得,
=-8,所以x0=-2,
所以y0=(-2)3+(-2)-16=-26,得切点坐标为(-2,-26),k=3×(-2)2+1=13.
所以直线l的方程为y=13x,切点坐标为(-2,-26).
5.(13分)已知函数f(x)=x-1+(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.
(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.
【解析】(1)f′(x)=1-,因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
所以f′(1)=1-=0,解得a=e.
(2)当a=1时,f(x)=x-1+,f′(x)=1-. 设切点为(x0,y0),
因为f(x0)=x0-1+=kx0-1,①
f′(x0)=1-=k,②
①+②得x0=kx0-1+k,即(k-1)(x0+1)=0.
若k=1,则②式无解,所以x0=-1,k=1-e.
所以l的直线方程为y=(1-e)x-1.。